1 Courant R, Hilbert D. Methods of Mathematical Physics. New York: Interscience Publising, INC, 1953
|
2 Михин С Г.Проблема Минимума Квадратичного Функциона λа.Государственное издателъство тихнико теоретической литературы,1952.
|
3 Friedrichs K. On the boundary-value problems of the theory of elasticity and Korn’s inequality. Annals of Mathe-matics,1947, 48(2)
|
4 михлин С Т.Вариационные Методы Ращения задач Математической физики,успехи Матем наук,Т,Т,м.Вып. 6 (40), 1950.
|
5 Зйдус ДМ.Осмещанной загаче теорин упгугости,дАн сссР,Т. 76, No. 2, 1951.
|
6 Payne L E, Weinberger H F. On Korn’s inequality. Arch. Rational Mech. Anal., 1961, 8
|
7 Fichera G. Linear elliptic differential systems and eigenvalue problem. Lecture notes in mathematics. Berlin-Heidelberg-New York: Springer, 1965
|
8 Fichera G. Existense theorems in elasticity. Encyclopedia of Physics. In: Flügge S, ed. a/2, New York: Springer-Verlog,1972
|
9 Kupradze V D. Potential Methods in the Theory of Elasticity. Colomiba: Jerusalem, 1965. 32
|
10 Kupradze V D, Gegelia F G, Basheleishvili M O, et al. Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. California: North-Holland Publishing Company, 1979
|
11 Shoikhet B A. On existence theorems in linear shell theory. PMM, 1974, 38: 567-571
|
12 Gordegiani D G. On the solveability of some boundary value problems for a variant of the theory of thin shells. Dokl. Akad. Nauk SSSR, 215
|
13 Bernadou M, Ciarlet P G. Sur L’ Ellipticite du Models linéaire de Cogues de W. T. Koiter. Lecture Notes in Economics and Mathemetics Systems 134. Computing Methods in Applied Sciences and Engineering, Second Inter. Symp. Dec. 1975, 15-19. New York: Springer-Verlog,1976. 89-136
|
14 武际可. 薄壳方程组椭圆形条件的证明. 固体力学学报,1981, 4: 435-444
|
15 Bernadou M, Lalanne B. Sur l’approximation des coques minces, par des méthods B-splines et éléments finis. In: Grellier J P, Campel G M. eds. Tendances Actuelles en Calcul des structures. Paris: Editions Pluralis, 1985. 939-958
|
16 Ciarlet P G, Miara B. Justification of the two-dimensional equations of a linearly elastic shallow shell. Comm. Pare Apple. Math., 1926, 45: 327-360
|
17 Bernadou M, Ciarlet P G, Miara B. Existence theorems for two-dimensional linear shell theories. Journal of Elas-ticity, 1994, 34: 111-138
|
18 王大钧, 胡海昌. 弹性结构理论中两类算子的正定性和紧致性的统一证明. 力学学报, 1982, 18(2): 111-121
|
19 王大钧, 胡海昌. 弹性结构理论中线性振动普遍性质的统一论证. 振动与冲击, 1982, 1: 6-16
|
20 Wang D J, Hu H C. Positive definiteness and compactness of two kind of operator in theories of elastic structures.Scientia. Sinica, (Series A), 1985, XXVIII(7): 727-739
|
21 胡海昌. 广义变分原理在近似解中的合理利用. 力学学报,1982, 18(2): 1-7
|
22 Wang D J, Wang W Q. The reasonableness problems of theories of structures carrying concentrated masses, springs and supports in vibration Problems. Acta Me-chanica Solida Sinca, 1989, 2: 247-251
|
23 Wang Q, Wang D J. Singularity under a concentrated force in elasticity. Applied Mathematics And Mechanics,1993, 14(8):707-711
|
24 Leung A Y T, Wang D J, Wang Q. On concentrated masses and stiffnesses in structural theories. Int. J. of Structural Stability and Dynamics, 2004, 4(2): 171-179
|
25 冯康. 组合流形上的椭圆方程与组合弹性结构. 计算数学,1979, 1(3): 199-208
|
26 冯康, 石钟慈. 弹性结构的数学理论. 北京: 科学出版社,1984
|
27 孙博华. 组合弹性结构的分析理论及应用: [博士论文]. 兰州: 兰州大学, 1988. 12
|
28 孙博华, 叶志明. 组合弹性结构的力学分析. 中国科学, 2009,39(3): 394-413
|
29 Sun B H, Ye Z M. Formulation of elastic multi-structures. Science in China Series G: Physics, Mechanics and As-tronomy, 2009, 52(6): 935-953
|
30 Valid R. The Nonlinear Theory of Shells Through Variational Principles. From Algebra to Differential Geometry. New Jersey: John Wiley & Sons, 1995
|
31 邱吉宝, 向树红, 张正平. 计算结构动力学. 合肥: 中国科学技术大学出版社, 2009
|
32 武际可. 近代力学在中国的传播与发展. 北京: 高等教育出版社, 2005
|
33 黄建国, 石钟慈, 徐一峰. 一般组合弹性结构的数学模型. 中国科学A辑: 数学, 2005, 35(6): 664-684
|
34 黄建国, 石钟慈, 徐一峰. 一般组合弹性结构的有限元分析. 中国科学A辑: 数学, 2005, 35(10): 1100-1119
|