留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

五模材料及其水声调控研究

陈毅 刘晓宁 向平 胡更开

陈毅, 刘晓宁, 向平, 胡更开. 五模材料及其水声调控研究[J]. 力学进展, 2016, 46(1): 201609. doi: 10.6052/1000-0992-16-010
引用本文: 陈毅, 刘晓宁, 向平, 胡更开. 五模材料及其水声调控研究[J]. 力学进展, 2016, 46(1): 201609. doi: 10.6052/1000-0992-16-010
CHEN Yi, LIU Xiaoning, XIANG Ping, HU Gengkai. Pentamode material for underwater acoustic wave control[J]. Advances in Mechanics, 2016, 46(1): 201609. doi: 10.6052/1000-0992-16-010
Citation: CHEN Yi, LIU Xiaoning, XIANG Ping, HU Gengkai. Pentamode material for underwater acoustic wave control[J]. Advances in Mechanics, 2016, 46(1): 201609. doi: 10.6052/1000-0992-16-010

五模材料及其水声调控研究

doi: 10.6052/1000-0992-16-010
基金项目: 国家自然科学基金资助项目(11472044, 11521062, 11372035).
详细信息
    通讯作者:

    胡更开, 北京理工大学宇航学院力学系教授, 1991 年在法国巴黎中央工程师大学(ECP) 获工学博士学位. 现任北京理工大学宇航学院院长, 《中国科学: 物理、力学&天文学》、Acta Mechanica Solida Sinica 副主编,《力学进展》等期刊编委

  • 中图分类号: O343.8;O427.9

Pentamode material for underwater acoustic wave control

More Information
    Corresponding author: HU Gengkai
  • 摘要: 五模材料是一种具有固体特征的复杂流体,可通过超材料技术由固体材料经过微结构精心设计近似得到.可调的模量各向异性和固体特征赋予五模材料优越的水声调控能力,在降低水下物体目标强度等领域有着重要潜在应用,因此受到了国内外工程和学术界关注.本文就五模材料基本概念、微结构设计、声波调控、加工制备等方面对该类材料的研究进展进行详细介绍,并对五模材料在工程中应用存在的问题进行了讨论,以期为后续相关研究者提供参考.

     

  • [1] Amendola A, Smith C J, Goodall R, Auricchio F, Feo L, Benzoni G, Fraternali F. 2016. Experimental response of additively manufactured metallic pentamode materials confined between stiffening plates. Composite Structures, 142: 254.
    [2] Brun M, Guenneau S, Movchan A B. 2009. Achieving control of in-plane elastic waves. Applied Physics Letters, 94: 61903.
    [3] BÄuckmann T, Thiel M, Kadic M, Schittny R, Wegener M. 2014. An elasto-mechanical unfeelability cloak made of pentamode metamaterials. Nature Communications, 5
    [4] Cai C X,Wang Z H, Li Q W, Xu Z, Tian X G. 2015. Pentamode metamaterials with asymmetric double-cone elements. Journal of Physics D: Applied Physics, 17: 175103.
    [5] Chang Z, Hu G K. 2012. Elastic wave omnidirectional absorbers designed by transformation method. Applied
    [6] Physics Letters, 101: 54102.
    [7] Chang Z, Hu J, Hu G K, Tao R, Wang Y. 2011. Controlling elastic waves with isotropic materials. Applied
    [8] Physics Letters, 98: 121904.
    [9] Chang Z, Zhou X M, Hu J, Hu G K. 2010. Design method for quasi-isotropic transformation materials based on inverse Laplace's equation with sliding boundaries. Optics Express, 18: 6089-6096.
    [10] Chen H Y, Chan C T. 2007. Acoustic cloaking in three dimensions using acoustic metamaterials. Applied Physics Letters, 91: 183518.
    [11] Chen W Q, Bian Z G, Ding H J. 2004. Three-dimensional vibration analysis of fluid-filled orthotropic FGM cylindrical shells. International Journal of Mechanical Sciences, 46: 159-171.
    [12] Chen X Z, Luo Y, Zhang J J, Jiang K, Pendry J B, Zhang S A. 2011. Macroscopic invisibility cloaking of visible light. Nature Communications, 2
    [13] Chen Y, Liu X N, Hu G K. 2015. Latticed pentamode acoustic cloak. Scientific Reports, 5: 15745.
    [14] Chen Y, Liu X N, Hu G K. Low Frequency resonance scattering of acoustic cloak with imperfect pentamode material. In preparation
    [15] Chen Y, Liu X N, Hu G K. Design of arbitrary shaped pentamode acoustic cloak based on nearly symmetric mapping gradient algorithm. Submitted
    [16] Cheng Y, Liu X J. 2008. Resonance effects in broadband acoustic cloak with multilayered homogeneous isotropic materials. Applied Physics Letters, 93: 71903.
    [17] Christensen J, de Abajo F J G. 2012. Anisotropic metamaterials for full control of acoustic waves. Physical
    [18] Review Letters, 108: 124301.
    [19] Climente A, Torrent D, Sáanchez-Dehesa J. 2012. Omnidirectional broadband acoustic absorber based on metamaterials. Applied Physics Letters, 100: 144103. 430 力学进展第46 卷: 201609
    [20] Colquitt D J, Brun M, Gei M, Movchan A B, Movchan N V, Jones I S. 2014. Transformation elastodynamics and cloaking for flexural waves. Journal of the Mechanics and Physics of Solids, 72: 131-143.
    [21] Cummer S A, Schurig D. 2007. One path to acoustic cloaking. New Journal of Physics, 9: 45.
    [22] Cummer S A, Popa B, Schurig D, Smith D R, Pendry J B, Rahm M, Starr A. 2008. Scattering theory derivation of a 3D acoustic cloaking shell. Physical Review Letters, 100: 24301.
    [23] Ding Y Q, Liu Z Y, Qiu C Y, Shi J. 2007. Metamaterial with simultaneously negative bulk modulus and mass density. Physical Review Letters, 99: 93904.
    [24] Fan J R. 1996. Exact theory of strongly thick laminated plates and shells.
    [25] Fang N, Xi D J, Xu J Y, Ambati M, Srituravanich W, Sun C, Zhang X. 2006. Ultrasonic metamaterials with negative modulus. Nature Materials, 5: 452-456.
    [26] Farhat M, Enoch S, Guenneau S, Movchan A B. 2008. Broadband cylindrical acoustic cloak for linear surface waves in a fluid. Physical Review Letters, 101: 134501.
    [27] Farhat M, Guenneau S, Enoch S, Movchan A B. 2009. Cloaking bending waves propagating in thin elastic plates. Physical Review B, 79: 33102.
    [28] Flax L, Dragonette L R, ÄUberall H. 1978. Theory of elastic resonance excitation by sound scattering. The Journal of the Acoustical Society of America, 63: 723.
    [29] Gokhale N H, Cipolla J L, Norris A N. 2012. Special transformations for pentamode acoustic cloaking. The Journal of the Acoustical Society of America, 132: 2932-2941.
    [30] Han T C, Yuan T, Li B W, Qiu C W. 2013. Homogeneous thermal cloak with constant conductivity and tunable heat localization. Scientific Reports, 3
    [31] Hladky-Hennion A C, Vasseur J O, Haw G, Croenne C, Haumesser L, Norris A N. 2013. Negative refraction of acoustic waves using a foam-like metallic structure. Applied Physics Letters, 102: 144103.
    [32] Hu J, Chang Z, Hu G K. 2011. Approximate method for controlling solid elastic waves by transformation media. Physical Review B, 84: 201101.
    [33] Huang Y, Lu X G, Liang G Y, Xu Z. 2016. Pentamodal property and acoustic band gaps of pentamode metamaterials with different cross-section shapes. Physics Letters A, 380: 1334-1338.
    [34] Jiang W X, Cui T J, Ma H F, Zhou X Y, Cheng Q. 2008. Cylindrical-to-plane-wave conversion via embedded optical transformation. Applied Physics Letters, 92: 261903.
    [35] Jiang X, Liang B, Zou X Y, Yin L L, Cheng J C. 2014. Broadband field rotator based on acoustic metama- terials. Applied Physics Letters, 104: 83510.
    [36] Kadic M, BÄuckmann T, Schittny R, Wegener M. 2013. On anisotropic versions of three-dimensional penta- mode metamaterials. New Journal of Physics, 15
    [37] Kadic M, BÄuckmann T, Schittny R, Gumbsch P, Wegener M. 2014. Pentamode metamaterials with inde- pendently tailored bulk modulus and mass density. Physical Review Applied, 2: 54007.
    [38] Kadic M, BÄuckmann T, Stenger N, Thiel M, Wegener M. 2012. On the practicability of pentamode mechan- ical metamaterials. Applied Physics Letters, 100: 191901.
    [39] Kwon D, Werner D H. 2008. Polarization splitter and polarization rotator designs based on transformation optics. Optics Express, 16: 18731-18738.
    [40] Lai Y, Chen H Y, Zhang Z Q, Chan C T. 2009. Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell. Physical Review Letters, 102: 93901.
    [41] Lai Y, Wu Y, Sheng P, Zhang Z Q. 2011. Hybrid elastic solids. Nature Materials, 10: 620-624.
    [42] Layman C N, Naify C J, Martin T P, Calvo D C, Orris G J. 2013. Highly anisotropic elements for acoustic 陈毅, 刘晓宁, 向平, 胡更开: 五模材料及其水声调控研究431 pentamode applications. Physical Review Letters, 111: 24302.
    [43] Lee S H, Park C M, Seo Y M, Wang Z G, Kim C K. 2009. Acoustic metamaterial with negative density. Physics Letters A, 373: 4464-4469.
    [44] Lee S H, Park C M, Seo Y M, Wang Z G, Kim C K. 2010. Composite acoustic medium with simultaneously negative density and modulus. Physical Review Letters, 104: 54301.
    [45] Leonhardt U. 2006. Optical conformal mapping. Science, 312: 1777-1780.
    [46] Li J, Chan C T. 2004. Double-negative acoustic metamaterial. Physical Review E, 70: 55602.
    [47] Li Y, Wu Y, Mei J. 2014. Double Dirac cones in phononic crystals. Applied Physics Letters, 105: 14107.
    [48] Liang Z, Li J. 2012. Extreme acoustic metamaterial by coiling up space. Physical Review Letters, 108: 114301.
    [49] Liu X N, Hu G K, Huang G L, Sun C T. 2011. An elastic metamaterial with simultaneously negative mass density and bulk modulus. Applied Physics Letters, 98: 251907.
    [50] Liu Z Y, Zhang X X, Mao Y W, Zhu Y Y, Yang Z Y, Chan C T, Sheng P. 2000. Locally resonant sonic materials. Science, 289: 1734-1736.
    [51] Luo J, Lai Y. 2014. Anisotropic zero-index waveguide with arbitrary shapes. Scientific Reports, 4: 5875
    [52] Martin A, Kadic M, Schittny R, BÄuckmann T, Wegener M. 2012. Phonon band structures of three- dimensional pentamode metamaterials. Physical Review B, 86: 155116.
    [53] Milton G W, Cherkaev A V. 1995. Which elasticity tensors are realizable? Journal of Engineering Materials and Technology, 117: 483-493.
    [54] Milton G W, Briane M, Willis J R. 2006. On cloaking for elasticity and physical equations with a transfor- mation invariant form. New Journal of Physics, 8: 248.
    [55] Norris A N. 2008. Acoustic cloaking theory. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 464: 2411-2434.
    [56] Norris A N. 2014. Mechanics of elastic networks. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 470: 20140522.
    [57] Norris A N. 2009. Acoustic metafluids. The Journal of the Acoustical Society of America, 125: 839.
    [58] Norris A N. 1990. Resonant acoustic scattering from solid targets. The Journal of the Acoustical Society of America, 88: 505-514.
    [59] Norris A N, Nagy A J. 2011. Metal water: A metamaterial for acoustic cloaking//Proceedings of Phononics, Santa Fe, New Mexico, USA: 112-113.
    [60] Norris A N, Parnell W J. 2012. Hyperelastic cloaking theory: transformation elasticity with pre-stressed solids. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 468: 2881- 2903.
    [61] Norris A N, Shuvalov A L. 2011. Elastic cloaking theory. Wave Motion, 48: 525-538.
    [62] Norris A N, Shuvalov A L, Kutsenko A A. 2012. Analytical formulation of three-dimensional dynamic homogenization for periodic elastic systems. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468: 1629-1651.
    [63] Pendry J B, Holden A J, Stewart W J, Youngs I. 1996. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 76: 4773.
    [64] Pendry J B, Schurig D, Smith D R. 2006. Controlling electromagnetic fields. Science, 312: 1780-1782.
    [65] Popa B, Zigoneanu L, Cummer S A. 2011. Experimental acoustic ground cloak in air. Physical Review Letters, 106: 253901.
    [66] Rahm M, Roberts D A, Pendry J B, Smith D R. 2008. Transformation-optical design of adaptive beam bends and beam expanders. Optics Express, 16: 11555-11567.
    [67] Ren C Y, Xiang Z H, Cen Z Z. 2010. Design of acoustic devices with isotropic material via conformal transformation. Applied Physics Letters, 97: 44101.
    [68] Rohde C A, Martin T P, Guild M D, Layman C N, Naify C J, Nicholas M, Thangawng A L, Calvo D C, Orris G J. 2015. Experimental demonstration of underwater acoustic scattering cancellation. Scientific
    [69] Reports, 5: 13175.
    [70] Scandrett C L, Boisvert J E, Howarth T R. 2010. Acoustic cloaking using layered pentamode materials. The Journal of the Acoustical Society of America, 127: 2856-2864.
    [71] Scandrett C L, Boisvert J E, Howarth T R. 2011. Broadband optimization of a pentamode-layered spherical acoustic waveguide. Wave Motion, 48: 505-514.
    [72] Schittny R, BÄuckmann T, Kadic M,Wegener M. 2013. Elastic measurements on macroscopic three-dimensional pentamode metamaterials. Applied Physics Letters, 103: 231905.
    [73] Schittny R, Kadic M, Guenneau S, Wegener M. 2013. Experiments on transformation thermodynamics: molding the flow of heat. Physical Review Letters, 110: 195901.
    [74] Schmiele M, Varma V S, Rockstuhl C, Lederer F. 2010. Designing optical elements from isotropic materials by using transformation optics. Physical Review A, 81: 33837.
    [75] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R. 2006. Metamaterial electromagnetic cloak at microwave frequencies. Science, 314: 977-980.
    [76] Smith J D. 2011. Application of the method of asymptotic homogenization to an acoustic metafluid. Pro- ceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 467: 3318-3331.
    [77] Srivastava A, Nemat-Nasser S. 2014. On the limit and applicability of dynamic homogenization. Wave Motion, 51: 1045-1054.
    [78] Stenger N, Wilhelm M, Wegener M. 2012. Experiments on elastic cloaking in thin plates. Physical Review Letters, 108: 014301
    [79] Tian Y,Wei Q, Cheng Y, Xu Z, Liu X J. 2015. Broadband manipulation of acoustic wavefronts by pentamode metasurface. Applied Physics Letters, 107: 221906.
    [80] Tichit P H, Burokur S N, de Lustrac A. 2009. Ultradirective antenna via transformation optics. Journal of Applied Physics, 105: 104912.
    [81] Titovich A S, Norris A N. 2014. Tunable cylindrical shell as an element in acoustic metamaterial. The Journal of the Acoustical Society of America, 136: 1601-1609.
    [82] Torrent D, Sanchez-Dehesa J. 2010. Anisotropic mass density by radially periodic fluid structures. Physical Review Letters, 105: 430117.
    [83] Wei Q, Cheng Y, Liu X J. 2013. Acoustic total transmission and total reflection in zero-index metamaterials with defects. Applied Physics Letters, 102: 174104.
    [84] Wu L Z, Gao P L. 2015. Manipulation of the propagation of out-of-plane shear waves. International Journal of Solids and Structures, 69-70: 383-391.
    [85] Wu Y, Lai Y, Zhang Z Q. 2007. Effective medium theory for elastic metamaterials in two dimensions. Physical Review B, 76: 205313.
    [86] Wu Y, Lai Y, Zhang Z. 2011. Elastic metamaterials with simultaneously negative effective shear modulus and mass density. Physical Review Letters, 107: 105506.
    [87] Wu Y, Mei J, Sheng P. 2012. Anisotropic dynamic mass density for fluid-solid composites. Physica B: Condensed Matter, 407: 4093-4096.
    [88] Xiao Q J, Wang L, Wu T, Zhao Z G. 2014. Research on layered design of ring-shaped acoustic cloaking using bimode metamaterial. Applied Mechanics and Materials, 687-691: 4399-4404.
    [89] Xie Y, Popa B, Zigoneanu L, Cummer S A. 2013. Measurement of a broadband negative index with space- coiling acoustic metamaterials. Physical Review Letters, 110: 175501.
    [90] Yang M, Ma G C, Yang Z Y, Sheng P. 2013. Coupled membranes with doubly negative mass density and bulk modulus. Physical Review Letters, 110: 134301.
    [91] Zhang S, Genov D A, Sun C, Zhang X. 2008. Cloaking of matter waves. Physical Review Letters, 100: 123002.
    [92] Zhang S, Xia C G, Fang N. 2011. Broadband acoustic cloak for ultrasound waves. Physical Review Letters, 106: 24301.
    [93] Zhang X D, Chen H, Wang L, Zhao Z G, Zhao A G. 2015. Theoretical and numerical analysis of layered cylindrical pentamode acoustic cloak. Acta Physica Sinica, 64: 134301-134303.
    [94] Zheng L Y, Wu Y, Ni X, Chen Z G, Lu M H, Chen Y F. 2014. Acoustic cloaking by a near-zero-index phononic crystal. Applied Physics Letters, 104: 161904.
    [95] Zhou X M, Hu G K. 2009. Analytic model of elastic metamaterials with local resonances. Physical Review B, 79: 195109.
    [96] Zhou X M, Hu G K. 2011. Superlensing effect of an anisotropic metamaterial slab with near-zero dynamic mass. Applied Physics Letters, 98: 263510.
    [97] Zhu R, Liu X N, Hu G K, Sun C T, Huang G L. 2014. Negative refraction of elastic waves at the deep- subwavelength scale in a single-phase metamaterial. Nature Communications, 5: 5510.
    [98] Zigoneanu L, Popa B, Cummer S A. 2014. Three-dimensional broadband omnidirectional acoustic ground cloak. Nature materials, 13: 352-355.
    [99] Zigoneanu L, Popa B, Starr A F, Cummer S A. 2011. Design and measurements of a broadband two- dimensional acoustic metamaterial with anisotropic effective mass density. Journal of Applied Physics, 109: 54906.
  • 加载中
计量
  • 文章访问数:  3523
  • HTML全文浏览量:  413
  • PDF下载量:  1444
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-14
  • 修回日期:  2016-04-12
  • 刊出日期:  2016-05-20

目录

    /

    返回文章
    返回

    Baidu
    map