留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气动光学效应研究进展

孙喜万 刘伟

孙喜万, 刘伟. 气动光学效应研究进展[J]. 力学进展, 2020, 50(1): 202008. doi: 10.6052/1000-0992-19-003
引用本文: 孙喜万, 刘伟. 气动光学效应研究进展[J]. 力学进展, 2020, 50(1): 202008. doi: 10.6052/1000-0992-19-003
SUN Xiwan, LIU Wei. Research progress of aero-optical effect[J]. Advances in Mechanics, 2020, 50(1): 202008. doi: 10.6052/1000-0992-19-003
Citation: SUN Xiwan, LIU Wei. Research progress of aero-optical effect[J]. Advances in Mechanics, 2020, 50(1): 202008. doi: 10.6052/1000-0992-19-003

气动光学效应研究进展

doi: 10.6052/1000-0992-19-003
基金项目: 

国家自然科学基金资助项目 (11502292).

详细信息
    作者简介:

    刘伟, 国防科技大学教授, 博士生导师.主要从事非定常空气动力学及飞行器动态特性分析、高精度方法应用及大型CAE平台开发等工作.中国空气动力学学会理事、湖南省宇航学会理事、某国家重大工程副总设计师.主持国家重大工程、国家自然科学基金、863,973等国家级/部委级项目50余项, 获省部级科技进步一、二等奖各1次.在国内外学术刊物及会议上发表学术论文100余篇, SCI/EI检索60余篇,出版学术专著1部, 教材2部.

    通讯作者:

    孙喜万

    刘伟

  • 中图分类号: O355

Research progress of aero-optical effect

More Information
    Corresponding author: SUN Xiwan; LIU Wei
  • 摘要: 光学成像探测技术是精确制导领域发展的重要方向,但由于光线在穿过密度变化的流场时会发生偏折、抖动和光程变化的现象,成像质量将严重下降, 此即气动光学效应.研究气动光学效应同时具有明确的工程和学术价值,一方面以认识流场对光线传播的影响为基础,如何减弱气动光学效应已受到人们的广泛关注;另一方面由于光线传播携带了流场结构信息,光学探测也可以成为一种流场研究技术.从空气动力学和光学工程交叉的视角,对气动光学效应的研究进展进行综述.首先介绍了常见的气动光学评价参数,其次阐述了各种理论研究、实验、数值模拟方法,最后从流动导致图像畸变、减弱气动光学效应的方案和采用气动光学探测方法研究流场三个角度对现有文献进行总结,并讨论了气动光学领域数值模拟验证方法的困难和研究现状.最后结合气动光学效应的发展阶段对未来研究进行展望.

     

  • [1] 陈勇, 郭隆德, 张龙, 金钢 . 2010. 带凹窗斜劈高速湍流气动光学效应研究. 空气动力学学报, 28:666-671

    (Chen Y, Guo L D, Zhang L, Jin G . 2010. Investigation on aero-optical effects of high-speed turbulence over a slope with a cavity. Acta Aerodynamica Sinica, 28: 666-671).
    [2] 陈勇, 金钢 . 2006. 运动涡旋脉冲引起的光学畸变. 强激光与粒子束, 18:1796-1800

    (Chen Y, Jin G . 2006. Optics aberrations aroused by moving vorticity pulse. High Power Laser and Particle Beams, 18: 1796-1800).
    [3] 丁浩林 . 2016. 超声速气膜气动光学效应及畸变校正研究. [硕士论文]. 长沙: 国防科技大学

    (Ding H L. 2016. Research on supersonic film aero-optics and distortion correction. [Master Thesis]. Changsha: National University of Defense Technology).
    [4] 丁浩林, 易仕和, 付佳, 吴宇阳, 张锋, 赵鑫海 . 2017 a. 雷诺数对超声速气膜气动光学效应影响的实验研究. 红外与激光工程, 46:176-183

    (Ding H L, Yi S H, Fu J, Wu Y Y, Zhang F, Zhao X H . 2017a. Experimental investigation of influence of Reynolds number on supersonic film aero-optics. Infrared and Laser Engineering, 46: 176-183).
    [5] 丁浩林, 易仕和, 吴宇阳, 张锋, 付佳, 葛勇 . 2017 b. 超声速气膜气动光学效应与Reynolds数相互关系实验研究. 气体物理, 2:54-63

    (Ding H L, Yi S H, Wu Y Y, Zhang F, Fu J, Ge Y . 2017b. Experimental investigation on relationship between Reynolds number and aero-optics produced by supersonic films. Physics of Gases, 2: 54-63).
    [6] 丁浩林, 易仕和, 朱杨柱, 赵鑫海, 何霖 . 2017 c. 不同光线入射角度下超声速湍流边界层气动光学效应的实验研究. 物理学报, 66:53-60

    (Ding H L, Yi S H, Zhu Y Z, Zhao X H, He L . 2017c. Experimental investigation on aero-optics of supersonic turbulent boundary layers at different light incident angles. Acta Physica Sinica, 66: 53-60).
    [7] 董航 . 2012. 气动光学平均流场效应时间特性研究. 光学学报, 32:29-32

    (Dong H . 2012. Simulation on time-dependent aero-optic effects of mean flow field. Acta Optica Sinica, 32: 29-32).
    [8] 费锦东 . 1998. 高速导弹红外成像末制导对气动光学效应技术研究的需求. 红外与激光工程, 27:42-43, 51

    (Fei J D . 1998. Study on aero-optical effect technology for high speed missile infrared image guide. Infrared and Laser Engineering, 27: 42-43, 51).
    [9] 冯定华 . 2010. 高速流动精细数值模拟、实验研究及其在气动光学中的应用. [博士论文]. 长沙: 国防科技大学

    (Feng D H . 2010. Fine numerical simulationl experimental study on high speed flow and aero-optics application. [PhD Thesis]. Changsha: National University of Defense Technology).
    [10] 冯定华, 潘沙, 田正雨, 李桦 . 2010. 任意折射率的三维离散空间光线追迹方法研究. 光学学报, 30:696-701

    (Feng D H, Pan S, Tian Z Y, Li H . 2010. Research on ray tracing method in 3D discrete space with discretionary refraction index. Acta Optica Sinica, 30: 696-701).
    [11] 付佳 . 2017. 高超声速光学头罩的超声速冷却气膜及其气动光学机理研究. [博士论文]. 长沙: 国防科技大学

    (Fu J . 2017. Study on the supersonic cooling film of the hypersonic optical dome and its mechanism of aero optics. [PhD Thesis]. Changsha: National University of Defense Technology).
    [12] 甘才俊, 李烺, 马汉东, 熊红亮 . 2013 a. 不同对流马赫数下细光束畸变特性研究. 中国科学: 物理学力学天文学, 43:890-895

    (Gan C J, Li L, Ma H D, Xiong H L . 2013a. Investigation on thin distortion of small light beam at different convective Mach number. Scientia Sinica Physica, Mechanica & Astronomica, 43: 890-895).
    [13] 甘才俊, 李烺, 马汉东, 熊红亮 . 2013 b. 可压缩混合层流场光学效应分析与实验研究. 物理学报, 62:310-315

    (Gan C J, Li L, Ma H D, Xiong H L . 2013b. Theoretical and experimental investigation on aero-optical effect for a compressible mixing layer. Acta Physica Sinica, 62: 310-315).
    [14] 甘才俊, 李烺, 马汉东, 熊红亮 . 2014 a. 混合层二维大尺度结构光学传输效应理论分析. 中国科学: 物理学力学天文学, 44:975-980

    (Gan C J, Li L, Ma H D, Xiong H L . 2014a. Theoretical analysis of aero-optical effect in the two-dimensional large-scale structure of compressible mixing layer. Scientia Sinica Physica, Mechanica & Astronomica, 44: 975-980).
    [15] 甘才俊, 李烺, 马汉东, 熊红亮 . 2014 b. 可压缩混合层光学传输效应理论分析与实验研究. 物理学报, 63:252-258

    (Gan C J, Li L, Ma H D, Xiong H L . 2014b. Theoretical and experimental investigations on aero-optical effect at the second stage of the compressible mixing layer. Acta Physica Sinica, 63: 252-258).
    [16] 甘才俊, 李烺, 毛涛, 马汉东, 熊红亮 . 2011. 不同对流马赫数下光束畸变的实验研究. 光学技术, 37:730-734

    (Gan C J, Li L, Mao T, Ma H D, Xiong H L . 2011. Experimental research on aberration of small light beam at different convective Mach number. Optical Technique, 37: 730-734).
    [17] 甘才俊, 李烺, 毛涛, 马汉东, 熊红亮 . 2012 a. 可压缩混合层中细光束畸变效应的实验研究. 实验力学, 27:114-121

    (Gan C J, Li L, Mao T, Ma H D, Xiong H L . 2012a. Experimental research on small diameter-light-beam aberration in a compressible mixing layer. Journal of Experimental Mechanics, 27: 114-121).
    [18] 甘才俊, 李烺, 毛涛, 熊红亮, 马汉东, 毕志献 . 2012 b. 大尺度结构对气动光学效应影响的实验研究. 光电工程, 39:32-36

    (Gan C J, Li L, Mao T, Xiong H L, Ma H D, Bi Z X . 2012b. Effect of large-scale structures on aero-optic effect. Opto-Electronic Engineering, 39: 32-36).
    [19] 高穹 . 2012. 超声速剪切层的气动光学效应研究. [博士论文]. 长沙: 国防科技大学

    (Gao Q . 2012. Aero-optical effects of the supersonic shear layers. [PhD Thesis]. Changsha: National University of Defense Technology).
    [20] 郭广明, 刘洪, 张斌, 张庆兵 . 2017. 脉冲激励下超音速混合层涡结构的演化机理. 物理学报, 66:196-206

    (Guo G M, Liu H, Zhang B, Zhang Q B . 2017. Evolution mechanism of vortices in a supersonic mixing layer controlled by the pulsed forcing. Acta Physica Sinica, 66: 196-206).
    [21] 郭广明, 刘洪, 张斌, 张忠阳, 张庆兵 . 2016. 混合层流场中涡结构对流速度的特性. 物理学报, 65:228-239

    (Guo G M, Liu H, Zhang B, Zhang Z Y, Zhang Q B . 2016. Characteristics of convective speeds of vortex structures in mixing layer. Acta Physica Sinica, 65: 228-239).
    [22] 郭隆德 . 2003. 高速拦截弹气动光学效应地面模拟测试研究. [博士论文]. 成都: 四川大学

    (Guo L D . 2003. The investigation on the AO effect ground simulation test and instrumentation of the high speed interceptor. [PhD Thesis]. Chengdu: Sichuan Unviversity).
    [23] 郭永洪, 沈忙作, 陆祖康 . 1998. 气动光学效应的数值模拟与预测. 光电工程, 25:21-24

    (Guo Y H, Shen M Z, Lu Z K . 1998. Numerical simulation and predication for aero-optic effect. Opto-Electronic Engineering, 25: 21-24).
    [24] 韩志平, 殷兴良 . 2002. 湍流对超音速导弹光学图像的影响数值仿真. 系统工程与电子技术, 24:78-83

    (Han Z P, Yin X L . 2002. Numerical simulation of turbulent flows' effect on optical images in supersonic missiles. Systems Engineering and Electronics, 24: 78-83).
    [25] 韩志平, 殷兴良 . 2003. 高超音速导弹气动光学效应研究方法综述. 现代防御技术, 31:13-18, 36

    (Han Z P, Yin X L . 2003. Overview of study methods for aero-optic effect of hypersonic missiles. Mordern Defence Technology, 31: 13-18, 36).
    [26] 李波 . 2011. 高速飞行器气动光学流场机理研究与光学窗口设计. [博士论文]. 上海: 上海交通大学

    (Li B . 2011. Investigation on the aero-optical characteristics of flow feild around high speed vehicle and optical window design. [PhD Thesis]. Shanghai: Shanghai Jiaotong University).
    [27] 李波, 刘洪 . 2011 a. 高速流场气动光学RANS/DSMC混合数值模拟算法研究. 力学季刊, 32:74-80

    (Li B, Liu H . 2011a. An investigation of hybrid RANS/DSMC method for aero-optical effects in high speed flow. Chinese Quaterly of Mechanics, 32: 74-80).
    [28] 李波, 刘洪 . 2011 b. 高速流场气动光学效应评价方法研究. 光电工程, 38:21-29

    (Li B, Liu H . 2011b. Aero-optical evaluation method for high speed flow. Opto-Electronic Engineering, 38: 21-29).
    [29] 李桂春 . 2006. 气动光学. 北京: 国防工业出版社

    (Li G C. 2006. Aero-optics. Beijing: National Defense Industry Press).
    [30] 李庆波, 王业芳 . 2012. 基于折射率梯度门限的气动光学窗口光传输研究. 光学与光电技术, 10:71-74

    (Li Q B, Wang Y F . 2012. Study on optical transmission of aero-optical window based on refractive index gradient threshold. Optics & Optoelectronic Technology, 10: 71-74).
    [31] 李睿劬, 宫建, 毕志献, 马汉东 . 2017. 高超平板边界层转捩的气动光学诊断技术. 空气动力学学报, 35:136-140

    (Li R Q, Gong J, Bi Z X, Ma H D . 2017. Aero-optical diagnostic technique for hypersonic boundary layer transition on a flat plate. Acta Aerodynamica Sinica, 35: 136-140).
    [32] 李艳芳, 韩志平, 殷兴良 . 2005. 气动光学效应校正中湍流流场控制方法. 现代防御技术, 33:32-35

    (Li Y F, Han Z P, Yin X L . 2005. Control of turbulence in correction ofaero-opticseffects. Morden Defense Technology, 33: 32-35).
    [33] 刘纯胜, 卢晓芬, 洪汉玉, 张天序 . 2006. 基于特征点配准的气动光学图像校正方法研究. 系统工程与电子技术, 28:1468-1469, 1548

    (Liu C S, Lu X F, Hong H Y, Zhang T X . 2006. Investigation on the correction method of distorted image caused by aero-optic effects based on matching of feature points. Systems Engineering and Electronics, 28: 1468-1469, 1548).
    [34] 卢晓芬, 张天序, 洪汉玉 . 2007. 气动光学效应像素偏移图像校正方法研究. 红外与激光工程, 36:758-761

    (Lu X F, Zhang T X, Hong H Y . 2007. Image correction method with pixel deviation caused by aero-optics effects. Infrared and Laser Engineering, 36: 758-761).
    [35] 潘宏禄, 程晓丽, 马汉东 . 2012. 气动光学效应研究中非定常流场模拟与分析. 飞航导弹, 1:83-86

    (Pan H L, Cheng X L, Ma H D . 2012. Unsteady flowfield simulation and analysis in aero-optical investigation. Aerodynamic Missile Journal, 1: 83-86).
    [36] 史可天, 程晓丽, 马汉东 . 2010. 光学头罩绕流流场气动光学效应数值模拟. 红外与激光工程, 39:6-11

    (Shi K T, Cheng X L, Ma H D . 2010. Numerical simulation of aero optical effects for the flow field around the optical window. Infrared and Laser Engineering, 39: 6-11).
    [37] 史可天, 马汉东 . 2010. 可压缩混合层气动光学效应研究. 计算物理, 27:65-72

    (Shi K T, Ma H D . 2010. Aero-optical effects in compressible mixing layers. Chinese Journal of Computational Physincs, 27: 65-72).
    [38] 史可天, 马汉东 . 2012. 基于涡球模型的湍流气动光学效应预测方法. 红外与激光工程, 41:1401-1404

    (Shi K T, Ma H D . 2012. Prediction of aero-optical effects in turbulence based on the sphere vortex model. Infrared and Laser Engineering, 41: 1401-1404).
    [39] 史可天, 马汉东 . 2019. 计算气动光学研究进展. 空气动力学学报, 37:186-192

    (Shi K T, Ma H D . 2019. Progress in computational aero-optics. Acta Aerodynamica Sinica, 37: 186-192).
    [40] 田立丰 . 2011. 超声速光学头罩流场精细结构及其气动光学效应的机理研究. [博士论文]. 长沙: 国防科技大学

    (Tian L F . 2011. Mechanism study of fine structures and aero-optical effects of supersonic flow around an optical dome. [PhD Thesis]. Changsha: National University of Defense Technology).
    [41] 田立丰, 易仕和, 赵玉新, 何霖, 陈植 . 2011. 基于BOS的气动光学波前测量技术研究及其应用. 科学通报, 56:1515-1521

    (Tian L F, Yi S H, Zhao Y X, He L, Chen Z . 2011. Aero-optical wavefront measurement technique based on BOS and its applications. Chinese Science Bulletin, 56: 1515-1521).
    [42] 田立丰, 易仕和, 赵玉新, 何霖, 程忠宇 . 2009 a. 超声速弹头凹型光学头罩流动显示研究. 实验流体力学, 23:15-17

    (Tian L F, Yi S H, Zhao Y X, He L, Cheng Z Y . 2009a. Flow visualization of supersonic flow around a concave optical bow cap model of warhead. Journal of Experiments in Fluid Mechanics, 23: 15-17).
    [43] 田立丰, 易仕和, 赵玉新, 何霖, 程忠宇 . 2009 b. 基于NPLS技术的超声速流动密度场测量方法研究. 中国科学(G辑:物理学力学天文学), 39:943-948

    (Tian L F, Yi S H, Zhao Y X, He L, Cheng Z Y . 2009b. Study of density field measurement based on NPLS technique in supersonic flow. Scientia Sinica (Series G Physica, Mechanica & Astronomica), 39:943-948).
    [44] 王乃祥, 徐钰蕾, 史磊, 程志峰, 姚园 . 2015. 高马赫飞行器迎风面与攻角对光学窗口周围流场的影响分析. 红外与激光工程, 44:1267-1272

    (Wang N X, Xu Y L, Shi L, Cheng Z F, Yao Y . 2015. Analysis of the impact of windward and angle of attack to the flow field around the optical window on high Mach condition. Infrared and Laser Engineering, 44: 1267-1272).
    [45] 王正魁, 靳旭红, 朱志斌, 程晓丽 . 2018. 超声速湍流密度脉动预测的神经网络方法. 航空学报, 39:112-121

    (Wang Z K, Jin X H, Zhu Z B, Geng X L . 2018. Neural network method for predicting density fluctuations in supersonic turbulence. Acta Aeronautica et Astronautica Sinica, 39: 112-121).
    [46] 吴琳, 房建成, 杨照华 . 2007. 基于湍流涡模型的气动光学效应影响参数分析. 红外与激光工程, 36:97-101

    (Wu L, Fang J C, Yang Z H . 2007. Analysis of influence parameters of aero-optical effects based on turbulence vortex model. Infrared and Laser Engineering, 36: 97-101).
    [47] 谢文科 . 2007. 气动光学畸变波前测量及控制方法. [博士论文]. 长沙: 国防科技大学

    (Xie W K . 2007. Aero-optical distorted wavefront measurement and control. [PhD Thesis]. Changsha: National University of Defense Technology).
    [48] 谢文科, 马浩统, 高穹, 江文杰 . 2014. 气动光学自适应校正研究进展. 激光与光电子学进展, 51:5-22

    (Xie W K, Ma H T, Gao Q, Jiang W J . 2014. Research advances in aero-optics adaptive correction. Laser & Optoelectronics Progress, 51: 5-22).
    [49] 熊晓月, 费锦东, 陈澄, 肖昊苏 . 2017. 气动光学效应内涵及其对成像探测的影响机理. 现代防御技术, 45:139-146

    (Xiong X Y, Fei J D, Chen C, Xiao H S . 2017. Connotation of aero-optical effect and its influence mechanism on imaging detection. Morden Defence Technology, 45: 139-146).
    [50] 闫溟, 史可天, 马汉东 . 2013. 针对气动光学效应的RANS计算方法研究. 空气动力学学报, 31:462-465

    (Yan M, Shi K T, Ma H D . 2013. A study on RANS computation for aero-optical effects. Acta Aerodynamica Sinica, 31: 462-465).
    [51] 杨浩森 . 2013. 高温化学反应流动的DSMC模拟及气动光学效应分析. [博士论文]. 上海: 上海交通大学

    (Yang H S . 2013. DSMC Simulation of high temperature chemical non-equilibrium flow and analysis of the aero-optical effect. [Master Thesis]. Shanghai: Shanghai Jiaotong University).
    [52] 姚向红, 吴运刚, 陈勇, 谢伟明 . 2013. 光学头罩超声速绕流流场光学传输效应风洞试验研究. 实验流体力学, 27:97-101, 108

    (Yao X H, Wu Y G, Chen Y, Xie W M . 2013. Experimental study flowfield surrounding the on the optical propagation effect of the optical headcover in supersonic wind tunnel. Journal of Experiments in Fluid Mechanics, 27: 97-101, 108).
    [53] 易仕和 . 2003. 超声速自由漩涡气动窗口及其光学质量的研究. [博士论文]. 长沙: 国防科技大学

    (Yi S H . 2003. The study of supersonic free-vortex aerodynamic window and its optical quality. [PhD Thesis]. Changsha: National University of Defense Technology).
    [54] 易仕和, 赵玉新, 何霖, 陈植 . 2013. 超声速流场NPLS精细测试技术及典型应用. 北京: 国防工业出版社

    (Yi S H, Zhao Y X, He L, Chen Z. 2013. Fine Measurement Technique of NPLS in Supersonic Flow and Its Typical Application. Beijing: National Defense Industry Press).
    [55] 易司琪, 丁浩林, 龙志强 . 2017. 超声速气膜冷却时的光学性能优化设计. 应用光学, 38:549-554

    (Yi S Q, Ding H L, Long Z Q . 2017. Optimal design of supersonic gaseous film cooling optical performance. Journal of Applied Optics, 38: 549-554).
    [56] 殷兴良 . 2003. 气动光学原理. 北京: 中国宇航出版社

    (Yin X L. 2003. Aero-optical Principle. Beijing: National Aerospace Press).
    [57] 殷兴良 . 2005. 现代光学新分支学科——气动光学. 中国工程科学, 7:1-6

    (Yin X L . 2005. A new subdiscipline of contemporary optics—aero-optics. Engineering Science, 7: 1-6).
    [58] 张天天, 易仕和, 朱杨柱, 何霖 . 2015. 基于背景纹影波前传感技术的气动光学波前重构与校正. 物理学报, 64:135-144

    (Zhang T T, Yi S H, Zhu Y Z, He L . 2015. Reconstruction and calibration on aero-optical wavefront aberration based on background oriented schlieren based wavefront sensing. Acta Physica Sinica, 64: 135-144).
    [59] 张天序, 洪汉玉, 张新宇 . 2014. 气动光学效应校正——原理、方法与应用. 合肥: 中国科学技术大学出版社

    (Zhang T X, Hong H Y, Zhang X Y. 2014. Aero-optical Effect Correction—Principle, Method and Application. Hefei: University of Science and Technology of China Press).
    [60] 张征宇, 王显圣, 黄叙辉, 周润, 茆骥 . 2017. 高速复杂流动结构的视频测量. 航空学报, 38:23-32

    (Zhang Z Y, Wang X S, Huang X H, Zhou R, Mao J . 2017. Videogrammetry measurement for high-speed complex flow structures. Acta Aeronautica et Astronautica Sinica, 38: 23-32).
    [61] 赵涛, 张征宇, 王水亮, 朱龙 . 2013. 大幅面气动光学波前畸变场测量与重构. 光学学报, 33:134-140

    (Zhao T, Zhang Z Y, Wang S L, Zhu L . 2013. Measurement and reconstruction for large aero-optics wavefront distortion field. Acta Optica Sinica, 33: 134-140).
    [62] 赵剡, 张淏酥 . 2008. 基于光学传递函数的气动光学效应计算方法. 红外与激光工程, 37:668-672

    (Zhao Y, Zhang H S . 2008. Aero-optical effects calculation based on the optical transfer function. Infrared and Laser Engineering, 37: 668-672).
    [63] 赵玉新 . 2008. 超声速混合层时空结构的实验研究. [博士论文]. 长沙: 国防科技大学

    (Zhao Y X . 2008. Experimental investigation of spatiotemporal structures of supersonic mixing layer. [PhD Thesis]. Changsha: National University of Defense Technology).
    [64] 赵玉新, 易仕和, 田立丰, 何霖, 程忠宇 . 2010. 超声速混合层气动光学畸变与抖动——BOS测量技术及其应用. 中国科学: 物理学力学天文学, 40:33-46

    (Zhao Y X, Yi S H, Tian L F, He L, Cheng Z Y . 2010. Aero-optical distortion and jittering of supersonic mixing layer—BOS measurement technique and application. Scientia Sinica Physica, Mechanica & Astronomica, 40: 33-46).
    [65] 朱杨柱 . 2011. 喷流致冷的超声速光学头罩流动及气动光学机理试验研究. [博士论文]. 长沙: 国防科技大学

    (Zhu Y Z . 2011. Experimental mechanism study on the flow around supersonic optical dome with film cooling and its aero-optical effects. [Master Thesis]. Changsha: National University of Defense Technology).
    [66] 朱杨柱 . 2015. 带后台阶超声速光学头罩流动机理及其气动光学效应试验研究. [博士论文]. 长沙: 国防科技大学

    (Zhu Y Z . 2015. Experimental investigation on supersonic flow over an optical dome with backward facing step and its aero-optical effects. [PhD Thesis]. Changsha: National University of Defense Technology).
    [67] 朱杨柱, 易仕和, 陈植, 葛勇, 王小虎, 付佳 . 2013. 带喷流超声速光学头罩流场气动光学畸变试验研究. 物理学报, 62:267-274

    (Zhu Y Z, Yi S H, Chen Z, Ge Y, Wang X H, Fu J . 2013. Experimental investigation on aero-optical aberration of the supersonic flow passing through an optical dome with gas injection. Acta Physica Sinica, 62: 267-274).
    [68] 朱杨柱, 易仕和, 孔小平, 何霖 . 2015. 带喷流超声速后台阶流场精细结构及其运动特性研究. 物理学报, 64:259-265

    (Zhu Y Z, Yi S H, Kong X P, He L . 2015. Fine structures and characteristics on supersonic flow over backward facing step with tangential injection. Acta Physica Sinica, 64: 259-265).
    [69] 朱正天 . 2016. 高速飞行器头罩湍流流场的气动光学效应分析. [硕士论文]. 南京: 南京理工大学

    (Zhu Z T . 2016. Analysis of aero-optical effect around the turbulent flow field of the high-speed aircraft. [Master Thesis]. Nanjing: Nanjing University of Science & Technology).
    [70] 朱志斌, 程晓丽, 潘宏禄 . 2019. 超声速喷流混合流场大涡模拟. 航空动力学报, 34:210-216

    (Zhu Z B, Cheng X L, Pan H L . 2019. Large eddy simulation of supersonic jet mixing flow. Journal of Aerospace Power, 34: 210-216).
    [71] Aguirre R, Nathman J, Garcia P, Catrakis H. 2005. Imaging of turbulent refractive interfaces and optical wavefronts in aero-optics// 36th AIAA Plasmadynamics and Lasers Conference, 2005, Toronto, Ontario Canada.
    [72] Aguirre R C, Catrakis H J. 2004. Aero-optical wavefronts and scale-local characterization in large-Reynolds-number compressible turbulence. AIAA Journal, 42:1982-1990.
    [73] Aguirre R C, Nathman J C, Catrakis H J. 2004. Aerooptical interactions in turbulent compressible separated shear layers and the interfacial-fluid-thickness approach// 42nd AIAA Aerospace Sciences Meeting and Exhibit, 2004, Reno, Nevada.
    [74] Burns W R, Jumper E J, Gordeyev S. 2016. A robust modification of a predictive adaptive-optic control method for aero-optics// 47th AIAA Plasmadynamics and Lasers Conference, 2016, Washington, DC.
    [75] Carroll B F, Boulos E, Sytsma M, Cattafesta L N, Hubner J P, Shepla M. 2004. Aero-optic measurement facility characterization// 42nd AIAA Aerospace Sciences Meeting and Exhibit, 2004, Reno, Nevada.
    [76] Cassady P E, Birch S F, Terry P J. 1987. Aero-optical analysis of compressible flow over an open cavity. AIAA Journal, 27:758-762.
    [77] Catrakis H J, Aguirre R C. 2004. New interfacial fluid thickness approach in aero-optics with applications to compressible turbulence. AIAA Journal, 42:1973-1981.
    [78] Catron B L, Rennie M R, Gordeyev S, Jumper E J. 2018. Effect of acoustic disturbances on aero-optical measurements// Plasmadynamics and Lasers Conference, 2018, Atlanta, Georgia.
    [79] Catron B L, Rennie M R, Gordeyev S, Jumper E J. 2020. Filtering of acoustic disturbances from aero-optical measurements// AIAA Scitech 2020 Forum, 2020, Orlando, FL.
    [80] Childs E R. 1993. Prediction and control of turbulent aero-optical distortion using large eddy simulation// 2nd Annual AIAA and Sdio, Interceptor Technology Conference, 1993, Albuquerque, NM.
    [81] Clark R L, Farris R C. 1987. A numerical method to predict aero-optical performance in hypersonic flight// 19th AIAA, Fluid Dynamics, Plasma Dynamics, and Lasers Conference, 1987, Honolulu, Hawaii.
    [82] Cress J A, Gordeyev S, Jumper E J. 2010. Aero-optical measurements in a heated, subsonic, turbulent boundary layer// 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2010, Orlando, Florida.
    [83] Cress J A, Gordeyev S, Post M L, Jumper E J. 2008. Aero-optical measurements in a turbulent, subsonic boundary layer at different elevation angles// 39th Plasmadynamics and Lasers Conference, 2008, Seattle, Washington.
    [84] Dimotakis P E, Catrakis H J, Fourguette D C. 2001. Flow structure and optical beam propagation in high-Reynolds-number gas-phase shear layers and jets. Journal of Fluid Mechanics, 433:105-134.
    [85] Ding H L, Yi S H, Zhao X H, Xiong H X, Ou Yang T C. 2019. Experimental investigation on aero-optical mitigation of hypersonic optical dome using microvortex generators. AIAA Journal, 57:2653-2658.
    [86] Ding H L, Yi S H, Zhao X H, Yi J R, He L. 2018. Research on aero-optical prediction of supersonic turbulent boundary layer based on aero-optical linking equation. Optics Express, 26:31317-31332.
    [87] Ding H L, Yi S H, Zhu Y Z, He L. 2017. Experimental investigation on aero-optics of supersonic turbulent boundary layers. Applied Optics, 56:7604-7610.
    [88] Duffin D A. 2005. Feed-forward adaptive-optic correction of aero-optical aberrations caused by a two-dimensional heated jet// 36th AIAA Plasmadynamics and Lasers Conference, 2005, Toronto, Ontario Canada.
    [89] Elghobashi S E, Wassel A T. 1980. The effect of turbulent heat transfer on the propagation of an optical beam across supersonic boundary/shear layers. International Journal of Heat and Mass Transfer, 23:1229-1241.
    [90] Emelyanov V N, Teterina I V, Volkov K N, Yakovchuk M S. 2017. Aero-optical effects in free and wall-bounded turbulent compressible flows. Acta Astronautica, 150:144-152.
    [91] Eric T, Eric G, Pierre S. 2005. Analysis of the Sutton model for aero-optical properties of compressible boundary layers. Journal of Fluids Engineering, 128:239-246.
    [92] Eric T, Eric G, Pierre S. 2006. Large-eddy simulation of aero-optical effects in a spatially developing turbulent boundary layer. Journal of Turbulence, 7:1-22.
    [93] Eric T, Eric G, Pierre S, Claude B. 2003. Large eddy simulations of aero-optical effects in a turbulent boundary layer. Journal of Turbulence, 5:1-22.
    [94] Fitzgerald E J, Jumper E J. 2002. Aperture effects on the aerooptical distortions produced by a compressible shear layer. AIAA Journal, 40:267-275.
    [95] Fitzgerald E J, Jumper E J. 2004. The optical distortion mechanism in a nearly incompressible free shear layer. Journal of Fluid Mechanics, 512:153-189.
    [96] Freeman A P, Catrakis H J. 2008. Direct reduction of aero-optical aberrations by large structure suppression control in turbulence. AIAA Journal, 46:2582-2590.
    [97] Gao Q, Jiang Z F, Yi S H, Zhao Y X. 2010. Optical path difference of the supersonic mixing layer. Applied Optics, 49:3786-3792.
    [98] Gao Q, Yi S H, Jiang Z F. 2014. Universal form of the power spectrum of the aero-optical aberration caused by the supersonic turbulent boundary layer. Chinese Physics B, 23:122-127.
    [99] Gordeyev S, Cress J A, Jumper E J. 2015. Aero-optical measurements in a subsonic, turbulent boundary layer with non-adiabatic walls. Physics of Fluids, 27:299-321.
    [100] Gordeyev S, Cress J A, Jumper E J, Cain A B. 2011. Aero-optical environment around a cylindrical turret with a flat window. AIAA Journal, 49:308-315.
    [101] Gordeyev S, Juliano J T. 2016. Optical characterization of nozzle-wall Mach-6 boundary layers// 54th AIAA Aerospace Sciences Meeting, 2016, San Diego, California.
    [102] Gordeyev S, Juliano T J. 2015. Optical measurements of transitional events in a Mach-6 laminar boundary layer// 46th AIAA Fluid Dynamics Conference, 2015, Washington, DC.
    [103] Gordeyev S, Juliano T J. 2017. Optical measurements of transitional events in a Mach-6 boundary layer. AIAA Journal, 55:1-11.
    [104] Gordeyev S, Jumper E. 2010. Fluid dynamics and aero-optics of turrets. Progress in Aerospace Sciences, 46:388-400.
    [105] Gordeyev S, Jumper E, Hayden T E. 2012. Aero-optical effects of supersonic boundary layers. AIAA Journal, 50:682-690.
    [106] Gordeyev S, Jumper E, Ng T M, Cain A. 2003. Aero-optical characteristics of compressible, subsonic turbulent boundary layers// 34th AIAA Plasmadynamics and Lasers Conference, 2003, Orlando, Florida.
    [107] Gordeyev S, Post M L, Mclaughlin T, Ceniceros J, Jumper E J. 2007. Aero-optical environment around a conformal-window turret. AIAA Journal, 45:1514-1524.
    [108] Gordeyev S, Robert B, Eric J, Sivaram G, Michael P, Donald W. 2013. Aero-optical mitigation of shocks around turrets at transonic speeds using passive flow control// 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposi, 2013, Grapevine, Texas.
    [109] Gordeyev S, Smith A E. 2016. Studies of the large-scale structure in turbulent boundary layers using simultaneous velocity-wavefront measurements// 46th AIAA Fluid Dynamics Conference, 2016, Washington, DC.
    [110] Gordeyev S, Smith A E, Cress J A, Jumper E J. 2014. Experimental studies of aero-optical properties of subsonic turbulent boundary layers. Journal of Fluid Mechanics, 740:214-253.
    [111] Guo G M, Liu H. 2017 a. Correcting aero-optical wavefront aberration of the supersonic mixing layer based on periodic pulse forcing. Applied Optics, 56:4613-4622.
    [112] Guo G M, Liu H. 2017 b. Modeling spatial evolution of aero-optical wave front aberration caused by a supersonic mixing layer. Optical Engineering, 56:035102.
    [113] Guo G M, Liu H, Zhang B. 2016 a. Aero-optical effects of an optical seeker with a supersonic jet for hypersonic vehicles in near space. Applied Optics, 55:4741-4751.
    [114] Guo G M, Liu H, Zhang B. 2016 b. Development of a temporal evolution model for aero-optical effects caused by vortices in the supersonic mixing layer. Applied Optics, 55:2708-2717.
    [115] Guo G M, Luo Q. 2019. Modeling aero-optical wavefront of the forced supersonic mixing layer for adaptive-optic correction. Optics Communications, 452:48-55.
    [116] Jumper E J, Fitzgerald E J. 2001. Recent advances in aero-optics. Progress in Aerospace Sciences, 37:299-339.
    [117] Jumper E J, Gordeyev S. 2017. Physics and measurement of aero-optical effects: Past and present. Annual Review of Fluid Mechanics, 49:419-441.
    [118] Jumper E J, Hugo R J. 1995. Quantification of aero-optical phase distortion using the small-aperture beam technique. AIAA Journal, 33:2151-2157.
    [119] Kamel M S, Wang K, Wang M. 2019. Numerical prediction of aero-optical distortions by transonic flow over a cylindrical turret// AIAA Scitech Forum, 2019, San Diego, California.
    [120] Kemnetz M R, Gordeyev S. 2016. Optical investigation of large-scale boundary-layer structures// 54th AIAA Aerospace Sciences Meeting, 2016, San Diego, California.
    [121] Kemnetz M R, Gordeyev S. 2017. Multiple aperture approach to wavefront prediction for adaptive-optic applications// 55th AIAA Aerospace Sciences Meeting, 2017, Grapevine, Texas.
    [122] Kemnetz M R, Gordeyev S, Jumper E J. 2019. Optical investigation of a regularized shear layer for the examination of the aero-optical component of the jitter// AIAA Scitech 2019 Forum, 2019, San Diego, California.
    [123] Kemnetz M R, Gordeyev S, Ranade P, Jumper E J. 2017. Optical investigation of turbulence modulation in an externally forced high Reynolds number boundary layer// 10th International Symposium on Turbulence and Shear Flow Phenomena, 2017, Chicago, USA.
    [124] Konopka M, Meinke M , Wolfgang. 2012. Large-eddy simulation of shock/cooling-film interaction. AIAA Journal, 50:2102-2114.
    [125] Laskari A, Saxton-Fox T, McKeon B J. 2020. Spatial organisation of velocity structures for large passive scalar gradients. Journal of Fluid Mechanics, 885:A33.
    [126] Lee S, Yoon H, Jeung I-S, Lee H J, Lee J K. 2017. Super-/hypersonic aero-optical effects induced by external jet cooling// 30th International Symposium on Shock Waves, 2017, Cham.
    [127] Lewis D P, Schetz J A. 1997. Tangential injection from overlaid slots into a supersonic stream. Journal of Propulsion and Power, 13:59-63.
    [128] Li B, Liu H. 2011. Aero-optical characteristics of supersonic flow over blunt wedge with cavity window. Journal of Shanghai Jiaotong University (Science), 16:742-749.
    [129] Liepmann H W. 1952. Deflection and diffusion of a light ray passing through a boundary layer// Douglas Aircraft Company, Santa Monica Division, TR SM-14397, 1952, Santa Monica, California.
    [130] Liu F J, Wang Y F, Piao Y. 2017. Linear stability analysis of interactions between mixing layer and boundary layer flows. Chinese Journal of Aeronautics, 30:1327-1335.
    [131] Liu L, Meng W H, Li Y, Dai X B, Zuo Z Y. 2015. Influence of aero-optical transmission on infrared imaging optical system in the supersonic flight. Infrared Physics & Technology, 68:110-118.
    [132] Mackey L E, Boyd I D. 2019. Assessment of hypersonic flow physics on aero-optics. AIAA Journal, 57:3885-3897.
    [133] Mani A, Moin P, Wang M. 2009. Computational study of optical distortions by separated shear layers and turbulent wakes. Journal of Fluid Mechanics, 625:273-298.
    [134] Mani A, Wang M, Moin P. 2008. Resolution requirements for aero-optical simulations. Journal of Computational Physics, 227:9008-9020.
    [135] Marquardt P, Klaas M, Schr?der W. 2019. Experimental investigation of isoenergetic film-cooling flows with shock interaction. AIAA Journal, 57:3910-3923.
    [136] Marquardt P, Klaas M, Schr?der W. 2020. Comparison of shock/cooling-film interaction for cooled and isoenergetic injection. AIAA Journal, 58:2077-2092.
    [137] Mathews E, Wang K, Wang M, Jumper E J. 2019. The wavenumber spectra of aero-optical phase distortions by weakly compressible turbulence. Optics Express, 27:5670-5684.
    [138] Mathews E R, Wang K, Wang M, Jumper E J. 2020. A spectral description of aero-optical phase distortions and the effects of turbulent flow scales// 48th AIAA Plasmadynamics and Lasers Conference, 2020, Denver, Colorado.
    [139] Morrida J J, Gordeyev S, Jumper E J. 2016. Transonic flow dynamics over a hemisphere in flight// 54th AIAA Aerospace Sciences Meeting, 2016, San Diego, California.
    [140] Muppidi S, Mahesh K. 2012. Direct numerical simulations of roughness-induced transition in supersonic boundary layers. Journal of Fluid Mechanics, 693:28-56.
    [141] Nahrstedt D, Hsia Y C, Jumper E, Gordeyev S, Ceniceros J, Weaver L, Desandre L, Mclaughlin T. 2009. Wind tunnel validation of computational fluid dynamics-based aero-optics model. Proccedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 223:393-406.
    [142] Nightingale A M, Gordeyev S, Jumper E J, Goodwine B, Siegenthaler J P. 2005. Regularizing shear layer for adaptive optics control applications// 36th AIAA Plasmadynamics and Lasers Conference, 2005, Toronto, Canada.
    [143] Porter C, Gordeyev S, Zenk M, Jumper E. 2013. Flight measurements of the aero-optical environment around a flat-windowed turret. AIAA Journal, 51:1394-1403.
    [144] Ren W, Liu H. 2016. Effects of compressibility and Knudsen number on the aero optics in hypersonic flow fields. Journal of Shanghai Jiaotong University (Science), 21:270-279.
    [145] Rennie M, Duffin D, Jumper E. 2007. Characterization of a forced two-dimensional, weakly-compressible shear layer// 38th Plasmadynamics and Lasers Conference, 2007, Miami, FL.
    [146] Rennie M, Siegenthaler J, Jumper E. 2006. Forcing of a two-dimensional, weakly-compressible subsonic free shear layer// 44th AIAA Aerospace Sciences Meeting and Exhibit, 2006, Reno, Nevada.
    [147] Rennie R M, Duffin D A, Jumper E J. 2008. Characterization and aero-optic correction of a forced two-dimensional weakly compressible shear layer. AIAA Journal, 46:2787-2795.
    [148] Rennie R M, Nguyen M, Gordeyev S, Jumper E J, Cain A B, Hayden T E. 2017. Wave-front measurements of a supersonic boundary layer using laser induced breakdown. AIAA Journal, 55:2349-2357.
    [149] Seidel J, Siegel S, Mclaughlin T. 2009. Computational investigation of aero-optical distortions in a free shear layer// 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2009, Orlando, Florida.
    [150] Siegel S, Seidel J, McLaughlin T. 2009. Experimental study of aero-optical distortions in a free shear layer// 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2009, Orlando, Florida.
    [151] Siegenthaler J, Gordeyev S, Jumper E. 2005. Shear layers and aperture effects for aero-optics// 36th AIAA Plasmadynamics and Lasers Conference, 2005, Toronto, Canada.
    [152] Sinha N, Arunajatesan S, Seiner J M, Ukeiley L S. 2004. Large eddy simulation of aero-optic flowfields and flow control application// 35th AIAA Plasmadynamics and Lasers Conference, 2004, Portland, Oregon.
    [153] Smith A E, Gordeyev S. 2013 a. The effects of wall cooling on aero-optical aberrations caused by subsonic turbulent boundary layers// 44th AIAA Plasmadynamics and Lasers Conference, 2013a, San Diego, CA.
    [154] Smith A E, Gordeyev S. 2013b. Evaluation of passive boundary layer flow control methods for aero-optic mitigation// 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2013b, Grapevine (Dallas/Ft. Worth Region), Texas.
    [155] Smith A E, Gordeyev S. 2014. Aero-optical mitigation of turbulent boundary layers using large-eddy break-up devices// 52nd Aerospace Sciences Meeting, 2014, National Harbor, Maryland.
    [156] Smith A E, Gordeyev S, Jumper E. 2012. Aperture effects on aero-optical distortions caused by subsonic boundary layers// 43rd AIAA Plasmadynamics and Lasers Conference, 2012, New Orleans, Louisiana.
    [157] Sontag M J, Gordeyev S. 2017. Studies of density fields in non-adiabatic boundary layers using wavefront sensors// 48th AIAA Plasmadynamics and Lasers Conference, 2017, Denver, Colorado.
    [158] Su C H. 2019. Aero-optical analysis of a film-cooled optical window based on linear stability analysis. AIAA Journal, 57:2840-2850.
    [159] Sun X W, Guo Z Y, Huang W, Li S B, Yan L. 2016. Drag and heat reduction mechanism induced by a combinational novel cavity and counterflowing jet concept in hypersonic flows. Acta Astronautica, 126:109-119.
    [160] Sun X W, Guo Z Y, Huang W, Li S B, Yan L. 2017 a. A study of performance parameters on drag and heat flux reduction efficiency of combinational novel cavity and opposing jet concept in hypersonic flows. Acta Astronautica, 131:204-225.
    [161] Sun X W, Huang W, Guo Z Y, Li S B. 2017 b. Multiobjective design optimization of hypersonic combinational novel cavity and opposing jet concept. Journal of Spacecraft and Rockets, 54:662-671.
    [162] Sun X W, Huang W, Ou M, Zhang R R, Li S B. 2019 a. A survey on numerical simulations of drag and heat reduction mechanism in supersonic/hypersonic flows. Chinese Journal of Aeronautics, 32:771-784.
    [163] Sun X W, Liu W, Chai Z X. 2019 b. Method of investigation for numerical simulation on aero-optical effect based on WCNS-E-5. AIAA Journal, 57:2017-2029.
    [164] Sutton G W. 1985. Aero-optical foundations and applications. AIAA Journal, 23:1525-1537.
    [165] Tan Y, Agarwal R, Bower W, Cary A. 2004. Flow control of shear layers over 2-D cavities using pulsed jet and aero-optical analysis// 42nd AIAA Aerospace Sciences Meeting and Exhibit, 2004, Reno, Nevada.
    [166] Tan Y, Agarwal R, Bower W, Cary A. 2005. Aero-optical analysis of shear layers over 2-D cavities with steady and pulsed blowing and comparisons with experimental data—II// 43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005, Reno, Nevada.
    [167] Theresa S F, McKeon J B, Gordeyev S. 2019. Effect of coherent structures on aero-optic distortion in a turbulent boundary layer. AIAA Journal, 57:2828-2839.
    [168] Tian L F, Yi S H, Zhao Y X, Lin H, Cheng Z Y. 2009. Study of density field measurement based on NPLS technique in supersonic flow. Science in China, 52:1357-1363.
    [169] Trolinger J D, Rose W C. 2004. Technique for simulating and evaluating aero-optical effects in optical systems// USAF Developmental Test and Evaluation Summit, 2004, Woodland Hills, California.
    [170] Trolinger J D, Rose W C. 2005. Technique for simulating and evaluating aero-optical effects in optical systems// 36th AIAA Plasmadynamics and Lasers Conference, 2005, Toronto, Ontario Canada.
    [171] Tropina A A, Wu Y, Limbach C M, Miles R B. 2018. Aero-optical effects in non-equilibrium air// 2018 Plasmadynamics and Lasers Conference, 2018, Atlanta, Georgia.
    [172] Truman C R. 1992. The influence of turbulent structure on optical phase distortion through turbulent shear flows// AIAA SDIO Annual Interceptor Technology Conference, 1992, Huntsville, AL.
    [173] Truman C R, Lee M J. 1990. Effects of organized turbulence structures on the phase distortion in a coherent optical beam propagating through a turbulent shear flow. Physics of Fluids A Fluid Dynamics, 2:851-857.
    [174] Tsai Y P, Christiansen W H. 1989. Two-dimensional numerical simulation of shear-layer optics. AIAA Journal, 28:2092-2097.
    [175] Visbal R M. 2009. Numerical simulation of aero-optical aberration through a weakly-compressible shear layer// 39th AIAA Fluid Dynamics Conference, 2009, San Antonio, Texas.
    [176] Visbal R M, Rizzetta P D. 2008. Effect of flow excitation on aero-optical aberration// 46th AIAA Aerospace Sciences Meeting and Exhibit, 2008, Reno, Nevada.
    [177] Wang H, Chen S, Du H, Dang F, Ju L, Ming Y, Zhang R, Shi X, Yu J, Fan Z. 2019. Influence of altitude on aero-optic imaging quality degradation of the hemispherical optical dome. Applied Optics, 58:274-282.
    [178] Wang K, Wang M. 2009. Numerical simulation of aero-optical distortions by a turbulent boundary layer and separated shear layer// 40th AIAA Plasmadynamics and Lasers Conference, 2009, San Antonio, Texas.
    [179] Wang K, Wang M. 2012. Aero-optics of subsonic turbulent boundary layers. Journal of Fluid Mechanics, 696:122-151.
    [180] Wang K, Wang M. 2016. Computational analysis of aero-optical distortions by flow over a cylindrical turret. AIAA Journal, 54:1461-1471.
    [181] Wang M, Mani A, Gordeyev S. 2012. Physics and computation of aero-optics. Annual Review of Fluid Mechanics, 44:299-321.
    [182] Wang T, Zhao Y, Xu D, Yang Q Y. 2007. Numerical study of evaluating the optical quality of supersonic flow fields. Applied Optics, 46:5545-5551.
    [183] White M D, Visbal M R. 2010. High fidelity analysis of aero-optical interaction with compressible boundary layers// 41st Plasmadynamics and Lasers Conference, 2010, Chicago, Illinois.
    [184] White M D, Visbal M R. 2012. Aero-optics of compressible boundary layers in the transonic regime// 43rd AIAA Plasmadynamics and Laser Conference, 2012, New Orleans, Louisiana.
    [185] White M D, Visbal M R. 2013. Computational investigation of wall cooling and suction on the aberrating structures in a transonic boundary layer// 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2013, Grapevine, Texas.
    [186] Winter M, Green R W, Josyula E, Hagen B, Hayes J, Jewell J S. 2020. Experimental investigation of optical distortion in hypersonic flows at Mach 6// AIAA Scitech 2020 Forum, 2020, Orlando, FL.
    [187] Wissler J, Roshko A. 1992. Transmission of thin light beams through turbulent mixing layers// 30th Aerospace Sciences Meeting and Exhibit, 1992, Reno, NV.
    [188] Wittich D, Gordeyev S, Jumper E. 2007. Revised scaling of optical distortions caused by compressible, subsonic turbulent boundary layers// 38th Plasmadynamics and Laser Conference, 2007, Miami, Florida.
    [189] Wyckham C M, Smits A J. 2009. Aero-optic distortion in transonic and hypersonic turbulent boundary layers. AIAA Journal, 47:2158-2168.
    [190] Xiao H S, Fan Z G. 2010. Imaging quality evaluation of aerodynamically heated optical dome using ray tracing. Applied optics, 49:5049-5058.
    [191] Xiao H S, Zuo B J, Tian Y, Zhang W, Hao C L, Liu C F, Li Q, Li F, Zhang L, Fan Z G. 2012. Joint influences of aerodynamic flow field and aerodynamic heating of the dome on imaging quality degradation of airborne optical systems. Applied Optics, 51:8625-8636.
    [192] Xiong H X, Yi S H, Ding H L, Xu X W, Si Y. 2019. Numerical simulation of film cooling effect and aero-optical effect of optical window// Applied Optics and Photonics China (AOPC2019), 2019, Beijing, China.
    [193] Xu L, Cai Y L. 2011. Influence of altitude on aero-optic imaging deviation. Applied Optics, 50:2949-2957.
    [194] Xu L, Xue D T, Lv X Y. 2018. Computation and analysis of backward ray-tracing in aero-optics flow fields. Optics Express, 26:567-576.
    [195] Yulia P, Pierre S. 2009. Theoretical prediction of turbulent skin friction on geometrically complex surfaces. Journal of Propulsion & Power, 22:1334-1338.
    [196] Zhang L P, Zhao Z L, Ma R, Chang X H, Li Y, Wang N H, Li H. 2020. Validation of numerical virtual flight system with wind-tunnel virtual flight testing. AIAA Journal, 58:1566-1579.
    [197] Zhang Y P, Fan Z G. 2007. Study on the optical path difference of aero-optical window. Optik-International Journal for Light and Electron Optics, 118:557-560.
    [198] Zhao X H, Yi S H, Ding H L. 2020. Influence of cooling film pressure on the imaging quality of a hypersonic optical dome. Optical Engineering, 59:013104.
    [199] Zhu Y Z, Yi S H, Ding H L, Nie W S, Zhang Z W. 2019. Structures and aero-optical effects of supersonic flow over a backward facing step with vortex generators. European Journal of Mechanics-B/ Fluids, 74:302-311.
    [200] Zhu Y Z, Yi S H, He L, Tian L F, Zhou Y W. 2013. Instantaneous and time-averaged flow structures around a blunt double-cone with or without supersonic film cooling visualized via nano-tracer planar laser scattering. Chinese Physics B, 22:368-373.
    [201] Zilberter I A, Edwards J R, Wittich D J. 2017. Numerical simulation of aero-optical effects in a supersonic cavity flow. AIAA Journal, 55:3095-3108.
    [202] Zubair F, Catrakis H J. 2009. On separated shear layers and the fractal geometry of turbulent scalar interfaces at large Reynolds numbers. Journal of Fluid Mechanics, 624:389-411.
    [203] Zubair F R, Catrakis H J. 2007. Aero-optical resolution robustness in turbulent separated shear layers at large Reynolds numbers. AIAA Journal, 45:2721-2728.
    [204] Zubair F R, Freeman A, Piatrovich S, Shockro J, Ibrahim Y, Catrakis H. 2007. Large scale turbulence suppression control for direct reduction of aero-optical aberrations// 38th Plasmadynamics and Lasers Conference, 2007, Miami, FL.
  • 加载中
计量
  • 文章访问数:  3446
  • HTML全文浏览量:  873
  • PDF下载量:  571
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-07
  • 刊出日期:  2020-10-08

目录

    /

    返回文章
    返回

    Baidu
    map