留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

结构理论中解的存在性问题述评

孙博华

孙博华. 结构理论中解的存在性问题述评[J]. 力学进展, 2012, 42(5): 538-546. doi: 10.6052/1000-0992-11-156
引用本文: 孙博华. 结构理论中解的存在性问题述评[J]. 力学进展, 2012, 42(5): 538-546. doi: 10.6052/1000-0992-11-156
SUN Bohua. ON EXISTENCE OF THE SOLUTION IN THEORIES OF STRUCTURES[J]. Advances in Mechanics, 2012, 42(5): 538-546. doi: 10.6052/1000-0992-11-156
Citation: SUN Bohua. ON EXISTENCE OF THE SOLUTION IN THEORIES OF STRUCTURES[J]. Advances in Mechanics, 2012, 42(5): 538-546. doi: 10.6052/1000-0992-11-156

结构理论中解的存在性问题述评

doi: 10.6052/1000-0992-11-156
详细信息
    作者简介:

    孙博华, 男, 1963年12月21日出生, 江苏徐州人. 现为南非科学院院士, 南非皇家学会会员,南非开普半岛科技大学(CPUT) 终身教授和Senate, 应用技术研究中心主任. 主要研究复杂结构, 壳体力学, MEMS和复杂流动等, 被评为《2010年海外华人十大新闻人物》, Journal of Mechanics and MEMS (JMM) 学报创刊主编, Advances in Materials and Mechanics (AMM) 丛书主编, Advances in Engineering Mechanics (AEM) 丛书主编, Journal of Nanomaterials学报Associate Editor等.

    通讯作者:

    孙博华

ON EXISTENCE OF THE SOLUTION IN THEORIES OF STRUCTURES

More Information
    Corresponding author: SUN Bohua
  • 摘要: 阐明线性弹性力学和线性弹性结构理论中解的存在性的基本概念和研究解的存在性意义, 简述微分方程和弹性力学解的存在性的研究结果, 着重介绍和评价王大钧和胡海昌的关于复杂结构和组合弹性结构理论解的存在性的研究成果, 介绍了他们的结构理论算子正定性定理和能量嵌入算子紧致性定理.

     

  • 1 Courant R, Hilbert D. Methods of Mathematical Physics. New York: Interscience Publising, INC, 1953
    2 Михин С Г.Проблема Минимума Квадратичного Функциона λа.Государственное издателъство тихнико теоретической литературы,1952.
    3 Friedrichs K. On the boundary-value problems of the theory of elasticity and Korn’s inequality. Annals of Mathe-matics,1947, 48(2)
    4 михлин С Т.Вариационные Методы Ращения задач Математической физики,успехи Матем наук,Т,Т,м.Вып. 6 (40), 1950.
    5 Зйдус ДМ.Осмещанной загаче теорин упгугости,дАн сссР,Т. 76, No. 2, 1951.
    6 Payne L E, Weinberger H F. On Korn’s inequality. Arch. Rational Mech. Anal., 1961, 8
    7 Fichera G. Linear elliptic differential systems and eigenvalue problem. Lecture notes in mathematics. Berlin-Heidelberg-New York: Springer, 1965
    8 Fichera G. Existense theorems in elasticity. Encyclopedia of Physics. In: Flügge S, ed. a/2, New York: Springer-Verlog,1972
    9 Kupradze V D. Potential Methods in the Theory of Elasticity. Colomiba: Jerusalem, 1965. 32
    10 Kupradze V D, Gegelia F G, Basheleishvili M O, et al. Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. California: North-Holland Publishing Company, 1979
    11 Shoikhet B A. On existence theorems in linear shell theory. PMM, 1974, 38: 567-571
    12 Gordegiani D G. On the solveability of some boundary value problems for a variant of the theory of thin shells. Dokl. Akad. Nauk SSSR, 215
    13 Bernadou M, Ciarlet P G. Sur L’ Ellipticite du Models linéaire de Cogues de W. T. Koiter. Lecture Notes in Economics and Mathemetics Systems 134. Computing Methods in Applied Sciences and Engineering, Second Inter. Symp. Dec. 1975, 15-19. New York: Springer-Verlog,1976. 89-136
    14 武际可. 薄壳方程组椭圆形条件的证明. 固体力学学报,1981, 4: 435-444
    15 Bernadou M, Lalanne B. Sur l’approximation des coques minces, par des méthods B-splines et éléments finis. In: Grellier J P, Campel G M. eds. Tendances Actuelles en Calcul des structures. Paris: Editions Pluralis, 1985. 939-958
    16 Ciarlet P G, Miara B. Justification of the two-dimensional equations of a linearly elastic shallow shell. Comm. Pare Apple. Math., 1926, 45: 327-360
    17 Bernadou M, Ciarlet P G, Miara B. Existence theorems for two-dimensional linear shell theories. Journal of Elas-ticity, 1994, 34: 111-138  
    18 王大钧, 胡海昌. 弹性结构理论中两类算子的正定性和紧致性的统一证明. 力学学报, 1982, 18(2): 111-121
    19 王大钧, 胡海昌. 弹性结构理论中线性振动普遍性质的统一论证. 振动与冲击, 1982, 1: 6-16
    20 Wang D J, Hu H C. Positive definiteness and compactness of two kind of operator in theories of elastic structures.Scientia. Sinica, (Series A), 1985, XXVIII(7): 727-739
    21 胡海昌. 广义变分原理在近似解中的合理利用. 力学学报,1982, 18(2): 1-7
    22 Wang D J, Wang W Q. The reasonableness problems of theories of structures carrying concentrated masses, springs and supports in vibration Problems. Acta Me-chanica Solida Sinca, 1989, 2: 247-251
    23 Wang Q, Wang D J. Singularity under a concentrated force in elasticity. Applied Mathematics And Mechanics,1993, 14(8):707-711  
    24 Leung A Y T, Wang D J, Wang Q. On concentrated masses and stiffnesses in structural theories. Int. J. of Structural Stability and Dynamics, 2004, 4(2): 171-179  
    25 冯康. 组合流形上的椭圆方程与组合弹性结构. 计算数学,1979, 1(3): 199-208
    26 冯康, 石钟慈. 弹性结构的数学理论. 北京: 科学出版社,1984
    27 孙博华. 组合弹性结构的分析理论及应用: [博士论文]. 兰州: 兰州大学, 1988. 12
    28 孙博华, 叶志明. 组合弹性结构的力学分析. 中国科学, 2009,39(3): 394-413
    29 Sun B H, Ye Z M. Formulation of elastic multi-structures. Science in China Series G: Physics, Mechanics and As-tronomy, 2009, 52(6): 935-953  
    30 Valid R. The Nonlinear Theory of Shells Through Variational Principles. From Algebra to Differential Geometry. New Jersey: John Wiley & Sons, 1995
    31 邱吉宝, 向树红, 张正平. 计算结构动力学. 合肥: 中国科学技术大学出版社, 2009
    32 武际可. 近代力学在中国的传播与发展. 北京: 高等教育出版社, 2005
    33 黄建国, 石钟慈, 徐一峰. 一般组合弹性结构的数学模型. 中国科学A辑: 数学, 2005, 35(6): 664-684
    34 黄建国, 石钟慈, 徐一峰. 一般组合弹性结构的有限元分析. 中国科学A辑: 数学, 2005, 35(10): 1100-1119
  • 加载中
计量
  • 文章访问数:  1832
  • HTML全文浏览量:  151
  • PDF下载量:  1453
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-11-18
  • 修回日期:  2012-03-06
  • 刊出日期:  2012-09-25

目录

    /

    返回文章
    返回

    Baidu
    map