留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激波和湍流相互作用的数值模拟

王国蕾 陆夕云

王国蕾, 陆夕云. 激波和湍流相互作用的数值模拟[J]. 力学进展, 2012, 42(3): 274-281. doi: 10.6052/1000-0992-11-057
引用本文: 王国蕾, 陆夕云. 激波和湍流相互作用的数值模拟[J]. 力学进展, 2012, 42(3): 274-281. doi: 10.6052/1000-0992-11-057
WANG Guolei, LU Xiyun. NUMERICAL SIMULATION OF SHOCK WAVE/TURBULENCE INTERACTIONS[J]. Advances in Mechanics, 2012, 42(3): 274-281. doi: 10.6052/1000-0992-11-057
Citation: WANG Guolei, LU Xiyun. NUMERICAL SIMULATION OF SHOCK WAVE/TURBULENCE INTERACTIONS[J]. Advances in Mechanics, 2012, 42(3): 274-281. doi: 10.6052/1000-0992-11-057

激波和湍流相互作用的数值模拟

doi: 10.6052/1000-0992-11-057
基金项目: 国家自然科学基金(11132010, 11072236) 和中国科学院创新基金项目(CXJJ-11-M69) 资助
详细信息
    通讯作者:

    陆夕云

NUMERICAL SIMULATION OF SHOCK WAVE/TURBULENCE INTERACTIONS

Funds: The project was supported by the National Natural Science Foundation of China (11132010, 11072236) and the Knowledge Innovation Foundation of the Chinese Academy of Science (CXJJ-11-M69).
More Information
    Corresponding author: LU Xiyun
  • 摘要: 本文综述了关于激波和湍流相互作用数值模拟的近期研究进展, 主要包括激波和均匀各向同性湍流、激波和湍流边界层、激波和射流以及激波和尾迹的相互作用. 激波和湍流相互作用特性受到诸多因素的影响,如激波的强度、位置、形状和流动边界以及来流的湍流状态和可压缩性等. 激波和湍流的相互作用会引起流场结构、激波特性和湍流统计特性的显著变化. 最后简要讨论了激波和湍流相互作用数值研究需要关注的一些问题.

     

  • 1 Andreopoulos Y, Agui J H, Briassulis G. Shock wave turbulence interactions. Annu Rev Fluid Mech, 2000, 32:309-345
    2 Jiang J S, Shu C W. Efficient implementation of weighted ENO scheme. J Comput Phys, 1996, 126: 202-228
    3 Lele S K. Compact finite difference schemes with spectrallike resolution. J Comput Phys, 1992, 103: 16-42
    4 Hill D J, Pullin D I. Hybrid tunedcenter differenceWENO method for large eddy simulations in the presence of strong shocks. J Comput Phys, 2004, 194: 435-450
    5 Pirozzoli S. Conservative hybrid compact-WENO schemes for shock-turbulence interaction. J Comput Phys, 2002,178: 81-117
    6 Ren Y X, Liu M, Zhang H X. A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws. J Comput Phys, 2003, 192: 365-386
    7 Wang J, Wang L P, Xiao Z, et al. A hybrid numerical simulation of isotropic compressible turbulence. J Com- put Phys., 2010, 229: 5257-5279
    8 Hill D J, Pantano C, Pullin D I. Large-eddy simulation and multiscale modeling of a Richtmyer-Meshkov instability with reshock. J Fluid Mech, 2006, 557: 29-61
    9 Kawai S, Shankar S K, Lele S K. Assessment of localized artificial diffusivity scheme for largeeddy simulation of compressible turbulent flows. J Comput Phys, 2010,229: 1739-1762
    10 Ducros F, Ferrand V, Nicoud F, et al. Large-eddy simulation of the shock/turbulence interaction. J Comput Phys,1999, 152: 517-549
    11 G′enin F, Menon S. Studies of shock/turbulent shear layer interaction using large-eddy simulation. Comput Fluids,2010, 39: 80-819
    12 Pirozzoli S. Numerical methods for high-speed flows. Annu Rev Fluid Mech, 2011, 43: 163-194
    13 Lele S K. Compressibility effects on turbulence. Annu Rev Fluid Mech, 1994, 26: 211-254
    14 Lele S K, Larsson J. Shock-turbulence interaction: what we know and what we can learn from peta-scale simulations. J Phys: Conf Ser, 2009, 180: 012032
    15 Lee S, Lele S K, Moin P. Direct numerical simulation of isotropic turbulence interacting with a weak shock wave. J Fluid Mech, 1993, 251: 533-562
    16 Lee S, Lele S K, Moin P. Interaction of isotropic turbulence with shock waves: effect of shock strength. J Fluid Mech, 1997, 340: 225-247
    17 Mahesh K, Lele S K, Moin P. The influence of entropy fluctuations on the interaction of turbulence with a shock wave. J Fluid Mech, 1997, 334: 353-379
    18 Larsson J, Lele S K. Direct numerical simulation of canonical shock/turbulence interaction. Phys Fluids, 2009, 21:126101
    19 Garnier E, Sagaut P, Deville M. Large eddy simulation of shock/homogeneous turbulence interaction. Comput Flu- ids, 2002, 31: 245-268
    20 Dolling D S. Fifty years of shock wave/boundary layer interaction research: what next? AIAA J, 2001, 39(8):1517-1531
    21 Liou W W, Huang G, Shi T H. Turbulence model assessment for shock wave/turbulent boundary layer interaction in transonic and supersonic flows. Comput Fluids, 2000,29: 275-299
    22 Gerolymos G A, Sauret E, Vallet I. Oblique shock wave/boundary layer interaction using near wall Reynolds stress models. AIAA J, 2004, 42(6): 1089-1110
    23 Knight D, Yan H, Panaras A G, et al. Advances in CFD prediction of shock wave turbulent boundary layer interactions. Prog Aerosp Sci, 2003, 39: 121-184
    24 Pami`es M, Weiss P ′E, Garnier E, et al. Generation of synthetic turbulent inflow data for large eddy simulation of spatially evolving wall-bounded flows. Phys Fluids, 2009,21: 045103
    25 Keating A, Piomelli U, Balaras E, et al. A priori and a posteriori tests of inflow conditions for large-eddy simulation. Phys Fluids, 2004, 16(12): 4696-4712
    26 Urbin G, Knight, D. Large-eddy simulation of a supersonic boundary layer using an unstructured grid. AIAA J, 2001, 39(7): 1288-1295
    27 Xu S, Martin M P. Assessment of inflow boundary conditions for compressible turbulent boundary layers. Phys Fluids, 2004, 16(7): 2623-2639
    28 Pirozzoli S, Bernardini M, Grasso F. Characterization of coherent vortical structures in a supersonic turbulent boundary layer. J Fluid Mech, 2008, 613: 205-231
    29 Garnier E, Sagaut P, Deville M. Large eddy simulation of shock/boundarylayer interaction. AIAA J, 2002, 40(10):1935-1944
    30 Teramoto S. Large-eddy simulation of transitional boundary layer with impinging shock wave. AIAA J, 2005,43(11): 2354-2363
    31 Pirozzoli S, Grasso F. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M = 2:25. Phys Fluids, 2006, 18: 065113
    32 Touber E, Sandham N D. Large-eddy simulation of lowfrequency unsteadiness in a turbulent shock-induced separation bubble. Theor Comput Fluid Dyn, 2009, 23: 79-107
    33 Priebe S, Wu M Martin M P. Direct numerical simulation of a reflected-shock-wave/turbulent boundarylayer interaction. AIAA J, 2009, 47(5): 1173-1185
    34 Pirozzoli S, Bernardini M, Grasso F. Direct numerical simulation of transonic shock/boundary layer interaction under conditions of incipient separation. J Fluid Mech, 2010,657: 361-393
    35 Bernardini M, Pirozzoli S, Grasso F. The wall pressure signature of transonic shock/boundary layer interaction. J Fluid Mech, 2011 671: 288-312
    36 Adams N A. Direct simulation of the turbulent boundary layer along a compression ramp at M = 3 and Reθ = 1 685. J Fluid Mech, 2000, 420: 47-83
    37 Loginov M S, Adams N A, Zheltovodov A A. Large-eddy simulation of shock wave/turbulent boundary layer interaction. J Fluid Mech, 2006, 565: 135-169
    38 von Kaenel R, Kleiser L, Adams N A, et al. Large eddy simulation of shock turbulence interaction. AIAA J, 2004,42(12): 2516-2528
    39 Wu M, Martin M P. Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp. AIAA J, 2007, 45(4): 879-889
    40 Wu M, Martin M P. Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data. J Fluid Mech, 2008, 594:71-83
    41 李新亮, 傅德薰, 马延文, 等. 压缩折角激波-湍流边界层干扰 直接数值模拟. 中国科学: 物理学 力学 天文学, 2010, 40:791-799
    42 Sandham N D, Yao Y F, Lawal A A. Large-eddy simulation of transonic turbulent flow over a bump. Int J Heat & Fluid Flow, 2003, 24: 584-595
    43 Wollblad C, Davidson L, Eriksson L E. Large eddy simulation of transonic flow with shock wave/turbulent boundary layer interaction. AIAA J, 2006, 44(10): 2340-2353
    44 Chen L W, Xu C Y, Lu X Y. Numerical investigation of the compressible flow past an airfoil. J Fluid Mech, 2010,643: 97-126
    45 Krishnan L, Sandham N D, Steelant J. Shock wave/boundary layer interactions in a model scramjet intake. AIAA J, 2009, 47(7): 1680-1691
    46 Chauvet N, Deck S, Jacquin L. Numerical study of mixing enhancement in a supersonic round jet. AIAA J, 2007,45(7): 1675-1687
    47 Berglund M, Fureby M. LES of supersonic combustion in a scramjet engine model. Proc Combust Inst, 2007, 31:2497-2504
    48 Seiner J M, Dash S M, Kenzakowski, D C. Historical survey on enhanced mixing in scramjet engines. J Propul Power, 2001, 17(6): 1273-1286
    49 Gruber M R, Nejad A S, Chen T H, et al. Mixing and penetration studies of sonic jets in a Mach 2 freestream. J Propul Power, 1995, 11(2): 315-323
    50 Shang J S. Plasma injection for hypersonic blunt-body darg reduction. AIAA J, 2002, 40(6): 1178-1186
    51 Fujita M. Axisymmetric oscillations of an opposing jet from a hemispherical nose. AIAA J, 1995, 33(10): 1850-1856
    52 Chen L W, Wang G L, Lu X Y. Numberical investigation of a jet from a blunt body opposing a supersonic flow. J Fluid Mech, 2011, 684: 85-110
    53 Chauvet N, Deck S, Jacquin L. Shock patterns in a slightly under expanded sonic jet controlled by radial injections. Phys Fluids, 2007, 19: 048104
    54 Panda J. An experimental investigation of screech noise generation. J Fluid Mech, 1999, 378: 71-96
    55 Tam C K W. Supersonic jet noise. Annu Rev Fluid Mech,1995, 27: 17-43
    56 Tam C K W. Jet noise: since 1952. Theoret Comput Fluid Dynamics, 1998, 10: 393-405
    57 Raman G. Supersonic jet screech: half-century from powell to the present. J Sound Vibration, 1999, 225(3): 543-571
    58 Li X D, Gao J H. Numerical simulation of the three dimensional screech phenomenon from a circular jet. Phys Fluids, 2008, 20:035101
    59 Krothapalli A, Rajkuperan E, Alvi F, et al. Flow field and noise characteristics of a supersonic impinging jet. J Fluid Mech, 1999, 392: 155-181
    60 Dauptain A, Cuenot B, Gicquel L Y M. Large eddy simulation of stable supersonic jet impinging on flat plate. AIAA J, 2010, 48(10): 2325-2338
    61 G′enin F, Menon S. Simulation of turbulent mixing behind a strut injector in supersonic flow. AIAA J, 2010, 48(3):526-539
    62 Wang G L, Lu X Y. Effects of the jet-to-crossflow momentum ratio on a sonic jet into a supersonic crossflow. Theor Appl Mech Lett, 2011, 1(1): 012005
    63 Kawai S, Lele S K. Large-eddy simulation of jet mixing in supersonic crossflows. AIAA J, 2010, 48(9): 2063-2083
    64 G′enin F. Menon S. Dynamics of sonic jet injection into supersonic crossflow. J Turbul, 2010, 11(4): 1-30
    65 Gruber M R, Nejad A S, Chen T H, et al. Transverse injection from circular and elliptic nozzles into a supersonic crossflow. J Propul Power, 2000, 16(3): 449-457
    66 孙明波. 超声速来流稳焰凹腔的流动及火焰稳定机制研究: [博士论文]. 长沙: 国防科学技术大学, 2008. 1-184
    67 Tomioka S, Jacobsen L S, Schetz J A. Sonic injection from diamond-shaped orifices into a supersonic crossflow. J Propul Power, 2003, 19(1): 104-114
    68 Murugappan S, Gutmark E, Carter C, et al. Transverse supersonic controlled swirling jet in a supersonic cross stream. AIAA J, 2006, 44(2): 290-300
    69 Kouchi T, Sasaya K, Watanabe J, et al. Penetration characteristics of pulsed injection into supersonic crossflow. AIAA paper, 2010-6645, 2010
    70 Beresh S J, Henfling J F, Erven R J, et al. Turbulent characteristics of a transverse supersonic jet in a subsonic compressible crossflow. AIAA J, 2005, 43(11): 2385-2394
    71 Beresh S J, Heineck J T, Walker S M. Planar velocimetry of jet/fin interaction on a full-scale flight vehicle configuration. AIAA J, 2007, 45(8): 1827-1840
    72 Shah S B H. 超声速流中反向和横向射流及静止流中射流 的数值研究: [博士论文]. 合肥: 中国科学技术大学, 2010.1-166
    73 Shah S B H, Lu X Y. Computational study of drag reduction at various freestream flows using a counterflow jet from a hemispherical cylinder. Engin Appl Comput Fluid Mech, 2010, 4(1): 150-163
    74 陈立为. 具有激波和湍流旋涡分离的可压缩绕流数值研究: [博士论文]. 合肥: 中国科学技术大学, 2010. 1-157
    75 许常悦. 圆柱可压缩绕流及其流动控制的大涡模拟研究: [博 士论文]. 合肥: 中国科学技术大学, 2009. 1-129
    76 Botta N. The inviscid transonic flow about a cylinder. J Fluid Mech, 1995, 301: 225-250
    77 Xu C Y, Chen L W, Lu X Y. Effect of mach number on transonic flow past a circular cylinder. Chin Sci Bull,2009, 54: 1886-1893
    78 Xu C Y, Chen L W, Lu X Y. Numerical simulation of shock wave and turbulence interaction over a circular cylinder. Mod Phys Lett B, 2009, 23: 233-236.
    79 Xu C Y, Chen L W, Lu X Y. Large-eddy simulation of the compressible flow past a wavy cylinder. J Fluid Mech,2010, 665: 238-273
    80 Yun G, Choi H. Sound characteristics from turbulent flow over a sphere. AIAA paper, 2004-2916, 2004
    81 Simon F, Deck S, Guillen P, et al. Numerical simulation of the compressible mixing layer past an axisymmetric trailing edge. J Fluid Mech, 2007, 591: 215-253
    82 Sandberg R D, Fasel H F. Numerical investigation of transitional supersonic axisymmetric wakes. J Fluid Mech,2006, 563: 1-41
  • 加载中
计量
  • 文章访问数:  2533
  • HTML全文浏览量:  198
  • PDF下载量:  1619
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-04-18
  • 修回日期:  2011-07-26
  • 刊出日期:  2012-05-25

目录

    /

    返回文章
    返回

    Baidu
    map