1 Zang C, Chen G, Ewins D J. A Review of Advances in Developments in FE Model Validation, Proc. The IMACXXIV (24): A Conference & Exposition on Structural Dynamics St.Louis, Missouri, USA 2006, p. 1778-1789.
|
2 Ewins D J. Modal Testing II—Theory, Practice and Application. Baldock, Hertfordshire, England: Research Studies Press, Ltd., 2000.
|
3 俞云书. 结构模态试验分析. 北京: 宇航出版社, 2000
|
4 Ewins D J. Virtual modal testing. The Asia-Pacific Vibration Conference, Orchard Hotel,Singapore, 1999
|
5 Tinker M L. Modal Vibration Test Facilities and Methods for Space Station Modules. AIAA-95-1295,1995
|
6 Tinker M L. Free-suspension residual flexibility testing of space station pathfinder: comparison to fixed-base results, AIAA 1998-1791, 1998
|
7 Tinker M L. Hybrid residual flexibility/mass-additive method for structural dynamic testing, NASA/TM 2003-212343, 2003
|
8 Kammer D C. Sensor placement for on-orbit modal identification and correlation of large space structures. Journal of Guidance, Control and Dynamics, 1991, 14(9): 251-259
|
9 Kammer D C. Effects of noise on sensor placement for onorbit modal identification of large space structures. Jour- nal of Dynamic Systems, Measurement and Control, 1992,114: 436-443
|
10 Papadopoulos M, Garcia E. Sensor placement methodologies for dynamic testing. AIAA Journal, 1998, 36(2): 256-263
|
11 Reynier M, Hisham A K. Sensor locations for updating problems. Mechanical Systems and Signal Processing,1999, 13(2): 297-314
|
12 Wijker J (ed.), Mechanical Vibrations in Spacecraft Design. Berlin: Springer, 2004
|
13 Allemang R, Brown D. A correlation coefficient for modal vector analysis. In: 1st International Modal Analysis Conference, Orlando, USA., 1982
|
14 Lieven N A, Ewins D J. Spatial correlation of mode shapes, the coordinatemodal assurance criterion (COMAC). In: 6th International Modal AnalysisConference, Kissimmee, USA., 1988
|
15 Payload Verification Requirements, NSTS 14046 Rev. E, Lyndon B. Johnson Space Center, Huston Texas; March2000
|
16 Coleman M, Peng C Y, Smith K S. Test verification of the cassini spacecraft dynamic model, 0-7803-3741-7/97IEEE,1997
|
17 Modal Survery Assessment, Ecss-E-30-11, Draft 1, Noordwijk, The Netherlands. 2003
|
18 Heylen W, Avitabile P. Correlation considerations —Part5, In: Proc. IMAC, 1998
|
19 Heylen W, Lammens S. FRAC: a consistent way of comparing frequency response functions. In: Proc. Identication in Engineering Systems, Proceedings of the Conference held at Swansea., 1996
|
20 Nefske D J, Sung S H. Correlation of a coarse-mesh FE model using structural system identification and a frequency response assurance criterion. In: Proc. IMAC,597-602, 1996
|
21 Pascual R, Razeto C G J M. A frequency domain correlation technique for model correlation and updating. In: Proc. IMAC, 1997 587-592
|
22 Grafe H. Model updating of large structural dynamics models using measured response functions. London: University of London, 1998
|
23 Friswell M I, Mottershead J E. Finite Element Model Updating in Structural Dynamics. Canada: Kluer Academic Publishers, 1995
|
24 张德文, 魏阜旋. 模型修正与破损诊断, 第一版. 北京: 科学 出版社, 1999
|
25 Mottershead J E, Friswell M I. Model updating in structural dynamics: a survey. Journal of Sound and Vibra- tion, 1993, 163(2): 347-375
|
26 Mottershead J E, Friswell M I. Model updting. Special Issue: Mech. Syst. Signal Process, 1998, 12(1)
|
27 Imregun M, Visser W J. A review of model updating tchniques. The Shock and Vibration Digest, 1991, 13: 9-20
|
28 Hemez F M. Can model updating tell the truth? In: Proc. the 16th SEM International Modal Analysis Conference Santa Barbara, California, 1998. 1-7
|
29 Natke H G. Problem of model updating procedures: a perspective resumption. Mechanical Systems and Signal Processing, 1998, 12(1): 65-74
|
30 李辉, 丁桦. 结构动力模型修正方法研究进展. 力学进展,2005, 35(2): 170-180
|
31 Baruch M. Optimization procedure to correct stiffness and flexiblity matrices using vibration data. AIAA Journal,1978, 16(11): 1208-1210
|
32 Baruch M. Method of reference basis for identification of linear dynamic strucutres. In: 23rd Structures, Structural Dynamics and Materials Conference,Part 2, New Orleans, Louisiana, 1982
|
33 Berman A. Comment on optimal weighted orthogonalization of measured modes. AIAA Journal, 1979, 17(8): 927-928.
|
34 Berman A. Mass matrix correction using an imcomplete set of measured modes. AIAA Journal, 1979, 17(10)
|
35 Berman A, Nagy E J. Improvement of a large analytical model using test data. AIAA Journal, 1983, 21(8): 1168-1173
|
36 zhang D W, Zhang L. The matrix transform method for modification of structural dynamic analytic model. AIAA Journal, 1992, 30(5)
|
37 Kabe A M. Stiffness matrix adjustment using for structure model. AIAA Journal, 1985, 23(9): 1431-1436
|
38 Smith S W, Beattie C A. Secant-method adjustment for structural models. AIAA Journal, 1991, 29(1): 538-543
|
39 Kenigsbuch R, Halevi Y. Model updating in structural dynamics: a generalized reference basis approach. Me- chanical Systems and Signal Processing, 1998, 12: 75-90
|
40 Halevi Y, Bucher I. Model updating via weighted reference basis with connectivity constraints. Journal of Sound and Vibration, 2003, 265(3): 561-581
|
41 Caesar B. Updating and identification of dynamic mathematical models. In: Proc. 4th International Modal Analysis Conference Los Angeles, 1986, 453-459
|
42 Caesar B. Updating system matrices using modal test data. In: Proc. 5th International Modal Analysis Conference London, 1987. 453-459
|
43 Link M,Weiland M, Barragan J M. Direct physical matrix identification as compared to phase resonance testing: an assessment based on practical application. In: Proc. 5th International Modal Analysis Conference London, England,1987
|
44 Minas C, Inman D J. Correcting finite element models with measured modal results using eigenstructure assignment meods. In: Proc. 6th International Modal Analysis Conference Orlando, Florida, 1988. 583-587
|
45 Minas C, Inman D J. Matching finite element models to modal data. Journal of Vibration and Acoustics, 1990,112(1): 84-92
|
46 Zimmerman D C, Widengren M. Correcting finite models using a symmetric eigenstructure assignment technique. AIAA Journal, 1990, 28(9): 1670-1676
|
47 丁继锋, 韩增尧, 马兴瑞. 大型复杂航天器结构有限元模型 的验证策略研究. 宇航学报, 2010, 31(2): 547-555
|
48 Fox F L, Kapoor M P. Rates of change of eigenvalues and eigenvectors. AIAA Journal, 1968, 6(12): 2426-2429
|
49 Kuo C P, Wada B K. Nonlinear sensitivity coeficients and corrections in system identification, AIAA Journal, 1987,25(11): 1463-1468
|
50 Gordis J H. Artificial boundary conditions for model updating and damage detection. Mechanical Systems and Signal Processing, 1999, 13(3): 437-448
|
51 DeGregory C P. Finite elememnt model updating and damage detection using artificial boundary conditions. Monterey, California, Naval Postgruduate School, 1999
|
52 Fernandez R S. Artificial boundary conditions in sensitivity based finite element model updating and structural damage detection. California, Naval Postgraduate School,2005
|
53 D’Ambrogio W, Fregoient A. The use of antiresonances for robust model updating. Journal of Sound and Vibration,2000, 23(2): 227-242
|
54 Jones K W. Finite element model updating using antiresonant frequencies. Ohio, Air Force Insitute of Technology,2000
|
55 D’Ambrogio W, Fregolent A. Results obtained by minimising natural frequency and antiresonance errors of a beam model. Mechanical Systems and Signal Processing,2003, 17(1): 29-37
|
56 Thonon C, Golinval J C. Results obtained by minimising natural frequency and mac-value errors of a beam model. Mechanical Systems and Signal Processing, 2003, 17(1):65-72
|
57 费庆国, 张令弥, 李爱群, 等. 基于不同残差的动态有限元模 型修正的比较研究. 振动与冲击, 2005, 24(4): 24-27
|
58 Collins J D, Hart G C, Hasselman T K, et al. Statistical identification of structures. AIAA Journal, 1974, 12(2):185-190
|
59 Hemez F M, Doebling S. A validation of bayesian finite element model updating for linear dynamics. In: Proc. the17th International Model Analysis Conference Kissimmee, Florida, 1999
|
60 Hua H. On a stctistical optimization method used in finite element model updating. Journal of Sound and Vibration,2000, 231(4): 1071-1078
|
61 华宏星, 傅志方. 有限元模型修正中的Bayes 方法的几点讨 论. 振动工程学报, 1998, 11(1): 110-115
|
62 Lin R M, Ewins D J. Model updating using FRF data. In: Proc. 15th International Seminar on Modal Analysis,1990
|
63 Lin R M, Ewins D J. Analytical model improvement using frequency reponse functions. Mechanical Systems and Signal Processing, 1994, 8(4): 437-458
|
64 Imregun M, Visser W J, Ewins D J. Finite element model updating using frequency response function data-1. theory and initial investigation. Mechanical Systems and Sig- nal Processing, 1995, 9: 187-202
|
65 Visser W J, Imregun M. A Technique to update finite element models using frequency response data. In: Proc. the9th International Modal Analysis Conference Florence,1991-09-10-12. Kissimmee: Union College, 1991. 462-468
|
66 Imregun M, Visser W J, Ewing M S. Finite element model updating using frequency response function data-2 case study on a medium-size finite element model. Mechanical Systems and Signal Processing, 1995, 9(2): 203-213
|
67 Frizten C P, Zhu S. Updating of finite element models bu means of measured information. Computers and Struc- tures, 1991, 40(2): 475-486
|
68 Link M, Zhang L. Experience with different procedures for updating structural parameters of analytical models using test data. In: Proc. the 10th Internatinal Modal analysis Conference Sandiego,California, 730-738, 1992
|
69 Hemez F M, Browm G W. Improving structural dynamics models by correlation simulated to measured frequency response functions, A98-25080, 1998
|
70 Chang K J, Park Y P. Substructure Model Updating Techniques Using Component Receptance Sensitivity (CRS).
|
71 Kwon K S, Lin R M. Frequency selection method for FRFbased model updating. Journal of Sound and Vibration,2004, 278(1-2): 285-306
|
72 Modak S V, Kundra T K, Nakra B C. Comparative study of model updating methods using simulated experimental data. Computers and Structures, 2002, 80: 437-447
|
73 Kodiyalam S, Kao P J, Wang G. Analysis and test correlation of spacecraft strucutres using dynamic parameter sensitivities. AIAA 1994-24025, 1994
|
74 Beliveau J G, Vigneron, Soucy, et al. Modal parameter estimation from base excitation. Journal of Sound and Vibration, 1986, 107: 435-449
|
75 Sinapius J M. Tuning of normal modes by multi-axial base excitation. Mechanical Systems and Signal Processing,1999, 13(6): 911-924
|
76 Thomas G C, David R M, Arlo R N. A comparison of fixed-base and driven-base modal testing of an electronics package. In: Proc. the 7th International Modal Analysis conference (IMAC), 672-679, 1989
|
77 Mark D. Correlation of FE models of base excitation tests. In: Proc. the 16th International Modal Analysis Conference,959-964, 1998
|
78 Lin R M, Zhu J. Finite element model updating using vibration test data under base excitation, Journal of Sound and Vibration, 2007, 303: 596-613
|
79 Mares C, Mottershead J E, Friswell M I. On the development of a stochastic approach for the validation of spacecraft structural dynamic models. In: Proc. the European Conference on Spacecraft Structures, Materials and Mechanical Testing, Toulouse, France, 2002
|
80 Mares C, Mottershead J E, Friswell M I. Stochastic model updating: part 1——theory and simulated example. Me- chanical Systems and Signal Processing, 2006, 20: 1674-1695
|
81 Mottershead J E, Mares C, James S, et al. Stochastic model updating: part II——theory and simulated example. Mechanical Systems and Signal Processing, 2006, 20:2171-2185
|
82 Calvi A. Uncertainty-based loads analysis for spacecraft: Finite element model validation and dynamic responses. Computers and Structures, 2005, 83: 1103-1112
|
83 邱吉宝, 王建民. 用测量模态参数修改数学模型和复杂结构 动力学建模技术. 见: 全国模态分析与试验会议论文集, 1991
|
84 邱吉宝, 王建民, 捆绑式运载火箭动力学分析. 见: 柔性结构 的振动控制学术讨论会论文集. 北京, 1994: 173-178
|
85 邱吉宝, 王建民. 用试验识别模态修改数学模型方法与复杂 结构建模技术. 振动与冲击, 1994, 3: 8-14
|
86 邱吉宝, 张正平, 向树红. 计算结构动力学. 合肥: 中国科技 大学出版社, 2009
|