[1] |
范宝春, 张旭东, 潘振华, 归明月 . 2012. 用于推进的三种爆震波的结构特征. 力学进展, 42:162-169(Fan B C, Zhang X D, Pan Z H, Gui M Y . 2012. Fundamental characteristics of three types of detonation waves utilized in propulsion. Advances in Mechanics, 42: 162-169).
|
[2] |
范宝春 . 2018. 极度燃烧. 北京: 国防工业出版社(Fan B C. 2018. Extreme Combustion. Beijing: National Defense Industry Press).
|
[3] |
范玮, 李建玲 , 等. 2014. 爆震组合循环发动机研究导论. 北京: 科学出版社(Fan W, Li J L , et al. 2014. . Induction to A Combined Cycle Engine Based Detonation Combustion. Beijing: Science Press).
|
[4] |
方宜申, 胡宗民, 滕宏辉, 姜宗林 . 2017. 圆球诱发斜爆轰波的数值研究. 力学学报, 49:268-273(Fang Y S, Hu Z M, Teng H H, Jiang Z L . 2017. Numerical study of the oblique detonation initiation induced by spheres. Chinese Journal of Theoretical and Applied Mechanics, 49: 268-273).
|
[5] |
苗世坤, 周进, 刘彧, 刘世杰, 林志勇 . 2019. 超声速气流中的斜爆震研究进展综述. 实验流体力学, 33:41-53(Miao S K, Zhou J, Liu Y, Liu S J, Lin Z Y . 2019. Review of studies on oblique detonation waves in supersonic flows. Journal of Experiments in Fluid Mechanics, 33: 41-53).
|
[6] |
童秉纲, 孔祥言, 邓国华 . 1996. 气体动力学. 北京: 高等教育出版社(Tong B G, Kong X Y, Deng G H. 1996. Gasdynamics. Beijing: Higher Education Press).
|
[7] |
王家骅, 韩启祥 . 2013. 脉冲爆震发动机技术. 北京: 国防工业出版社(Wang J H, Han Q X. 2013. Pulse Detonation Engine. Beijing: National Defense Industry Press).
|
[8] |
王健平, 姚松柏 . 2018. 连续爆轰发动机原理与技术. 北京: 科学出版社(Wang J P, Yao S B. 2018. Principles and Techniques of Continuous Detonation Engine. Beijing: Science Press).
|
[9] |
严传俊, 范玮 , 等. 2005. 脉冲爆震发动机原理及关键技术. 西安: 西北工业大学出版社(Yan C J, Fan W , et al. 2005. Principles and Key Techniques of Pulse Detonation Engine. Xi'an: Northwestern Polytechnical University Press).
|
[10] |
袁生学, 赵伟, 黄志澄 . 2000. 驻定斜爆轰波的初步实验观察. 空气动力学学报, 18:473-477(Yuan S X, Zhao W, Huang Z C . 2000. Primary experimental observation of standing oblique detonation waves. Acta Aerodynamica Sinica, 18: 473-477).
|
[11] |
Alexander D C, Sislian J P, Parent B. 2006. Hypervelocity fuel/air mixing in mixed-compression inlets of shcramjets. AIAA Journal, 44:2145-2155.
|
[12] |
Ashford S A, Emanuel G. 1994. Wave angle for oblique detonation waves. Shock Waves, 3:327-329.
|
[13] |
Bertin J J, Cummings R M. 2003. Fifty years of hypersonics: Where we've been, where we're going. Progress in Aerospace Sciences, 39: 511-536.
|
[14] |
Bhattrai S, Tang H. 2017. Formation of near-Chapman-Jouguet oblique detonation wave over a dual-angle ramp. Aerospace Science and Technology, 63:1-8.
|
[15] |
Bomjan B, Bhattrai S, Tang H. 2018. Characterization of induction and transition methods of oblique detonation waves over dual-angle wedge. Aerospace Science and Technology, 82-83:394-401.
|
[16] |
Bourlioux A, Majda A, Roytburd V. 1991. Theoretical and numerical structure for unstable one-dimensional detonations. SIAM Journal on Applied Mathematics, 51:303-343.
|
[17] |
Bourlioux A, Majda A J. 1992. Theoretical and numerical structure for unstable two-dimensional detonations. Combustion and Flame, 90:211-229.
|
[18] |
Braun E M, Lu F K, Wilson D R, Camberos J A. 2013. Airbreathing rotating detonation wave engine cycle analysis. Aerospace Science and Technology, 27:201-208.
|
[19] |
Cai X, Liang J, Deiterding R, Mahmoudi Y, Sun M. 2018. Experimental and numerical investigations on propagating modes of detonations: Detonation wave/boundary layer interaction. Combustion and Flame, 190:201-215.
|
[20] |
Cambier J L, Adelman H, Menees G P. 1990. Numerical simulations of an oblique detonation wave engine. Journal of Propulsion and Power, 6:315-323.
|
[21] |
Choi J Y, Kim D W, Jeung I S, Ma F, Yang V. 2007. Cell-like structure of unstable oblique detonation wave from high-resolution numerical simulation. Proceedings of the Combustion Institute, 31:2473-2480.
|
[22] |
Choi J Y, Shin E J R, Jeung I S. 2009. Unstable combustion induced by oblique shock waves at the non-attaching condition of the oblique detonation wave. Proceedings of the Combustion Institute, 32:2387-2396.
|
[23] |
Ciccarelli G, Dorofeev S. 2008. Flame acceleration and transition to detonation in ducts. Progress in Energy and Combustion Science, 34:499-550.
|
[24] |
Curran E T, Heiser W H, Pratt D T. 1996. Fluid phenomena in scramjet combustion systems. Annual Review of Fluid Mechanics, 28:323-360.
|
[25] |
Dabora E K, Broda J C. 1993. Standing normal detonations and oblique detonations for propulsion. AIAA Paper: AIAA-93-2325.
|
[26] |
Emanuel G, Tuckness D G. 2004. Steady, oblique, detonation waves. Shock Waves, 13:327-329.
|
[27] |
Fang Y, Hu Z, Teng H. 2018. Numerical investigation of oblique detonations induced by a finite wedge in a stoichiometric hydrogen-air mixture. Fuel, 234:502-507.
|
[28] |
Fang Y, Hu Z, Teng H, Jiang Z, Ng H D. 2017. Numerical study of inflow equivalence ratio inhomogeneity on oblique detonation formation in hydrogen-air mixtures. Aerospace Science and Technology, 71:256-263.
|
[29] |
Fang Y, Zhang Y, Deng X, Teng H. 2019. Structure of wedge-induced oblique detonation in acetylene-oxygen-argon mixtures. Physics of Fluids, 31:026108.
|
[30] |
Fickett W, Davis W C. 2000. Detonation: Theory and Experiment. New Tork: Dover Publications.
|
[31] |
Figueria da Silva L F, Deshaies B. 2000. Stabilization of an oblique detonation wave by a wedge: A parametric numerical study. Combustion and Flame, 121:152-166.
|
[32] |
Fusina G, Sislian J P, Parent B. 2005. Formation and stability of near Chapman-Jouguet standing oblique detonation waves. AIAA Journal, 43:1591-1604.
|
[33] |
Gamezo V N, Desbordes D, Oran E S. 1999 a. Formation and evolution of two-dimensional cellular detonations. Combustion and Flame, 116:154-165.
|
[34] |
Gamezo V N, Desbordes D, Oran E S. 1999 b. Two-dimensional reactive flow dynamics in cellular detonation waves. Shock Waves, 9:11-17.
|
[35] |
Grismer M J, Powers J M. 1996. Numerical predictions of oblique detonation stability boundaries. Shock Waves, 6:147-156.
|
[36] |
Gui M Y, Fan B C, Dong G. 2011. Periodic oscillation and fine structure of wedge-induced oblique detonation waves. Acta Mechanica Sinica, 27:922-928.
|
[37] |
Han W, Wang C, Law C K. 2019. Three-dimensional simulation of oblique detonation waves attached to cone. Physical Review Fluids, 4:053201.
|
[38] |
He L, Lee J H S. 1995. The dynamical limit of one-dimensional detonations. Physics of Fluids, 7:1151-1158.
|
[39] |
Higgins A J. 2006. Ram accelerators: Outstanding issues and new directions. Journal of Propulsion and Power, 22:1170-1187.
|
[40] |
Iwata K, Nakaya S, Tsue M. 2016. Numerical investigation of the effects of nonuniform premixing on shock-induced combustion. AIAA Journal, 54:1682-1692.
|
[41] |
Iwata K, Nakaya S, Tsue M. 2017. Wedge-stabilized oblique detonation in an inhomogeneous hydrogen-air mixture. Proceedings of the Combustion Institute, 36:2761-2769.
|
[42] |
Kailasanath K. 2003. Recent developments in the research on pulse detonation engines. AIAA Journal, 41:145-159.
|
[43] |
Kaneshige M J, Shepherd J E. 1996. Oblique detonation stabilized on a hypervelocity projectile. Symposium (International) on Combustion, 26:3015-3022.
|
[44] |
Lee J H S. 1984. Dynamic parameters of gaseous detonations. Annual Review of Fluid Mechanics, 16:311-336.
|
[45] |
Lee J H S. 2008. The Detonation Phenomenon. Cambridge: Cambridge University Press.
|
[46] |
Lehr H F. 1972. Experiments on shock-induced combustion. Astronautica Acta, 17:589-597.
|
[47] |
Li C, Kailasanath K, Oran E. 1993. Effects of boundary layers on oblique-detonation structures. AIAA Paper: AIAA-93-0450.
|
[48] |
Li C, Kailasanath K, Oran E S. 1994. Detonation structures behind oblique shocks. Physics of Fluids, 6:1600-1611.
|
[49] |
Liu Y, Han X, Yao S, Wang J. 2016 a. A numerical investigation of the prompt oblique detonation wave sustained by a finite-length wedge. Shock Waves, 26:729-739.
|
[50] |
Liu Y, Liu Y S, Wu D, Wang J P. 2016 b. Structure of an oblique detonation wave induced by a wedge. Shock Waves, 26:161-168.
|
[51] |
Liu Y, Wang L, Xiao B, Yan Z, Wang C. 2018. Hysteresis phenomenon of the oblique detonation wave. Combustion and Flame, 192:170-179.
|
[52] |
Maeda S, Inada R, Kasahara J, Matsuo A. 2011. Visualization of the non-steady state oblique detonation wave phenomena around hypersonic spherical projectile. Proceedings of the Combustion Institute, 33:2343-2349.
|
[53] |
Maeda S, Kasahara J, Matsuo A. 2012. Oblique detonation wave stability around a spherical projectile by a high time resolution optical observation. Combustion and Flame, 159:887-896.
|
[54] |
Maeda S, Sumiya S, Kasahara J, Matsuo A. 2013. Initiation and sustaining mechanisms of stabilized oblique detonation waves around projectiles. Proceedings of the Combustion Institute, 34:1973-1980.
|
[55] |
Menees G P, Adelman H G, Cambier J L, Bowles J V. 1992. Wave combustors for trans-atmospheric vehicles. Journal of Propulsion and Power, 8:709-713.
|
[56] |
Nettleton M A. 2000. The applications of unsteady, multi-dimensional studies of detonation waves to ram accelerators. Shock Waves, 10:9-22.
|
[57] |
Ng H D, Lee J H S. 2003. Direct initiation of detonation with a multi-step reaction scheme. Journal of Fluid Mechanics, 476:179-211.
|
[58] |
Papalexandris M V. 2000. A numerical study of wedge-induced detonations. Combustion and Flame, 120:526-538.
|
[59] |
Pratt D T, Humphrey J W, Glenn D E. 1991. Morphology of standing oblique detonation waves. Journal of Propulsion and Power, 7:837-845.
|
[60] |
Qin Q, Zhang X. 2018. A novel method for trigger location control of the oblique detonation wave by a modified wedge. Combustion and Flame, 197:65-77.
|
[61] |
Ren Z, Wang B, Xiang G, Zheng L. 2018. Effect of the multiphase composition in a premixed fuel-air stream on wedge-induced oblique detonation stabilisation. Journal of Fluid Mechanics, 846:411-427.
|
[62] |
Ren Z, Wang B, Xiang G, Zheng L. 2019. Numerical analysis of wedge-induced oblique detonations in two-phase kerosene-air mixtures. Proceedings of the Combustion Institute, 37:3627-3635.
|
[63] |
Roy G D, Frolov S M, Borisov A A, Netzer D W. 2004. Pulse detonation propulsion: Challenges, current status, and future perspective. Progress in Energy and Combustion Science, 30:545-672.
|
[64] |
Rubins P M, Bauer R C. 1994. Review of shock-induced supersonic combustion research and hypersonic applications. Journal of Propulsion and Power, 10:593-601.
|
[65] |
Sharpe G J, Radulescu M I. 2011. Statistical analysis of cellular detonation dynamics from numerical simulations: One-step chemistry. Combustion Theory and Modelling, 15:691-723.
|
[66] |
Short M, Quirk J J. 1997. On the nonlinear stability and detonability limit of a detonation wave for a model three-step chain-branching reaction. Journal of Fluid Mechanics, 339:89-119.
|
[67] |
Sislian J P, Dudebout R, Schumacher J, Islam M, Redford T. 2000. Incomplete mixing and off-design effects on shock-induced combustion ramjet performance. Journal of Propulsion and Power, 16:41-48.
|
[68] |
Sislian J P, Schirmer H, Dudebout R, Schumacher J. 2001. Propulsive performance of hypersonic oblique detonation wave and shock-induced combustion ramjets. Journal of Propulsion and Power, 17:599-604.
|
[69] |
Teng H, Ng H D, Jiang Z. 2017. Initiation characteristics of wedge-induced oblique detonation waves in a stoichiometric hydrogen-air mixture. Proceedings of the Combustion Institute, 36:2735-2742.
|
[70] |
Teng H, Ng H D, Li K, Luo C, Jiang Z. 2015. Evolution of cellular structures on oblique detonation surfaces. Combustion and Flame, 162:470-477.
|
[71] |
Teng H, Zhang Y, Jiang Z. 2014 a. Numerical investigation on the induction zone structure of the oblique detonation waves. Computers & Fluids, 95:127-131.
|
[72] |
Teng H H, Jiang Z L. 2012. On the transition pattern of the oblique detonation structure. Journal of Fluid Mechanics, 713:659-669.
|
[73] |
Teng H H, Jiang Z L, Ng H D. 2014 b. Numerical study on unstable surfaces of oblique detonations. Journal of Fluid Mechanics, 744:111-128.
|
[74] |
Tian C, Teng H, Ng H D. 2019. Numerical investigation of oblique detonation structure in hydrogen-oxygen mixtures with Ar dilution. Fuel, 252:496-503.
|
[75] |
Urzay J. 2018. Supersonic combustion in air-breathing propulsion systems for hypersonic flight. Annual Review of Fluid Mechanics, 50:593-627.
|
[76] |
Verreault J, Higgins A J. 2011. Initiation of detonation by conical projectiles. Proceedings of the Combustion Institute, 33:2311-2318.
|
[77] |
Verreault J, Higgins A J, Stowe R A. 2012. Formation and structure of steady oblique and conical detonation waves. AIAA Journal, 50:1766-1772.
|
[78] |
Verreault J, Higgins A J, Stowe R A. 2013. Formation of transverse waves in oblique detonations. Proceedings of the Combustion Institute, 34:1913-1920.
|
[79] |
Viguier C, Figueira da Silva L F, Desbordes D, Deshaies B. 1996. Onset of oblique detonation waves: Comparison between experimental and numerical results for hydrogen-air mixtures. Symposium (International) on Combustion, 26:3023-3031.
|
[80] |
Vlasenko V V, Sabel'nikov V A. 1995. Numerical simulation of inviscid flows with hydrogen combustion behind shock waves and in detonation waves. Combustion, Explosion and Shock Waves, 31:376-389.
|
[81] |
Wang T, Zhang Y, Teng H, Jiang Z, Hg H D. 2015. Numerical study of oblique detonation wave initiation in a stoichiometric hydrogen-air mixture. Physics of Fluids, 27:096101.
|
[82] |
Wolański P. 2013. Detonative propulsion. Proceedings of the Combustion Institute, 34:125-158.
|
[83] |
Yang P, Ng H D, Teng H, Jiang Z. 2017. Initiation structure of oblique detonation waves behind conical shocks. Physics of Fluids, 29:086104.
|
[84] |
Yang P, Teng H, Jiang Z, Ng H D. 2018. Effects of inflow Mach number on oblique detonation initiation with a two-step induction-reaction kinetic model. Combustion and Flame, 193:246-256.
|
[85] |
Yang P, Teng H, Ng H D, Jiang Z. 2019. A numerical study on the instability of oblique detonation waves with a two-step induction-reaction kinetic model. Proceedings of the Combustion Institute, 37:3537-3544.
|
[86] |
Zhang Y, Fang Y, Ng H D, Teng H. 2019. Numerical investigation on the initiation of oblique detonation waves in stoichiometric acetylene-oxygen mixtures with high argon dilution. Combustion and Flame, 204:391-396.
|
[87] |
Zhang Y, Gong J, Wang T. 2016. Numerical study on initiation of oblique detonations in hydrogen-air mixtures with various equivalence ratios. Aerospace Science and Technology, 49:130-134.
|
[88] |
Zhang Y, Yang P, Teng H, Ng H D, Wen C. 2018 a. Transition between different initiation structures of wedge-induced oblique detonations. AIAA Journal, 56:4016-4023.
|
[89] |
Zhang Y, Zhou L, Gong J, Ng H D, Teng H. 2018 b. Effects of activation energy on the instability of oblique detonation surfaces with a one-step chemistry model. Physics of Fluids, 30:106110.
|