1 Benioff M R, Lazowska E D. Computational science: ensuring america’s competitiveness. In: Reprot to the President. President’s Information Technology Advisory Committee,2005
|
2 王勖成. 有限单元法. 北京: 清华大学出版社, 2003
|
3 Zienkiewicz O C, Taylor R L. The Finite Element Method. Fifth edn. Oxford: Butterworth Heinemann, 2006
|
4 Cook R D, Malkus D S, Plesha M E, et al. Concepts and applications of finite element analysis. 4th edn. NewYork: Wiley&Sons, 2007
|
5 Bruce M I. Engineering applications of numerical integration in stiffness methods. AIAA Journal, 1966, 4(11):2035-2037
|
6 Wilson E L, Taylor R L, DohertyWP, et al. Incompatible displacement models. In: Fenves S J. ed. Numerical and Computer Methods in Structural Mechanics: Academic Press, 1973
|
7 吴长春, 卞学鐄. 非协调数值分析与杂交元方法. 北京: 科学 出版社, 1997
|
8 田宗漱, 卞学鐄. 多变量变分原理与多变量有限元方法. 北 京: 科学出版社, 2011
|
9 岑松, 陈晓明, 李宏光, 等. 有限元新型自然坐标方法研究进 展. 工程力学, 2008, 25(S1): 18-32
|
10 唐立民, 陈万吉, 刘迎曦. 有限元分析中的拟协调元. 大连工 学院学报, 1980, 19(2): 19-35
|
11 Tang L, Chen W, Liu Y. String net function approximation and quasi-conforming element technique. In: Atluri S N, Gallagher R H, Zienkiewicz O C. eds. Hybrid and Mixed Finite Element Methods. New Jersey: John Wiley & Sons, Ltd, 1983. 96-111
|
12 Kim K D, Lomboy G R, Voyiadjis G Z. A 4-node assumed strain quasi-conforming shell element with 6 degrees of freedom. International Journal for Numerical Methods in Engineering, 2003, 58(14): 2177-2200
|
13 Kim K D, Lomboy G R. A co-rotational quasi-conforming4-node resultant shell element for large deformation elastoplastic analysis. Computer Methods in Applied Mechanics and Engineering, 2006, 195(44-47): 6502-6522
|
14 Park T Y, Kim K D, Han S C. Linear static and dynamic analysis of laminated composite plates and shells using a4-node quasi-conforming shell element. Composites Part B-Engineering, 2006, 37(2-3): 237-248
|
15 Han S C, Lomboy G R, Kim K D. Mechanical vibration and buckling analysis of FGM plates and shells using a four-node quasi-conforming shell element. International Journal of Structural Stability and Dynamics, 2008, 8(2):203-229
|
16 Kim K D, Lomboy G R, Han S C. Geometrically nonlinear analysis of functionally graded material (FGM) plates and shells using a four-node quasi-conforming shell element. Journal of Composite Materials, 2008, 42(5):485-511
|
17 Lomboy G R, Suthasupradit S, Kim K D, et al. Nonlinear formulations of a four-node quasi-conforming shell element. Archives of Computational Methods in Engi- neering, 2009, 16(2): 189-250
|
18 Hu P, Xia Y, Tang L. A Four-node reissner-mindlin shell with assumed displacement quasi-conforming method. Cmes-Computer Modeling in Engineering & Sciences,2011, 73(2): 103-135
|
19 Voyiadjis G Z,Woelke P. General non-linear finite element analysis of thick plates and shells. International Journal of Solids and Structures, 2006, 43(7-8): 2209-2242
|
20 龙驭球, 龙志飞, 岑松. 新型有限元论. 北京: 北京大学出版 社, 2004
|
21 Long Y Q, Cen S, Long Z F. Advanced Finite Element Method in Structural Engineering. Beijing: Springer- Verlag GmbH Berlin Heidelberg & Tsinghua University Press, 2009
|
22 王敏中, 王炜, 武际可. 弹性力学教程. 北京: 北京大学出版 社, 2002
|
23 关玉璞. 多变量拟协调退化壳有限元研究. 大连: 大连理工 大学, 1991
|
24 何东升, 唐立民. 拟协调元的位移函数及节点误差. 应用数 学和力学, 2002, 23(2): 119-127
|
25 吕和祥, 徐苏宁, 唐立民. 一个有效的任意四边形薄板弯曲 单元. 计算结构力学及其应用, 1989, 6(1): 147-158
|
26 吕和祥. 关于“拟协调元”的若干问题及在构造拱单元上的 应用. 固体力学学报, 1981, 3(4): 531-536
|
27 陶政国. 拟协调九参数三角形板单元的性态分析. 上海力学,1982, (4): 65-74
|
28 唐立民, 齐朝晖, 丁克伟, 等. 弹性力学弱形式广义基本方程 的建立和应用. 大连理工大学学报, 2001, 41(1)1-8
|
29 丁克伟. 拟协调有限元与弱形式广义方程. 合肥工业大学学 报(自然科学版), 2009, 32(12): 1875-1879
|
30 刘迎曦, 李宝元, 唐立民. 多变量拟协调E 函数单元. 计算 结构力学及其应用, 1987, 4(4): 35-43
|
31 张鸿庆. 多套函数的广义分片检验与十二参拟协调元. 大连 工学院学报, 1982, 21(3): 11-19
|
32 陈万吉, 刘迎曦, 唐立民. 拟协调元列式. 大连工学院学报,1980, 19(2): 37-50
|
33 唐立民, 陈万吉, 刘迎曦. 薄板弯曲分析中的拟协调元. 建筑 结构学报, 1981, (2): 10-22
|
34 张鸿庆, 王鸣. 多套函数有限元逼近与拟协调板元. 应用数 学和力学, 1985, 6(1): 41-52
|
35 张鸿庆, 王鸣. 拟协调元空间的紧致性和拟协调元法的收敛 性. 应用数学和力学, 1986, 7(5): 409-423
|
36 王鸣, 张鸿庆. 有限元空间的嵌入性质和紧致性. 应用数学 和力学, 1988, 9(2): 127-134
|
37 Wang M. L ∞ convergence of quasi-conforming finite elements for the biharmonic equation. Journal of Computa- tional Mathematics, 1995, 13(2): 108-122
|
38 石钟慈, 陈绍春. 九参拟协调元的直接分析. 计算数学, 1990,12(1): 76-84
|
39 Shi Z C. On the accuracy of the quasiconforming and generalized conforming finite elements. Chinese Annals of Mathematics, 1995, (2): 108-122
|
40 陈绍春. 拟协调元的双参数法分析. 高等学校计算数学学报,1990, 12(2): 188-194
|
41 石东洋, 陈绍春. 拟协调元的精度分析. 高校应用数学学报A 辑, 2002, 17(1): 121-124
|
42 刘迎曦, 石广玉, 唐立民. 关于有限元多余零能模式的讨论. 大连工学院学报, 1983, 22(3): 61-67
|
43 吕和祥, 唐立民, 刘秀兰. 曲梁单元和它的收敛率. 应用数学 和力学, 1989, 10(6): 487-498
|
44 刘迎曦, 石广玉, 唐立民. 拟协调厚薄通用梁、板单元. 大连 工学院学报, 1984, 23(3): 79-85
|
45 吴敬东. 关于悬索问题的拟协调元分析. 沈阳化工学院学报,1996, (4): 307-313
|
46 陈万吉, 唐立民. 等参拟协调元. 大连工学院学报, 1981,20(1): 63-74
|
47 唐立民, 陈万吉, 周建清. 多变量拟协调平面四边元. 计算结 构力学及其应用, 1988, 5(1): 1-6
|
48 Liu H, Limin T. Qusiconforming plane element with drilling degree of freedom. Computatinal Structural Me- chanics and Application, 1990, 7(4): 23-31
|
49 刘铁林, 朱祎国, 吕和祥. 解析拟协调平面四边元. 计算力学 学报, 1998, 15(3): 324-328
|
50 唐立民, 刘迎曦. 多变量拟协调元方法与罚函数近不可压缩 单元. 合肥工业大学学报, 1984, (2): 16-27
|
51 吕和祥, 刘振华, 唐立民. 极坐标中的拟协调环形单元. 计算 结构力学及其应用, 1991, 8(1): 58-66
|
52 陈万吉. 一个高精度八结点六面体单元. 力学学报, 1982,18(3): 262-271
|
53 蒋和洋. 用拟协调元法推导高精度三角形板弯曲单元. 大连 工学院学报, 1981, 20(S2): 21-28
|
54 欧阳华江, 邬瑞锋. 全预应力混凝土板长期挠度的计算. 计 算结构力学及其应用, 1986, 3(2): 25-33
|
55 Zhao Z, Chen W. New finite element model for analysis of Kirchhoff plate. International Journal for Numerical Methods in Engineering, 1995, 38(7): 1201-1214
|
56 唐立民, 刘迎曦, 刘燕景. 九参数拟协调离散Kirchhoff 薄板 单元. 大连理工大学学报, 1990, 30(3): 263-269
|
57 刘燕景, 刘迎曦. 新型拟协调模式的离散kirchhoff 薄板单 元(LDKT-9). 大庆石油学院学报, 1992, 16(1): 45-52
|
58 Shi G Y, Voyiadjis G Z. A Simple C0 quadrilateral thick/thin shell element based on the refined shell theory and the assumed strain fields. International Journal of Solids and Structures, 1991, 27(3): 283-298
|
59 Shi G Y, Voyiadjis G Z. Efficient and accurate four-node quadrilateral plate bending element based on assumed strain fields. International Journal for Numerical Meth- ods in Engineering, 1991, 32(5): 1041-1055
|
60 孙建刚. 一个简单、有效的四节点板弯曲单元. 工程力学,1989, 6(4): 24-33
|
61 孙建刚. 拟协调四节点板弯曲单元在薄板振动分析中的应 用. 地震工程与工程振动, 1995, (3): 69-72
|
62 仝立勇, 唐立民. 四节点四边形拟协调Mindlin 板单元. 应 用力学学报, 1989, 6(2): 69-75
|
63 朱菊芬, 陈万吉. 一种有效的厚薄板壳单元. 固体力学学报,1997, 18(4): 323-328
|
64 金吾根. 拟协调曲边旋转壳元. 大连工学院学报, 1981,20(S2): 29-36
|
65 朱菊芬, 郭兆璞. 复合材料旋转壳的大变形有限元分析. 大 连工学院学报, 1984, 23(3): 101-107
|
66 刘迎曦, 吕和祥, 唐立民. 拟协调圆柱壳单元. 大连工学院学 报, 1981, 20(2): 23-30
|
67 陈铁云, 吴水云. 圆柱薄壳结构的弹- 塑性有限元分析. 力学 学报, 1986, (S2): 264-275
|
68 吴水云, 陈铁云. 近海平台管状接头弹- 塑性有限元分析. 上 海交通大学学报, 1987, 21(5): 1-12
|
69 吴连元, 胡刚义. 板壳结构弹塑性稳定性的有限元分析. 应用 力学学报, 1993, 10(1): 106-110
|
70 吕和祥, 刘迎曦. 有限元中的拟协调元及在构造双曲壳单元 上的应用. 大连工学院学报, 1981, 20(1): 75-87
|
71 魏钢, 赵超燮. 拟协调大变形矩形扁壳元及其应用. 计算结 构力学及其应用, 1990, 7(1): 37-44
|
72 刘红, 陈万吉. 拟协调SemiLoof 和Loof 扁壳元. 固体力学 学报, 1992, 13(3): 259-263
|
73 吴连元, 纪多辙, 陈文良. 板壳非线性屈曲的拟协调元分析. 上海交通大学学报, 1992, 26(4): 51-58
|
74 罗蜀榕, 吴连元. 板壳弹塑性屈曲的有限元分析. 固体力学 学报, 1993, 14(3): 237-240
|
75 邓可顺,陈建云. 拟协调等腰梯形薄板弯曲元和薄壳元. 大 连理工大学学报, 1995, 35(1): 17-24
|
76 邓可顺,陈健云. 拟协调等腰梯形壳元显式几何刚度阵及屈 曲分析. 计算结构力学及其应用, 1995, 12(2): 160-169
|
77 Voyiadjis G, Shi G. Nonlinear postbuckling analysis of plates and shells by four-noded strain element. AIAA Journal, 1992, 30(4): 1110-1116
|
78 朱菊芬, 陈亮, 郑罡. 带旋转自由度拟协调三角形板壳单元. 大连理工大学学报, 2001, 41(1): 38-41
|
79 Guan Y P, Tang L. A quasi-conforming nine-node degenerated shell finite element. Finite Elements in Analysis and Design, 1992, 11(2): 165-176
|
80 Guan Y P, Tang L. Nonlinear quasi-conforming finite element method. Acta Mechanica Sinica, 1993, 9(3): 269-276
|
81 Guan Y P, Tang L. A geometrically non-linear quasiconforming nine-node quadrilateral degenerated solid shell element. International Journal for Numerical Methods in Engineering, 1995, 38(6): 927-942
|
82 关玉璞, 唐立民. 拟协调九结点四边形层合板壳有限元. 南 京航空航天大学学报, 1994, 26(2): 278-282
|
83 关玉璞, 张宗科. 拟协调轴对称三结点退化壳单元. 上海交 通大学学报, 1998, 32(11): 98-101
|
84 Jiang Heyang. Quasi-conforming Mode Nonlinear Finite Element and Others. DaLian: Dalian Institute of Technology,1984
|
85 蒋和洋. 拟协调模式非线性有限元. 计算结构力学及其应用,1984, 1(2): 49-60
|
86 蒋和洋, 唐立民. 用拟协调元进行壳体非线性稳定分析. 工 程力学, 1985, 2(3): 12-19
|
87 蒋和洋. 有初始缺陷的板壳的大挠度分析. 上海力学, 1987,8(1): 10-17
|
88 蒋和洋. 拟协调模式大变形板壳单元的变分基础. 大连理工 大学学报, 1988, 28(3): 23-28
|
89 邹贵平. 拟协调非线性任意四边形薄板单元. 沈阳建筑工程 学院学报, 1989, 5(4): 23-32
|
90 关玉璞, 唐立民. 一个非线性拟协调退化壳有限元. 航空学 报, 1993, 14(9): 475-482
|
91 关玉璞,唐立民,高德平. 非线性拟协调元与杂交/混合元: Ⅰ.关于Hellinger - Reissner 变分原理. 计算结构力学及其 应用, 1994, (4): 387-391
|
92 关玉璞,唐立民,高德平. 非线性拟协调元与杂交/混合元: Ⅱ.关于Hu -Washizu 变分原理. 计算结构力学及其应用,1995, (1): 47-52
|
93 Shi G Y, Voyiadjis G Z. Geometrically nonlinear analysis of plates by assumed strain element with explicit tangent stiffness matrix. Computers & Structures, 1991, 41(4):757-763
|
94 Wegmuller A W. Elastic-plastic finite element analysis of plates. Archive of Applied Mechanics, 1975, 44(2): 63-77
|
95 Shi G Y, Voyiadjis G Z. A simple non-layered finite element for the elasto-plastic analysis of shear flexible plates. International Journal for Numerical Methods in Engi- neering, 1992, 33(1): 85-99
|
96 Shi G Y, Voyiadjis G. A computational model for FE ductile plastic damage analysis of plate bending. Journal of Applied Mechanics, 1993, 60: 749-758
|
97 Ueda Y, Yao T. The plastic node method: A new method of plastic analysis. Computer Methods in Applied Me- chanics and Engineering, 1982, 34(1-3): 1089-1104
|
98 Shi G, Atluri S N. Elasto-plastic large deformation analysis of space-frames: A plastic-hinge and stress-based explicit derivation of tangent stiffnesses. International Jour- nal for Numerical Methods in Engineering, 1988, 26(3):589-615
|
99 Wang X, Jiang H Y, Lee L H N. Finite deformation formulation of a shell element for problems of sheet metal forming. Computational Mechanics, 1991, 7(5): 397-411
|
100 Wang X, Lee L H N. Postbifurcation behavior of wrinkles in square metal sheets under Yoshida Test. International Journal of Plasticity, 1993, 9(1): 1-19
|
101 Woelke P, Voyiadjis G Z, Perzyna P. Elasto-plastic finite element analysis of shells with damage due to microvoids. International Journal for Numerical Methods in Engineering, 2006, 68(3): 338-380
|
102 陈浩然, 衣翃, 温玄玲. 复合材料层合板壳通用单元和等网 格加筋板壳的局部稳定性. 航空学报, 1988, 9(3): 177-183
|
103 朱菊芬, 汪海. 大挠度层合板的拟协调罚单元. 复合材料学 报, 1989, 6(4): 39-47
|
104 Huang B Z S, Vijay B, Atluri S N. A quasi-conforming triangular laminated composite shell element based on a refined first-order theory. Computational Mechanics, 1994,13(4): 295-314
|
105 Huang B Z, Atluri S N. A simple method to follow postbuckling paths in finite element analysis. Computers & Structures, 1995, 57(3): 477-489
|
106 杨刚, 张爱锋, 黄宝宗. 层合壁板的二次屈曲. 沈阳建筑工程 学院学报(自然科学版), 2001, 17(4): 249-251
|
107 唐立民, 刘迎曦. 拟协调罚有限元法. 计算结构力学及其应 用, 1984, 1(3): 1-9
|
108 Tang L, Liu Y. Quasi-conforming element techniques for penalty finite element methods. Finite Elements in Analysis and Design, 1985, 1(1): 25-33
|
109 陈浩然, 衣翃. 复合材料层板的拟协调罚单元. 复合材料学 报, 1987, 4(1): 67-72
|
110 朱菊芬, 汪海. 层合板的压剪稳定性及其后屈曲性态研究. 大连理工大学学报, 1989, 29(5): 519-526
|
111 朱菊芬, 周承芳. 加筋板壳稳定性分析中一种简单的有限元 模式. 应用力学学报, 1993, 10(4): 113-117
|
112 郭兆璞, 弓俊青. 复合材料加筋板的动力分析. 复合材料学 报, 1990, 7(3): 75-81
|
113 王家林. 薄壁杆系结构有限元的新算法. 机械强度, 1984,8(4): 68-73
|
114 王家林. 车辆结构力学分析程序JJD 与4 ~ 9 节点过渡型 板壳单元. 吉林工业大学学报, 1983, (4): 13-19
|
115 肖为民, 刘传义. 四结点等参拟协调薄板元. 浙江工学院学 报, 1988, (1): 45-52
|
116 许焕然, 王家林. 拟协调4 节点等参板单元. 吉林工业大学 学报, 1982, (2): 1-5
|
117 Qin Q H. Geometrically nonlinear analysis of shells by the variational approach and an efficient finite element formulation. Computers & Structures, 1995, 55(4): 727-733
|
118 唐立民, 刘迎曦. 多变量拟协调元法解流函数形式的两 维Navier-Stokes 方程. 大连工学院学报, 1987, 26(1): 1-7.
|
119 刘迎曦, 尚选钰, 唐立民. 用惩罚拟协调元法分析二维N-S 问 题. 大连理工大学学报, 1989, 29(5): 511-518
|
120 刘迎曦, 赵振峰, 王鸣, 等. Stokes 方程四节点有限单元的构 造及其收敛性研究. 水动力学研究与进展(A 辑), 1993, 8(2):176-183
|
121 吴时强, 丁道扬, 刘金培. 三维对流问题的拟协调六面体单 元解法. 力学学报, 2000, 32(6): 676-685
|
122 陈万吉, 陈伦元, 杨健. 拟协调奇异元. 固体力学学报, 1984, (3): 351-366
|
123 汪小洪, 霍洪举, 金巨年. 表面裂纹拟协调有限元分析. 压力 容器, 1988, (4): 46-51
|
124 汪小洪, 霍洪举, 金巨年. 拉弯复合应力下表面裂纹疲劳扩 展规律研究. 压力容器, 1990, 1(3): 25-29
|
125 姚敬之. 奇应变拟协调元. 河海大学学报, 1988, 16(4): 72-83
|
126 姚敬之. 关于奇应变拟协调元的一点注记. 河海大学学报,1991, 19(4): 127-129
|
127 周建清, 高仁良. 三维奇性单元. 计算结构力学及其应用,1993, 10(1): 78-84
|
128 Liu Y X, Tang L M. A triangular quasi-conforming finite element for transient dynamic analysis. Acta Mech Sinica,1990, 6 (1): 59-63
|
129 陈铁云, 周义先. 随机拟协调有限元. 计算结构力学及其应 用, 1990, 7(1): 17-24
|
130 Hexiang L, Limin T, Xiaoling W. The upper bound on the collapse load of plate bending by using a quasi-conforming element and the Monte-Carlo method. Finite Elements in Analysis and Design, 1993, 13(1): 65-73
|
131 聂绍珉, 马克. 空间板系结构优化方法及应用. 东北重型机 械学院学报, 1989, 13(2): 7-13
|
132 周承芳. 组合加肋旋转壳的强度和稳定性有限元分析. 计算 结构力学及其应用, 1990, 7(1): 45-53
|
133 刘云忠. 纤维缠绕复合材料壳体的非线性大变形有限元分 析. 固体火箭技术, 1997, 20(2): 68-72
|
134 常晓环, 李新钢, 刘应华. 正交各向异性旋转壳的极限分析. 清华大学学报(自然科学版), 2006, 46(11): 1908-1910
|
135 刘均, 黄宝宗. 复合材料壁板中长桁的胶接应力分析. 辽宁 工程技术大学学报, 2007, 26(5): 679-681
|
136 Pian T H H. State-of-the-art development of hybrid/ mixed finite element method. Finite Elements in Analysis and Design, 1995, 21(1-2): 5-20
|
137 Zhang Z Q, Liu G R. An edge-based smoothed finite element method (ES-FEM) using 3-node triangular elements for 3D non-linear analysis of spatial membrane structures. International Journal for Numerical Methods in Engi- neering, 2010, 86(2): 135-154
|
138 Zhang Z Q, Liu G R. Upper and lower bounds for natural frequencies: A property of the smoothed finite element methods. International Journal for Numerical Methods in Engineering, 2010, 84(2): 149-178
|
139 Chen J S, Wu C T, Yoon S, et al. A stabilized conforming nodal integration for Galerkin mesh-free methods. Inter- national Journal for Numerical Methods in Engineering,2001, 50(2): 435-466
|
140 Liu G R, Nguyen T T. Smoothed Finite Element Methods. California: CRC Press, 2010
|
141 Chen J S, Yoon S, Wu C T. Non-linear version of stabilized conforming nodal integration for Galerkin mesh-free methods. International Journal for Numerical Methods in Engineering, 2002, 53(12): 2587-2615
|