[1] |
代民果, 高智. 2006. 同位网格摄动有限体积格式求解浮力驱动方腔流. 力学学报, 38: 733-740 (Dai MG, Gao Z. 2006. Solving 2-D buoyancy-driven cavity flow on collocated meshes by perturbational finitevolume scheme. Acta Mechanica Sinica, 38: 733-740 )
|
[2] |
董韶峰, 李荫堂, 刘艳华. 2003. 涡量{ 流函数方法模拟不同高宽比和角度的腔内自然对流. 低温与特气, 21: 16-18 (Dong S F, Li Y T, Liu Y H. 2003. Simulation of the natural convection in a closedcavity with vortex-stream function method. Low Temperature and Specialty Gases,21: 16-18 )
|
[3] |
鞠向阳, 伍小平, 何世平. 1996. 用胶囊式液晶粒子同时测量流场的温度和速度. 力学学报, 28: 503-506(Ju X Y, Wu X P, He S P. 1996. Simultaneous fluid velocity and temperature measurements by usingencapsulated liquid crystal particles. Acta Mechanica Sinica, 28: 503-506 )
|
[4] |
李光正, 李贵, 张宁. 2002. 封闭腔内自然对流数值方法研究. 华中科技大学学报, 19: 20-22. (Li G Z,Li G, Zhang N. 2002. Study of the numerical method for solving the natural convection in an enclosure.Journal of HUST. (Urban Science Edition), 19: 20-22)
|
[5] |
李光正, 马洪林. 2004. 封闭腔内高瑞利数层流自然对流数值模拟. 华中科技大学学报, 21: 14-17 (LiG Z, Ma H L. 2004. Numerical simulation for the laminar natural convection of high Rayleigh numbers in an enclosure. Journal of HUST, (Urban Science Edition) 21: 14-17 )
|
[6] |
李世武, 熊莉芳. 2007. 封闭方腔自然对流换热的研究. 工业加热, 36: 10-13 (Li S W, Xiong L F. 2007.Study of natural convection in closed a square cavity. Industrial Heating, 36: 10-13 )
|
[7] |
刘滔, 林文贤, 高文峰等. 2008. 低普朗特数数流体自然对流边界层流动的直接数值模拟. 力学与实践, 30: 28-33 (Liu T, Lin W X, Gao W F et al. 2008. Direct numerical simulation of natural convectionboundary-layer flow of low Prandtl number fluid. Mechanics and Engineering, 30: 28-33 )
|
[8] |
马丽娟, 徐丰, 胡非等. 2006. 侧加热腔体内重力波演化过程的数值模拟. 力学与实践, 28: 19-23 (MaL J, Xu F, Hu F et al. 2006. Numerical simulation of the formation and development of internal gravitywave in a differentially heated cavity. Mechanics and Engineering, 28: 19-23 )
|
[9] |
秦国良, 徐忠. 2001. 谱元方法求解正方形封闭空腔内的自然对流换热. 计算物理, 18: 119-124 (QinG L, Xu Z. 2001. Computation of natural convection in two-dimensional cavity using spectral elementmethod. Chinese Journal of Computational Physics, 18: 119-124 )
|
[10] |
童长青, 何雅玲, 王勇, 刘迎文. 2007. 封闭方腔自然对流的格子{Boltzmann 方法动态模拟. 西安交通大学学报, 41: 33-36 (Tong C Q, He Y L, Wang Y, Liu Y W. 2007. Simulation of transient naturalconvection in square cavity with incompressible thermal lattice-Boltzmann method. Journal of Xi'anJiaotong University, 41: 33-36 )
|
[11] |
王小华, 朱文芳. 2010. 长方腔自然对流第一次分岔突变现象的数值分析. 力学学报, 42: 389-399 (WangX H, Zhu W F. 2010.Numerical research on the sudden change characteristic of the first bifurcation fornatural convection of air enclosure in 2D rectangular cavity. Acta Mechanica Sinica, 42: 389-399)
|
[12] |
王烨. 2011. 封闭腔湍流自然对流修正k-! 模型及其应用. [博士论文]. 兰州:兰州交通大学. (Wang Y.2011. Revised turbulent model and its application for turbulent natural convection in enclosures. [PhDThesis].Lanzhou: LanZhou JiaoTong University )
|
[13] |
王晋军, 夏克青. 1999. Rayleigh-Bénard 湍流对流实验研究进展. 力学进展, 29: 557-566 (Wang J, XiaK. 1999. Advances in experimental investigation of Rayleigh-Bénard turbulent. Advances in Mechanics,29: 557-566 )
|
[14] |
赵秉文, 邢荣鹏, 张世将, 等. 2008. 矩形方腔湍流自然对流数值模拟研究. 浙江理工大学学报, 25:458-460 (Zhao B W, Xing R P, Zhang S J, et al. 2008. The numerical simulation study of turbulencenatural convection in rectangular cavity. Journal of Zhejiang Sci-Tech University, 25: 458-460)
|
[15] |
周全, 夏克青. 2012. Rayleigh-Bénard 湍流热对流研究的进展、现状及展望. 力学进展, 42: 231-251(Zhou Q, Xia K Q. 2012. Advances and outlook in turbulent Rayleigh-Bénard convection. Advances inMechanics, 42: 231-251)
|
[16] |
Anderson R Bejan A. 1981. Heat transfer through single and double vertical walls in natural convection:Theory and experiment. Int. J. Heat Mass Transfer, 24: 1611-1620.
|
[17] |
Armfield S W, Janssen R J A. 1996. A direct boundary-layer stability analysis of steady-state cavityconvection flow. Int. J. Heat Fluid Flow, 17: 539-546.
|
[18] |
Armfield S W, Patterson J C. 1991. Direct simulation of wave interactions in unsteady natural convectionin a cavity. Int. J. Heat Mass Transfer, 34: 929-940.
|
[19] |
Armfield S W, Patterson J C. 1992. Wave properties of natural convection boundary layers. J. Fluid Mech.,239: 195-212.
|
[20] |
Armfield S W, Patterson J C. 2000. Start-up flow on a vertical semi-infinite heated plate. In: Proceedingsof the 7th Australasian Heat and Mass Transfer, Townsville, 7: 37-43.
|
[21] |
Armfield S W, Patterson J C, Lin W X. 2007. Scaling investigation of the natural convection boundarylayer on an evenly heated plate. Int. J. Heat Mass Transfer, 50: 1592-1602.
|
[22] |
Antohe B V, Lage J L. 1996. Experimental investigation on pulsation horizontal heating of an enclosurefilled with water. ASME J. Heat Transfer, 118: 889-896.
|
[23] |
Bachelor G K. 1954. Heat transfer by free convection across a closed cavity between vertical boundaries atdifferent temperatures. Quart. Appl. Math., 12: 209-233.
|
[24] |
Bertolotti F P, Herbert T, Spalart P R. 1992. Linear and nonlinear stability of the Blasius boundary layer.J. Fluid Mech., 242: 441-474.
|
[25] |
Bednarz T, Fornalik E, Ozoe H, Szmyd J S, Patterson J C, Lei C. 2008. Influence of a horizontal magneticfield on the natural convection of paramagnetic fluid in a cube heated and cooled from two vertical sidewalls. Int. J. Therm. Sci., 47: 669-679.
|
[26] |
Bednarz T, Lei C, Patterson J C, Ozoe H. 2009. Suppressing RayleighBénard convection in a cube using astrong magnetic field Experimental heat transfer rate measurements and flow visualization. Int. Comm.Heat Mass Transfer, 36: 97-102.
|
[27] |
Bednarz T, Xu F, Lei C, Patterson J C. 2009. Visualization techniques for estimating thermal boundarylayers of natural convection flows. In: 7th World Conference on Experimental Heat Transfer, FluidMechanics and Thermodynamics, Krakow, Poland.
|
[28] |
Bodenschatz E, Pesch W, Ahlers G. 2000. Recent developments in Rayleigh-Bénard convection. Annu. Rev.Fluid Mech., 32: 709-778.
|
[29] |
Brassington G B, Patterson J C, Lee M. 2002. A new algorithm for analysing shadowgraph images. J. FlowVisual. Image Process, 9: 25-51.
|
[30] |
Brooker A M H, Patterson J C, Armfield S W. 1997. Non-parallel linear stability analysis of the verticalboundary layer in a differentially heated cavity. J. Fluid Mech., 352: 265-281.
|
[31] |
Brooker A M H, Patterson J C, Graham T, Schöpf W. 2000. Convective instability in a time-dependentbuoyancy driven boundary layer. Int. J. Heat Mass Transfer, 43: 297-310.
|
[32] |
Brown S N, Riley N. 1973. Flow past a suddenly heated vertical plate. J. Fluid Mech., 59: 225-237.
|
[33] |
Carrière P, Monkewitz P A. 1999. Convective versus absolute instability in mixed Rayleigh-Bénard-Poiseuilleconvection. J. Fluid Mech., 384: 243-262.
|
[34] |
Catton I. 1978. Natural convection in enclosures. In: Proceedings of the 6th International Heat TransferConference, Toronto, 6: 13-30.
|
[35] |
Cheesewright R, King K J, Ziai S. 1986. Experimental data for the validation of computer code for the pre-diction of two-dimensional buoyancy cavity flows. In: ASME Winter Annual Meeting, HTD-60, Anaheim,75-81.
|
[36] |
Chen Q. 1996. Prediction of room air motion by Reynolds-Stress models. Building Environ., 31: 233-244.Chenoweth D R, Paolucci S. 1986. Natural convection in an enclosed vertical air layer with large horizontaltemperature differences. J. Fluid Mech. 169: 173-210.
|
[37] |
Choi S K, Kim E K, Kim S O. 2004. Computation of turbulent natural convection in a rectangular cavitywith the k-ε-v2-f model. Numer. Heat Transfer, Part B, 45: 159-179.
|
[38] |
Choi S K, Kim S O. 2012. Turbulence modeling of natural convection in enclosures: A review. J. Mech.Sci. Tech., 26: 283-297.
|
[39] |
Cormack D E, Leal L G, Imberger J. 1974. Natural convection in a shallow cavity with differentially heatedend walls, Part 1, Asymptotic theory. J. Fluid Mech., 65: 209-229.
|
[40] |
Cormack D E, Leal L G, Seinfeld J H. 1974. Natural convection in a shallow cavity with differentially heatedend walls, Part 2, Numerical solutions. J. Fluid Mech., 65: 231-246.
|
[41] |
Daniels P G, Patterson J C. 1997. On the long-wave instability of natural-convection boundary layers. J.Fluid Mech., 335: 57-73.
|
[42] |
Daniels P G, Patterson J C. 2001. On the short-wave instability of natural convection boundary layers.Proc. Roy. Soc. Lond. A, 457: 519-538.
|
[43] |
Davey A. 1973. A simple numerical method for solving Orr-Sommerfield problems. Q. J. Mech. Appl.Maths., 26: 401-411.
|
[44] |
De Vahl Davis G. 1983. Natural convection of air in a square cavity: A bench mark numerical solution. Int.J. Numer. Meth. Fluids, 3: 249-264.
|
[45] |
De Vahl Davis G, Jones. 1983. Natural convection in a square cavity: A comparison exercise. Int. J.Numer. Meth. Fluids, 3: 227-248.
|
[46] |
Dixit H N, Babu V. 2006. Simulation of high Rayleigh number natural convection in a square cavity usingthe lattice Boltzmann method. Int. J. Heat Mass Transfer, 49: 727-739.
|
[47] |
Dol H S, Hanjali K. 2001. Computational study of turbulent natural convection in a side-heated near-cubicenclosure at a high-Rayleigh number. Int. J. Heat Mass Transfer, 44: 2323-2344.
|
[48] |
Dol H S, Hanjali K, Kenjereš S. 1997. A comparative assessment of the second-moment differential andalgebraic models in turbulent natural convection. Int. J. Heat Fluid Flow, 18: 4-14.
|
[49] |
Drazin P G. 2001. Introduction to Hydrodynamic Stability. Cambridge University Press, Cambridge, 45-61.Dring R, Gebhart B. 1968. A theoretical investigation of disturbance amplification in external laminarnatural convection. J. Fluid Mech., 34: 551.
|
[50] |
Eckert E R G, Carlson W O. 1961. Natural convection in an air layer enclosed between two vertical platesat different temperatures. Int. J. Heat Mass Transfer, 2: 106-120.
|
[51] |
Eckert E R G, Hartnett J P, Irvine T F. 1960. Flow-visualization studies of transition to turbulence infree-convection flow. ASME Paper, 60: 250.
|
[52] |
Elder J W. 1965a.Laminar free convection in a vertical slot. J. Fluid Mech., 23: 77-98.
|
[53] |
Elder J W. 1965b.Turbulent free convection in a vertical slot. J. Fluid Mech., 23: 99-111.
|
[54] |
Fasel H, Konzelmann U. 1990. Nonparallel stability of a flat-plate boundary-layer using the complete Navier-Stokes equations. J. Fluid Mech., 221: 311-347.
|
[55] |
Fu W S, Shieh W J. 1992. A study of thermal convection in an enclosure induced simultaneously by gravityand vibration. Int. J. Heat Mass Transfer, 35:1695-1710.
|
[56] |
Fu W S, Shieh W J. 1993. Transient thermal convection in an enclosure induced simultaneously by gravityand vibration. Int. J. Heat Mass Transfer, 36: 437-452.
|
[57] |
Gadoin E, Le Quere P, Daube O. 2001. A general methodology for investigating flow instabilities in complexgeometries: application to natural convection in enclosures. Int. J. Numer. Meth. Fluids, 37: 175-208.
|
[58] |
Gebhart B.1969. Natural convection flow, instability and transition. J. Heat Transfer, 91: 293-309.
|
[59] |
Gebhart B. 1973. Instability, transition & turbulence in buoyancy-induced flows. Annu. Rev. Fluid Mech.,5: 213-246.
|
[60] |
Gebhart B. 1988. Transient response and disturbance growth in vertical buoyancy-driven flows. J. HeatTransfer, 110: 1166-1174.
|
[61] |
Gebhart B, Mahajan R L. 1975. Characteristic disturbance frequency in vertical natural convection flow.Int. J. Heat Mass Transfer, 18: 1143-1148.
|
[62] |
Gebhart B, Mahajan R L. 1982. Instability and transition in buoyancy induced flows. Adv. Appl. Mech.,22: 231-315.
|
[63] |
Gill A E. 1966. The boundary-layer regime for convection in a rectangular cavity. J. Fluid Mech., 26:515-536.
|
[64] |
Gill A E, Davey A. 1969. Instabilities of buoyancy-driven system. J. Fluid Mech., 35: 775-798.
|
[65] |
Goldstein R J, Briggs D G. 1964. Transient free convection about vertical plates and cylinders. J. HeatTransfer, 86: 490-500.
|
[66] |
Gresho P M, Lee R L, Chan S T. Sani RL. 1980. Solution of the time-dependent incompressible Navier-Stokes and Boussinesq equations using the Galerkin finite element method. In: Approximation Methodsfor Navier-Stokes problems. Lecture Notes in Mathematics, Springer, 771: 203-222.
|
[67] |
Hanjali? K, Kenjereš S, Durst F. 1996. Natural convection in partitioned two-dimensional enclosures athigher Rayleigh numbers. Int. J. Heat Mass Transfer, 39: 1407-1427.
|
[68] |
Hanjali? K, Vasic S. 1993. Some further exploration of turbulence models for buoyancy driven flows. Tur-bulent Shear Flows (Edited by Durst et al.), Springer, Berlin, 8: 319- 341.
|
[69] |
Henkes R A W M. 1990. Natural-Convection Boundary Layers. [PhD thesis], Delft University of Technology,Delft, The Netherlans.
|
[70] |
Henkes R A W M, Hoogendoorn C J. 1993. Scaling of the laminar natural-convection flow in a heated squarecavity. Int. J. Heat Mass Transfer, 36: 2913-2925.
|
[71] |
Henkes R A W M, Hoogendoorn C J. 1995. Comparison exercise for computations of turbulent naturalconvection in enclosures. Numer. Heat Transfer, Part B, 28: 59-78.
|
[72] |
Herbert T. 1997. Parabolized stability equations. Annu. Rev. Fluid Mech., 29: 245-283.
|
[73] |
Hieber C A, Gebhart B. 1971. Stability of vertical natural convection boundary layers: Some numericalsolutions. J. Fluid Mech., 48: 625-646.
|
[74] |
Holtzman G A, Hill R W, Ball K S, 2000. Laminar natural convection in isosceles triangular enclosuresheated from below and symmetrically cooled from above. J. Heat Transfer, 122: 485-491.
|
[75] |
Hyun J M. 1994. Unsteady buoyant convection in an enclosure. Adv. Heat Transfer, 24: 277-320.
|
[76] |
Hughes G O, Gri±ths R W. 2008. Horizontal convection. Annu. Rev. Fluid Mech., 40: 185-209.
|
[77] |
Illingworth C R. 1950. Unsteady laminar flow of gas near an infinite flat plate. Proc. Camb. Phil. Soc.,46: 603-611.
|
[78] |
Imberger J. 1974. Natural convection in a shallow cavity with differentially heated end walls, Part 3,Experimental results. J. Fluid Mech., 65: 247-260.
|
[79] |
Inagaki T, Komori K. 1995. Heat transfer and fluid flow of natural convection along a vertical flat plate inthe transition region: experimental analysis of the wall temperature field. Int. J. Heat Mass Transfer,38: 3485-3495.
|
[80] |
Ivey G N. 1984. Experiment on transient natural convection in a cavity. J. Fluid Mech. 144: 389-401.Iwatsu R, Hyun J M, Kuwahara K. 1992. Convection in a differentially heated square cavity with atorsionally-oscillating lid. Int. J. Heat Mass Transfer, 35: 1069-1076.
|
[81] |
Jaluria Y, Gebhart B. 1973. An experimental study of nonlinear disturbance behavior in natural convection.J. Fluid Mech., 61: 337-365.
|
[82] |
Jaluria Y, Gebhart B. 1974. On transition mechanisms in vertical natural convection flow. J. Fluid Mech.,66: 309-337.
|
[83] |
Janssen R J A. 1994. Instabilities in natural-convection flows in cavities. [PhD thesis], The Netherlandthe:Delft University of Technology.
|
[84] |
Janssen R J A, Armfield S. 1996. Stability properties of the vertical boundary layers in differentially heatedcavities. Int. J. Heat and Fluid Flow, 17: 547-556.
|
[85] |
Janssen R J A, Henkes R A W M. 1995. Influence of Prandtl number on instability mechanisms andtransition in a differentially heated square cavity. J. Fluid Mech., 290: 319-344.
|
[86] |
Joshi Y, Gebhart B. 1987. Transition of transient vertical natural convection flows in water. J. Fluid Mech.,179: 407-438.
|
[87] |
Kim S K, Kim S Y, Choi Y D. 2002. Resonance of natural convection in a side heated enclosure with amechanically oscillating bottom wall. Int. J. Heat Mass Transfer, 45: 3155-3162.
|
[88] |
Kim S K, Kim S Y, Choi Y D. 2005. Amplification of boundary layer instability by hot wall thermaloscillation in a side heated cavity. Phys. Fluids, 17: 014103.
|
[89] |
Knowles C P, Gebhart B. 1968. The stability of the natural convection boundary layer. J. Fluid Mech., 34:657-686.
|
[90] |
Kwak H S, Hyun J M. 1996. Natural convection in an enclosure having a vertical sidewall with time-varyingtemperature. J. Fluid Mech., 329: 65-88.
|
[91] |
Kwak H S, Kuwahara K, Hyun J M. 1998. Resonant enhancement of natural convection heat transfer in asquare enclosure. Int. J. Heat Mass Transfer, 41: 2837-2846.
|
[92] |
Lage J L, Bejan A. 1993. The resonance of natural convection in an enclosure heated periodically from theside. Int. J. Heat Mass Transfer, 36: 2027-2038.
|
[93] |
Le Quéré P. 1990. Transition to unsteady natural convection in a tall water-filled cavity. Phys. Fluids, 2:503-515.
|
[94] |
Le Quéré P, Alziary de Roquefort T. 1985. Computation of natural convection in two dimensional cavitieswith Chebyshev polynomials. J. Comput. Phys., 57: 210-228.
|
[95] |
Le Quéré P, Behnia M. 1998. From onset of unsteadiness to chaos in a differentially heated square cavity.J. Fluid Mech., 359: 81-107.
|
[96] |
Lei C, Patterson J C. 2002. Natural convection in a reservoir sidearm subject to solar radiation: Experimentalobservations. Exp. Fluids, 32: 590-599.
|
[97] |
Lei C, Patterson J C. 2003. A direct stability analysis of a radiation-induced natural convection boundarylayer in a shallow wedge. J. Fluid Mech., 480: 161-184.
|
[98] |
Lohse D, Xia K Q. 2010. Small-Scale properties of turbulent Rayleigh-Bénard convection. Annu. Rev.Fluid Mech., 42: 335-364.
|
[99] |
Lin W, Armfield S W, Patterson J C. 2007. Cooling of a Pr < 1 fluid in a rectangular container. J. FluidMech., 574: 85-108.
|
[100] |
Mahajan R L, Gebhart B. 1978. Leading edge effects in transient natural convection flow adjacent to avertical surface. J. Heat Transfer, 100: 731-733.
|
[101] |
Mergui S, Penot F. 1996. Natural convection in a differentially heated square cavity: Experimental investi-gation at Ra = 1:69×109. Int. J. Heat Mass Transfer, 39: 563-574.
|
[102] |
Merzkirch W. 1974, Flow Visualization, Academic Press, New York.
|
[103] |
Nicolas X, Mojtabi A, Platten J K. 1997. Two-dimensional numerical analysis of the Poiseuille-Bénard flowin a rectangular channel heated from below. Phys. Fluids, 9: 337-348.
|
[104] |
Nicolas X. 2012. Bibliographic review on the Poiseuille-Rayleigh-Bénard flows: the mixed convection flowsin horizontal rectangular ducts heated from below. Int. J. Therm. Sci., 41: 961-1016.
|
[105] |
Nishimura T, Shiraishi M, Nagasawa F, Kawamura Y. 1988. Natural convection heat transfer in enclosureswith multiple vertical partitions. Int. J. Heat Mass Transfer, 31: 1679-1686.
|
[106] |
Niu J, Zhu Z. 2004. Numerical evaluation of weakly turbulent flow patterns of natural convection in a squareenclosure with differentially heated side walls. Numer. Heat Transfer A, 45: 551-568.
|
[107] |
Olshanskii M A. 2012. A fluid solver based on vorticity-helical density equations with application to anatural convection in a cubic cavity. Int. J. Numer. Meth. Fluids, 69: 983-994.
|
[108] |
Ostrach S. 1964. Laminar flows with body forces. In Theory of Laminar Flows. Princeton University Press,Princeton.
|
[109] |
Ostrach S. 1988. Natural Convection in Enclosures. J. Heat Transfer, 110: 1175-1190.
|
[110] |
Paolucci S. 1990. Direct numerical simulation of two-dimensional turbulent natural convection in an enclosedcavity. J. Fluid Mech., 215: 229-262.
|
[111] |
Paolucci S, Chenoweth D R. 1989. Transition to chaos in a differentially heated vertical cavity. J. FluidMech., 201: 379-410.
|
[112] |
Partankar S V. 1980. Numerical Heat Transfer and Fluid Flow, Hemisphere, New.York
|
[113] |
Patterson J C. 1984. On the existence of an oscillatory approach to steady natural convection in cavities.J. heat Transfer, 106: 104-108.
|
[114] |
Patterson J C, Armfield S W. 1990. Transient features of natural convection in a cavity. J. Fluid Mech.,219: 469-497.
|
[115] |
Patterson J C, Graham T, Schopf W, Armfield S W. 2002. Boundary layer development on a semi-infinitesuddenly heated vertical plate. J. Fluid Mech., 453: 39-55.
|
[116] |
Patterson J C, Imberger J. 1980.Unsteady natural convection in a rectangular cavity. J. Fluid Mech., 100:65-86.
|
[117] |
Peng S H, Davidson L. 1998. Comparasion of sub grid-scale models in LES for turbulent convection flowwith heat transfer. Turbulent Heat Transfer, 2: 524-535.
|
[118] |
Peng S H, Davidson L. 1999. Computation of turbulent buoyant flows in enclosures with low-Reynolds-number k-! models. Int. J. Heat Fluid Flow, 20: 172-184.
|
[119] |
Peng S H, Davidson L. 2001. Large eddy simulation for turbulent buoyant flow in a confined cavity. Int. J.Heat Fluid Flow, 22: 323-331.
|
[120] |
Penot F, Ndame A, Le Quere P. 1990. Investigation of the route to turbulence in a differentially heatedcavity. In Proceedings of the 9th International Heat Transfer Conference, 2: 417-422.
|
[121] |
Prandtl L. 1952. Essentials of Fluid Dynamics. Blackie, London
|
[122] |
Plapp J E. 1957. The analytic study of the laminar boundary layer stability in free convection. J. Aeron.Sci., 24: 318-319.
|
[123] |
Ravi M R R, Henkes R A W M, Hoogendoorn C J. 1994. On the high-Rayleigh-number structure of steadylaminar natural-convection flow in a square enclosure. J. Fluid Mech., 262: 325-351.
|
[124] |
Rhee H S, Koseff J R, Street R L. 1984. Flow visualization of a recirculating flow by rheoscopic liquid andliquid crystal techniques. Exp. Fluids, 2: 57-64.
|
[125] |
Schetz J A, Eichorn R. 1962. Unsteady natural convection in the vicinity of a doubly infinite vertical plate.J. Heat Transfer, 84: 334-338.
|
[126] |
Schladow S G. 1990. Oscillatory motion in a side-heated cavity. J. Fluid Mech., 213: 589-610.
|
[127] |
Schladow S G, Patterson J C, Street R L. 1989. Transient flow in a side heated cavity at high-Rayleighnumber: a numerical study. J. Fluid Mech., 200: 121-148.
|
[128] |
Schöpf W, Patterson J C. 1995. Natural convection in a side-heated cavity: visualization of the initial flowfeatures. J. Fluid Mech., 295: 279-357.
|
[129] |
Schöpf W, Patterson J C. 1996. Visualization of natural convection in a side-heated cavity: transition tothe final steady state. Int. J. Heat Mass Transfer, 39: 3497-3509.
|
[130] |
Schöpf W, Patterson J C, Brooker A M H. 1996. Evaluation of the shadowgraph method for the convectiveflow in a side-heated cavity. Exp. Fluids, 21: 331-340.
|
[131] |
Schöpf W, Stiller O. 1997. Three-dimensional patterns in a transient, stratified intrusion flow. Phys. Rev.Lett., 79: 4373-4376.
|
[132] |
Settles G S. 2001. Schlieren and Shadowgraph Techniques. Springer-verlag, New York.Severin J, Herwig H. 2001. Higher order stability effects in a natural convection boundary layer over avertical heated wall. Heat Mass Transfer, 38: 97-110.
|
[133] |
Shapiro A, Fedorovich E. 2004. Unsteady convectively driven flow along a vertical plate immersed in a stablestratified fluid. J. Fluid Mech., 498: 333-352.
|
[134] |
Shapiro A, Fedorovich E. 2006. Natural convection in a stably stratified fluid along vertical plates andcylinders with temporally periodic surface temperature variations. J. Fluid Mech., 546: 295-311.
|
[135] |
Siegel R. 1958. Transient free convection from a vertical flat plate. J. Heat Transfer, 80: 347-360.
|
[136] |
Staehle B, Hahne E. 1982. Overshooting and damped oscillations of transient natural convection flows incavities. In: Proceedings of the 7th Internaltional Heat Transfer Conference, Munich, 2: 287-292.
|
[137] |
Stiller O, Schöpf W. 1997. Thermal instability of flows with a horizontal temperature gradient. Phys. Rev.Lett., 79: 1674-1677.
|
[138] |
Stiller O, Schöpf W, Patterson J C, Shultz A. 1998. Effect of spatial and temporal variations of the boundarytemperature on the thermal stability of horizontal flows. Phys. Rev. E, 57: 5578-5584.
|
[139] |
Szewczyk A A. 1962. Stability and transition of the free-convection layer along a vertical flat plate. Int. J.Heat Mass Transfer, 5: 903-914.
|
[140] |
Tao J, Le Quere P, Xin S. 2004a. Absolute and convective instabilities of natural convection flow in boundary-layer regime. Phys. Rev. E, 70: 066311.
|
[141] |
Tao J, Le Quere P, Xin S. 2004b. Spatio-temporal instability of the natural convection boundary layer inthermally stratified medium. J. Fluid Mech., 518: 363-379.
|
[142] |
Tian Y S, Karayiannis T G. 2000a. Low turbulence natural convection in an air filled cavity. Part I: thethermal and fluid flow fields. Int. J. Heat Mass Transfer, 43: 849-866.
|
[143] |
Tian Y S, Karayiannis T G. 2000b. Low turbulence natural convection in an air filled cavity. Part II: theturbulence quantities. Int. J. Heat Mass Transfer, 43: 867-884.
|
[144] |
Turan O, Poole R J. Chakraborty N. 2012. Influences of boundary conditions on laminar natural convectionin rectangular enclosures with differentially heated side wall. Int. J. Heat Fluid Flow, 33: 131-146.
|
[145] |
Turan O, Sachdeva A, Poole R J, Chakraborty N. 2013. Aspect ratio and boundary conditions effects onlaminar natural convection of power-law fluids in a rectangular enclosure with differentially heated sidewalls. Int. J. Heat Mass Transfer, 60: 722-738.
|
[146] |
Williamson N, Armfield S W Kirkpatrick M P. 2012 Transition to oscillatory flow in a differentially heatedcavity with a conducting partition J. Fluid Mech., 693: 93-114.
|
[147] |
Wright N T, Gebhart B. 1994. The entrainment flow adjacent to an isothermal vertical surface. Int. J.Heat Mass Transfer, 37: 213-231.
|
[148] |
Xu F. 2006. Natural convection in a suddenly differentially heated cavity with or without a finned sidewall.[Ph.D. Thesis], Australia: James Cook University.
|
[149] |
Xu F. 2014. Convective instability of the vertical thermal boundary layer in a differentially heated cavity.Int. Comm. Heat Mass Transfer, 52: 8-14.
|
[150] |
Xu F, Patterson J C, Lei C. 2004. Oscillations of the horizontal intrusion in a side-heated cavity. In:Proceedings of the 15th Australian fluid mechanics conference, Sydney, Australia, 779-782
|
[151] |
Xu F, Patterson J C, Lei C. 2005. Shadowgraph observations of the transition of the thermal boundarylayer in a side-heated cavity. Exp. Fluids, 38: 770-779
|
[152] |
Xu F, Patterson J C, Lei C. 2006. Experimental observations of the thermal flow around a square obstructionon a vertical wall in a side-heated cavity. Exp. Fluids, 40: 363-371.
|
[153] |
Xu F, Patterson J C, Lei C. 2008a. An experimental study of the unsteady thermal flow around a thin finon a sidewall of a differentially heated cavity. Int. J. Heat Fluid Flow, 29: 1139-1153.
|
[154] |
Xu F, Patterson J C, Lei C. 2008b. On the double-layer structure of the thermal boundary layer in adifferentially heated cavity. Int. J. Heat Mass Transfer, 51: 3803-3815.
|
[155] |
Xu F, Patterson J C, Lei C. 2009a. Heat transfer through coupled thermal boundary layers induced by asuddenly generated temperature difference. Int. J. Heat Mass Transfer, 52: 4966-4975.
|
[156] |
Xu F, Patterson J C, Lei C. 2009b. Transient natural convection flows around a thin fin on the sidewall ofa differentially heated cavity. J. Fluid Mech., 639: 261-290.
|
[157] |
Xu F, Patterson J C, Lei C. 2009c. Transition to a periodic flow induced by a thin fin on the sidewall of adifferentially heated cavity. Int. J. Heat Mass Transfer, 52: 620-628.
|
[158] |
Xu F, Patterson J C, Lei C. 2010a. A Pr < 1 intrusion flow induced by a vertical heated wall. Phys. Rev.E, 82: 350-359.
|
[159] |
Xu F, Patterson J C, Lei C. 2010b. Temperature oscillations in a differentially heated cavity with andwithout a fine on the sidewall. Int. Comm. Heat Mass Transfer, 37: 350-359.
|
[160] |
Xu F, Saha S. 2014. Transition to an unsteady flow induced by a fin on the sidewall of a differentially heatedair-filled square cavity and heat transfer. Int. J. Heat Mass Transfer, 71: 236-244.
|
[161] |
Yewell R, Poulikakos D, Bejan A. 1982. Transient natural convection experiments in shallow enclosures. J.Heat Transfer, 104: 533-538.
|