1 Katz B. Depolarization of sensory terminals and the initiation of impulses in the muscle spindle. J. Physiol, 1950,111: 261-282
|
2 Loewenstein W R. The generation of electric activity in a nerve ending. Ann. NY Acad. Sci, 1959, 81: 367-387
|
3 Detweiler P B. Sensory transduction. In: Patton H D, Fuchs A F, Hille B, et al, eds. Textbook of Physiology, Excitable Cells and Neurophysiology. Philadelphia: Saunders Company, 1989. 98-129
|
4 Garcia-Añovernos J, Corey D P. The molecules of mechanosensation. Annu. Rev. Neurosci, 1997, 20: 567-594
|
5 Sachs F, Morris C E. Mechanosensitive ion channels in nonspecialized cells. Rev. Physiol. Biochem. Pharmacol,1998, 132: 1-77
|
6 Hamill O P, Martinac B. Molecular basis of mechanotransduction in living cells. Physiol. Rev, 2001, 81: 685-740
|
7 Gillespie P G, Walker R G. Molecular basis of mechanotransduction. Nature, 2001, 413: 194-202
|
8 Corey D. Sensory transduction in the ear. J. Cell Sci,2003a, 116: 1-3
|
9 Corey D P. New TRP channels in hearing and mechanosensation. Neuron, 2003b, 39: 585-588
|
10 Sachs F. Mechanical transduction in biological systems. Crit. Rev. Biomed. Eng, 1988, 16: 141-169
|
11 Morris C E. Mechanosensitive ion channels. J. Membr. Biol, 1990, 113: 93-107
|
12 Martinac B. Mechanosensitive ion channels: biophysics and physiology. In: Jackson M B, ed. Thermodynamics of Membrane Receptors and Channels. Boca Raton: CRC Press, 1993. 327-351
|
13 Hamill O P, Marty A D, Neher E, et al. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. P ugers Arch. Eur. J. Physiol, 1981, 391: 85-100
|
14 Guharay F, Sachs F. Stretch-activated single ion channel currents in tissue cultured embryonic chick skeletal muscle. J. Physiol, 1984, 352: 685-701
|
15 Brehm P, Kullberg R, Moody-Corbet F. Properties of nonjunctional acetylcholine receptor channels on innervated muscle of Xenopus laevis. J. Physiol, 1984, 350: 631-648
|
16 Hamill O P. Potassium and chloride channels in red blood cells. In: Sakmann B, Neher E, eds. Single-Channel Recording. New York: Plenum, 1983. 451-471
|
17 Martinac B, Buechner M, Delcour A, et al. Pressuresensitive ion channel in Escherichia coli. Proc Natl Acad Sci USA, 1987, 84: 2297-2301
|
18 Delcour A H, Martinac B, Adler J, et al. Modified reconstitution method used in patch-clamp studies of Escherichia coli ion channels. Biophys J, 1989, 56: 631-636
|
19 Berrier C, Coulombe A, Houssin C, et al. A patchclamp study of ion channels of inner and outer membranes and of contact zones of E. coli, fused into giant liposomes. Pressure-activated channels are localized in the inner membrane. FEBS Lett, 1989, 259: 27-32
|
20 Sukharev S I, Blount P, Martinac B, et al. A large mechanosensitive channel in E. coli encoded by mscL alone. Nature, 1994, 368: 265-268
|
21 Levina N, Totemeyer S, Stokes N R, et al. Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J, 1999,18: 1730-1737
|
22 Chang G, Spencer R H, Lee A T, et al. Structure of the MscL homologue from Mycobacterium tuberculosis, a gated mechanosensitive ion channel. Science, 1998, 282:2220-2226
|
23 Kloda A, Martinac B. Molecular identification of a mechanosensitive ion channel in Archaea. Biophys J2001a, 80: 229-240
|
24 Kloda A, Martinac B. Structural and functional similarities and differences between MscMJLR and MscMJ, two homologous MS channels of M. jannashii. EMBO J,2001b, 20: 1888-1896
|
25 Betanzos M, Chiang C S, Guy H R, et al. A large iris-like expansion of a mechanosensitive channel protein induced by membrane tension. Nat. Struct. Biol, 2002, 9: 704-710
|
26 Perozo E, Kloda A, Marien C D, et al. Structure of MscL in the open state and the molecular mechanism of gating in mechanosensitive channels. Nature, 2002a, 418: 942-948
|
27 Perozo E, Kloda A, Cortes D M, et al. Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat. Struct. Biol, 2002, 9: 696-703
|
28 Bass R B, Strop P, Barclay M, et al. Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science, 2002, 298: 1582-1587
|
29 Tavernarakis N and Driscoll M. Molecular modelling of mechanotransduction in the nematode Caenorhabditis elegans. Annu. Rev. Physiol, 1997, 59: 659-689
|
30 Colbert H A, Smith T L, Bargmann C I. Osm-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation and olfactory adapation in Caenorhabditis elegans. J. Neurosci, 1997, 17: 8259-8269
|
31 Alvarez de la Rosa D, Canessa C M, Fyfe G K, et al. Structure and regulation of amiloride-sensitive sodium channels. Annu. Rev. Physiol, 2000, 62: 573-594
|
32 Liedtke W, Choe Y, Marti-Renom M A, et al. Vanilloid receptor-related osmotically activated channel (VROAC), a candidate vertebrate osmoreceptor. Cell, 2000,103: 525-535
|
33 Walker R G, Willingham A T, Zuker C S. A Drosophilia mechanosensory transduction channel. Science, 2000, 287:2229-2234
|
34 Di Palma F, Belyantseva I A, Kim H J, et al. Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice. Proc. Natl. Acad. Sci. USA, 2002, 99: 14994-14999
|
35 Kim J, Chung Y D, Park D, et al. A TRPV family ion channel required for hearing in Drosophila. Nature, 2003,424: 81-84
|
36 Sidi S, Friedrich R W, Nicolson T. NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science, 2003, 301: 96-99
|
37 Martinac B, Delcour A H, Minorsky P V, et al. Mechanosensitive ion channels in bacteria. In: Ito F, ed. In Comparative Aspects of Mechanoreceptor Systems. New York: Springer Verlag, 1992. 3-18
|
38 Sukharev S I, Martinac B, Arshavsky V Y, et al. Two types of mechanosensitive channels in the E. coli cell envelope: solubilization and functional reconstitution. Bio- phys J, 1993, 65: 177-183
|
39 Sukharev S I, Blount P, Martinac B, et al. Mechanosensitive channels of Escherichia coli: the MscL gene, protein, and activities. Ann. Rev. Physiol, 1997, 59: 633-657
|
40 Zoratti M, Ghazi A. Stretch activated channels in prokaryotes. In: Bakker E P, ed. Alkali Transport Systems in Prokaryotes. Boca Raton: CRC Press, 1993. 349-358
|
41 Berrier C, Besnard M, Ajouz B, et al. Multiple mechanosensitive ion channels from Escherichia coli, activated at different thresholds of applied pressure. J. Membr. Biol, 1996, 151: 175-187
|
42 Martinac B. Mechanosensitive channels in prokaryotes. Cell. Physiol. Biochem, 2001, 11: 61-76
|
43 Strop P, Bass R, Rees D C. Prokaryotic mechanosensitive channels. In: Rees D C, ed. Advances in Protein Chemistry. Amsterdam: Academic Press, 2003, 63: 177-209
|
44 Le Dain A C, Saint N, Kloda A, et al. Mechanosensitive ion channels of the archaeon Haloferax volcanii. J. Biol. Chem, 1998, 273: 12116-12119
|
45 Kloda A, Martinac B. Mechanosensitive channels of Bacteria and Archaea share a common ancestral origin. Eur. Biophys J, 2002, 31: 14-25
|
46 Minke B, Cook B. TRP channel proteins and signal transduction. Physiol. Rev, 2002, 82: 429-472
|
47 Ajouz B, Berrier C, Garrigues A, et al. Release of thioredoxin via the mechanosensitive channel MscL during osmotic downshock of Escherichia coli cells. J. Biol. Chem,1998, 273: 26670-26674
|
48 Moe P C, Levin G, Blount P. Correlating a protein structure with function of a bacterial mechanosensitive channel. J. Biol. Chem, 2000, 275: 31121-31127
|
49 Sukharev S, Blount P, Martinac B, et al. MscL: a mechanosensitive channel in Escherichia coli. Soc. Gen. Physiol. Ser, 1996, 51: 133-141
|
50 Sukharev S, Betanzos M, Chiang C S, et al. The gating mechanism of the large mechanosensitive channel MscL. Nature, 2001, 409: 720-724
|
51 Perozo E, Cortes D M, Sompornpisut P, et al. Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature, 2002, 418: 942-948
|
52 Moe P, Blount P. Assessment of potential stimuli for mechano-dependent gating of MscL: effects of pressure, tension, and lipid headgroups. Biochemistry, 2005, 44:12239-12244
|
53 Sukharev S. Purification of the small mechanosensitive channel of Escherichia coli (MscS): the subunit structure, conduction, and gating characteristics in liposomes. Bio- phys J, 2002, 83: 290-298
|
54 Akitake B, Anishkin A, Sukharev, S. The dashpot mechanism of stretch-dependent gating in MscS. J. Gen. Phys- iol, 2005, 125: 143-154
|
55 Edwards M D, Booth I R, Miller S. Gating the bacterial mechanosensitive channels: MscS a new paradigm? Curr. Opin. Microbiol, 2004, 7: 163-167
|
56 Edwards M D, Li Y, Kim S, et al. Pivotal role of the glycine-rich TM3 helix in gating the MscS mechanosensitive channel. Nat. Struct. Mol. Biol, 2005, 12: 113-119
|
57 Martinac B. Mechanosensitive ion channels: molecules of mechanotransduction. J. Cell Sci, 2004, 117: 2449-2460
|
58 Perozo E, Rees D. Structure and mechanism in prokaryotic mechanosensitive channels. Curr. Opin. Struct. Biol,2003, 13: 432-442
|
59 Gustin M C, Zhou X L, Martinac B, et al. A mechanosensitive ion channel in the yeast plasma membrane. Science,1988, 242: 762-765
|
60 Perozo E. Gating prokaryotic mechanosensitive channels. Nat. Rev. Mol. Cell Biol, 2006, 7: 109-119
|
61 Kung C. A possible unifying principle for mechanosensation. Nature, 2005, 436: 647-654
|
62 Sukharev S, Sigurdson W J, Kung C, et al. Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL. J. Gen. Physiol,1999, 113: 525-539
|
63 Sukharev S, Anishkin A. Mechanosensitive channels: what can we learn from ‘simple’ model systems? Trends Neu- rosci, 2004, 27: 345-351
|
64 Chiu S W, Subramaniam S, Jakobsson E. Simulation study of a gramicidin/lipid bilayer system in excess water and lipid. I: structure of the molecular complex. Biophys J, 1999a, 76: 1929 -1938
|
65 Chiu S W, Subramaniam S, Jakobsson E. Simulation study of a gramicidin/lipid bilayer system in excess water and lipid. II: rates and mechanisms of water transport. Biophys J, 1999b, 76: 1939 -1950
|
66 Tang Y Z, Chen W Z, Wang C X, et al. Constructing the suitable initial configuration of the membrane-protein system in molecular dynamics simulations. Eur. Biophys J, 1999, 28: 478-488
|
67 Woolf T B, Roux B. Structure, energetics, and dynamics of lipid-protein interactions: a molecular dynamics study of the gramicidin a channel in a DMPC bilayer. Proteins Struct. Funct. Genet, 1996, 24: 92-114
|
68 Capener C E, Shrivastava I H, Ranatunga K M, et al. Homology modeling and molecular dynamics simulation studies of an inward rectifier potassium channel. Biophys J, 2000, 78: 2929-2942
|
69 Fischer W B, Pitkeathly M, Wallace B A, et al. Transmembrane peptide NB of influenza B: a simulation, structure and conductance study. Biochemistry, 2000, 39:12708-12716
|
70 Forrest L R, Kukol A, Arkin I T, et al. Exploring models of the influenza A M2 channel: MD simulations in a phospholipid bilayer. Biophys J, 2000, 78: 55-69
|
71 Law R J, Forrest L R, Ranatunga K M, et al. Structure and dynamics of the pore-lining helix of the nicotinic receptor: MD simulations in water, lipid bilayers, and transbilayer bundles. Proteins Struct. Funct. Genet, 2000, 39:47-55
|
72 Lin J H, Baumgaertner A. Stability of a melittin pore in a lipid bilayer: a molecular dynamics study. Biophys J,2000, 78: 1714-1724
|
73 Schweighofer K J, Pohorille A. Computer simulation of ion channel gating: the M2 channel of influenza A virus in a lipid bilayer. Biophys J, 2000, 78: 150-163
|
74 Gullingsrud J, Kosztin D, Schulten K. Structural determinants of MscL gating studied by molecular dynamics simulations. Biophys J, 2001, 80: 2074-2081
|
75 Bilston L, Mylvaganam K. Molecular simulations of the large conductance mechanosensitive (MscL) channel under mechanical loading. FEBS Lett, 2002, 512: 185-190
|
76 Colombo G, Marrink S J, Mark A E. Simulation of MscL gating in a bilayer under stress. Biophys J, 2003, 84: 2331-2337
|
77 Gullingsrud J, Schulten K. Gating of MscL studied by steered molecular dynamics. Biophys J, 2003, 85: 2087-2099
|
78 Gullingsrud J, Schulten K. Lipid bilayer pressure profiles and mechanosensitive channel gating. Biophys J, 2004,86: 3496-3509
|
79 Elmore D E, Dougherty D A. Investigating lipid composition effects on the mechanosensitive channel of large conductance (MscL) using molecular dynamics simulations. Biophys J, 2003, 85: 1512-1524
|
80 Meyer G R, Gullingsrud J, Martinac B, et al. Molecular dynamics study of MscL interactions with a curved lipid bilayer. Biophys J, 2006, 91: 1630-1637
|
81 Debret G, Valadie H, Stadler A M, et al. New insights of membrane environment effects on MscL channel mechanics from theoretical approaches. Proteins, 2008, 71:1183-1196
|
82 Yoo J, Cui Q. Curvature generation and pressure profile modulation in membrane by lysolipids: insights from Coarse-Grained simulations. Biophys J, 2009, 97: 2267-2276
|
83 Louhivuori M, Risselada H J, Giessen V D, et al. Release of content through mechano-sensitive gates in pressurized liposomes. Proc. Natl. Acad. Sci, 2010, 107: 19856-19860
|
84 Ollila O H S, Louhivuori M, Marrink S J, et al. Protein shape change has a major effect on the gating energy of a mechanosensitive channel. Biophys J, 2011, 100: 1651-1659
|
85 Rui H, Kumar R, Im W. Membrane tension, lipid adaptation, conformational changes, and energetic in MscL gating. Biophys J, 2011, 101: 671-679
|
86 Elmore D E, Dougherty D A. Molecular dynamics simulations of wild-type and mutant forms of the Mycobacterium tuberculosis MscL channel. Biophys J, 2001, 81:1345-1359
|
87 Kong Y, Shen Y, Warth T E, et al. Conformational pathways in the gating of Escherichia coli mechanosensitive channel. Proc. Natl. Acad. Sci. USA, 2002, 99: 5999-6004
|
88 Yefimov S, Van Der Giessen E, Onck P R, et al. Mechanosensitive membrane channels in action. Biophys J, 2008, 94: 2994-3002
|
89 Jonggu J, Gregory A V. Gating of the Mechanosensitive Channel Protein MscL: The Interplay of Membrane and Protein. Biophys J, 2008, 94: 3497-3511
|
90 Sukharev S, Durell S R, Guy H R. Structural models of the MscL gating mechanism. Biophys J, 2001, 81, 917-936
|
91 Monica B, Chiang C S, Guy H R, et al. A large iris-like expansion of a mechanosensitive channel protein induced by membrane tension. Nat Struct Biol, 2002, 9: 704-710
|
92 Go N, Noguti T, Nishikawa T. Dynamics of a small globular proteins in terms of low-frequency vibrational modes. Proc. Natl Acad. Sci. USA, 1983, 80: 3696-3700
|
93 Brooks B, Karplus M. Harmonic dynamics of proteins: normal mode and fluctuations in bovine pancreatic trypsin inhibitor. Proc. Natl Acad. Sci. USA, 1983, 80, 6571-6575
|
94 Levitt M, Sander C, Stern P S. Protein normal-mode dynamics: trypsin inhibitor, crambin, tibonuclease and lysozyme. J. Mol. Biol, 1985, 181, 423-447
|
95 Valadie H, Lacapcre JJ, Sanejounand Y H, et al. Dynamical properties of the MscL of Escherichia coli: a normal mode analysis. J. Mol. Biol, 2003, 332: 656-674
|
96 Wiggins P, Philips R. Analytical models for mechanotransduction: gating a mechanosensitive channel. Proc. Natl. Acad. Sci. USA, 2004, 101: 4071-4076
|
97 Wiggins P, Philips R. Membrane-protein interactions in mechanosensitive channels. Biophys J, 2005, 88: 880-902
|
98 Markin V S, Sachs F. Thermodynamics of mechanosensitivity. Phys. Biol, 2004, 1: 110-124
|
99 Turner M S, Sens P. Gating-by-tilt of mechanically sensitive membrane channels. Phys. Rev. Lett, 2004, 93:118103
|
100 Andrei L L, Pogozheva I D, Lomize M A, et al. Positioning of proteins in membranes: a computational approach. Protein Sci, 2006, 15: 1318-1333
|
101 Tang Y, Cao G, Chen X, et al. A finite element framework for studying the mechanical response of macromolecules: application to the gating of the mechanosensitive channel MscL. Biophys J, 2006, 91: 1248-1263
|
102 Chen X, Cui Q, Tang Y, et al. Gating mechanisms of mechanosensitive channels of large conductance, I: a continuum mechanics-based hierarchical framework. Biophys J, 2008, 95: 563-580
|
103 Tang Y, Yoo J, Yethiraj A, et al. Gating mechanisms of mechanosensitive channels of large conductance, II: systematic study of conformational transitions. Biophys J,2008, 95: 581-596
|
104 Tang Y, Yoo J, Yethiraj A, et al. Mechanosensitive channels: insights from continuum-based simulations. Cell Biochem. Biophys, 2008, 52: 1-18
|
105 Ursell T, Huang K C, Peterson E, et al. Cooperative gating and spatial organization of membrane proteins through elastic interactions. PLoS Comput Biol, 2007,3: 803-812
|
106 Boucher P A, Catherine E M, Bela J. Mechanosensitive closed-closed transitions in large membrane proteins: osmoprotection and tension damping. Biophys J, 2009, 97:2761-2770
|
107 Grage S L, Keleshian A M, Turdzeladze T, et al. Bilayermediated clustering and functional interaction of mscl channels. Biophys J, 2011, 100: 1252-1260
|
108 Gumbart J, Wang Y, Aksimentiev A, et al. Molecular dynamics simulations of proteins in lipid bilayers.Curr. Opin. Struct. Biol, 2005, 15: 423-431
|
109 Anishkin A, Sukharev S. Explicit channel conductance: can it be computed? Biophys J, 2005, 88: 3745-3761
|
110 Nomura T, Sokabe M, Yoshimura K. Lipid-protein interaction of the MscS mechanosensitive channel examined by scanning mutagenesis. Biophys J, 2006, 91: 2874-2881
|
111 Anishkin A, Sukharev S. Water dynamics and dewetting transitions in the small mechanosensitive channel MscS. Biophys J, 2004, 86:2883-2895
|
112 Sotomayor M, Schulten K. Molecular dynamics study of gating in the mechanosensitive channel of small conductance MscS. Biophys J, 2004, 87: 3050-3065
|
113 Spronk S A, Elmore D E, Dougherty D A. Voltage dependent hydration and conduction properties of the hydrophobic pore of the mechanosensitive channel of small conductance. Biophys J, 2006, 90: 3555-3569
|
114 Sotomayor M, Vasquez V, Perozo E, et al. Ion conduction through MscS as determined by electrophysiology and simulation. Biophys J, 2007, 92: 886-902
|
115 Christine P, Gerhard H. Ion transport through membranespanning nanopores studied by molecular dynamics simulations and continuum electrostatics calculations. Biophys J, 2005, 89: 2222-2234
|
116 Straaten V D, Kathawala G, Trellakis A, et al. BioMOCA—a Boltzmann transport Monte Carlo model for ion channel simulation. Mol. Sim, 2005, 31: 151-171
|
117 Sotomayor M, Van Der Straaten T A, Ravaioli U, et al. Electrostatic properties of the mechanosensitive channel of small conductance MscS. Biophys J, 2006, 90: 3496-3510
|
118 Vora T, CorryB, Chung S H. Brownian dynamics investigation into the conductance state of the MscS channel crystal structure. Biochim. Biophys. Acta, 2006, 1758:730-737
|
119 Akitake B, Anishkin A, Sukharev S. Straightening and sequential buckling of the pore-lining helices define the gating cycle of MscS. Nat. Struct. Mol. Biol, 2007, 14:1141-1149
|
120 Anishkin A, Akitake B, Sukharev S. Characterization of the resting MscS: modeling and analysis of the closed bacterial mechanosensitive channel of small conductance. Biophys J, 2008, 94: 1252-1266
|
121 Anishkin A, Kamaraju K, Sukharev S. Mechanosensitive channel MscS in the open state: modeling of the transition, explicit simulations, and experimental measurements of conductance. J Gen Physiol, 2008, 132: 67-83
|
122 Belyy V, Anishkin A, Liu N, et al. The tensiontransmitting ‘clutch’ in the Mechanosensitive channel MscS.Nat. Struct. Mol. Biol, 2010, 17: 451-459
|
123 Vasquez V, Sotomayor M, Cortes D M, et al. Three dimensional architecture of membrane embedded MscS in the closed conformation. J Mol Biol, 2008, 378: 55-70
|
124 Vasquez V, Sotomayor M, Morales J C, et al. A structural mechanism for MscS gating in lipid bilayers. Sci- ence, 2008, 321: 1210-1214
|
125 Wang W, Black S S, Edwards M D, et al. The structure of an open form of an E. coli mechanosensitive channel at3.45 ?A resolution. Science, 2008, 321: 1179-1183
|
126 Zhong W, Guo W, Ma S. Intrinsic aqueduct orifices facilitate K+ channel gating. FEBS Letters, 2008, 582: 3320-3324
|
127 Zhong W, Guo W. Mixed modes in opening of KcsA potassium channel from a targeted molecular dynamics simulation. Biochem Biophys Res Commun, 2009, 388(1): 86-90
|
128 Shi N, Ye S, Alam A, et al. Atomic structure of a Na+- and K+-conducting channel. Nature 2006, 440: 570-574
|
129 Shen R, Guo W. Ion binding properties and structure stability of the NaK channel. Biochim Biophys Acta, 2009,1788: 1024-1032
|
130 Alam A, Jiang Y. High-resolution structure of the open NaK channel. Nat Struct Mol Biol, 2009, 16: 30-34
|
131 Alam A, Jiang Y. Structural analysis of ion selectivity in the NaK channel. Nat Struct Mol Biol 2009, 16: 35-41
|
132 Shen R, Guo W, Zhong W. Dynamic hydration valve controlled ion permeability and stability of NaK channel. Nature Precedings, 2008 http://hdl.handle.net/10101/npre.2008.2045.1
|
133 Shen R, Guo W, Zhong W. Hydration valve controlled non-selective conduction of Na+ and K+ in the NaK channel. Biochimica et Biophysica Acta { Biomembranes,2010, 1798: 1474
|
134 Qiu H, Ma S, Shen R, et al. Dynamic and Energetic Mechanisms for the Distinct Permeation Rate in AQP1 and AQP0. Biochimica et Biophysica Acta { Biomembranes2010, 179: 318
|
135 Zuo G, Shen R, Ma S, et al. Transport properties of singlefile water molecules inside a carbon nanotube biomimicking water channel. ACS Nano, 2010, 4: 205
|
136 Zuo G, Shen R, Guo W. Self-adjusted sustaining oscillation of confined water chain in carbon nanotubes. Nano Lett, 2011, 11(12): 5297
|