留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高雷诺数壁湍流的研究进展及挑战

郑晓静 王国华

郑晓静, 王国华. 高雷诺数壁湍流的研究进展及挑战[J]. 力学进展, 2020, 50(1): 202001. doi: 10.6052/1000-0992-19-009
引用本文: 郑晓静, 王国华. 高雷诺数壁湍流的研究进展及挑战[J]. 力学进展, 2020, 50(1): 202001. doi: 10.6052/1000-0992-19-009
ZHENG Xiaojing, WANG Guohua. Progresses and challenges of high Reynolds number wall-bounded turbulence[J]. Advances in Mechanics, 2020, 50(1): 202001. doi: 10.6052/1000-0992-19-009
Citation: ZHENG Xiaojing, WANG Guohua. Progresses and challenges of high Reynolds number wall-bounded turbulence[J]. Advances in Mechanics, 2020, 50(1): 202001. doi: 10.6052/1000-0992-19-009

高雷诺数壁湍流的研究进展及挑战

doi: 10.6052/1000-0992-19-009
基金项目: 

国家自然科学基金资助项目 (11490553).

详细信息
    作者简介:

    郑晓静, 1958年5月生, 浙江乐清人.1982年在华中科技大学获工学学士学位,1987年在兰州大学获理学博士学位, 1992年起任兰州大学教授.现兼任中国科学技术协会副主席,国际理论与应用力学联合会执委会委员,中国科学院数理学部副主任,中国力学学会副理事长,"湍流与复杂系统国家重点实验室"和"甘肃省荒漠化与风沙灾害防治"国家重点实验室(筹)学术委员会主任等. 主要研究领域: 高雷诺数含沙壁湍流,电磁固体力学、板壳非线性力学.获首届"中国青年科技奖"和"做出突出贡献的中国博士学位获得者"称号,1997年获国家自然基金委员会"杰出青年科学基金",获国家自然科学二等奖2项、国家科技进步二等奖1项.2009年当选中国科学院数理学部院士,2010年当选发展中国家科学院院士并任工程科学部评奖委员会主席.2014年获何梁何利科学与技术进步奖, 2017年获"周培源力学奖"等.

    通讯作者:

    郑晓静

  • 中图分类号: O35

Progresses and challenges of high Reynolds number wall-bounded turbulence

More Information
    Corresponding author:

    ZHENG Xiaojing

  • 摘要: 高雷诺数壁湍流(high Reynolds number wall-bounded turbulence,HRNWT)是目前湍流科学研究的一个热点也是一个难点,对其现象、规律及机制的认知不足,理论体系远未建立而且研究手段受到各种限制.本文基于对HRNWT主要研究手段的介绍,针对HRNWT中的湍流统计量、超大尺度结构(very large scale motions,VLSMs)的尺度和形态以及起源和影响及其与颗粒的相互作用,总结了HRNWT的研究现状和最新进展,特别梳理了近年来本文作者团队在HRNWT特别是高雷诺数颗粒两相壁湍流方面的研究成果,并对HRNWT的进一步研究给出了建议及展望.

     

  • [1] 胡隐樵, 高由禧, 王介, 季国良, 沈志宝, 程麟生, 陈家宜, 李守谦 . 1994. 黑河实验 (HEIFE)的一些研究成果. 高原气象, 13:225-236

    (Hu Y Q, Gao Y X, Wang J M , et al. 1994. Some achievements in scientific research during HEIFE. Plateau Meteorology, 13:225-236).
    [2] 纪勇 . 2019. 基于结构系综理论的大气表面层研究. 博士学位论文. 北京大学湍流与复杂系统国家重点实验室, 北京大学.
    [3] 李存标, 吴介之, 白夜 . 2009. 壁流动中的转捩. 力学进展, 39:480-507

    (Li C B, Wu J Z, Bai Y . 2009. Transition in wall-bouned flows. Advances in Mechanics, 39:480-507).
    [4] 林建忠, 朱泽飞, 沈利平 . 1998. 气固两相边界层中固粒与拟序结构相互作用的研究. 上海力学, 4:310-317

    (Lin J Z, Zhu Z F, Shen L P . 1998. Research on the interaction between the solid particles and the coherent structure in turbulent boundary layer. Shanghai Mechanics, 4:310-317).
    [5] 林建忠, 林江, 石兴 . 2002. 两相流中柱状固粒对流体湍动特性影响的研究. 应用数学和力学, 23:483-488

    (Lin J Z, Lin J, Shi X . 2002. Research on the effect of cylinder particles on the turbulent properties in particulate flows. Applied Mathematics and Mechanics, 23:483-488).
    [6] 许春晓 . 2015. 壁湍流相干结构和减阻控制机理. 力学进展, 45:201504

    (Xu C X . 2015. Coherent structures and drag-reduction mechanism in wall turbulence. Advances in Mechanics, 45:201504).
    [7] 徐祥德, 周明煜, 陈家宜, 卞林根, 张光智, 刘辉志, 李诗明, 张宏升, 赵冀俊, 索朗多吉, 王继志 . 2001. 青藏高原地-气过程动力、热力结构综合物理图象. 中国科学: 地球科学, 31:428-440.
    [8] 郑晓静 . 2017. 大气表面湍流超大/大尺度结构. 中国力学大会2017, 2017年8月13-16日, 北京.
    [9] 顾海华, 郑晓静 . 2019. 大气表面层粉尘(PM10)输运的超大尺度结构. 中国力学大会2019, 2019年 8月25-28日, 杭州.
    [10] 王萍, 靳婷, 郑晓静 . 2019a. 壁湍流多相流大涡模拟壁函数改进. 中国力学大会2019, 2019年 8月25-28日, 杭州.
    [11] 王萍, 柳丽, 郑晓静 . 2019b. 基于沙尘暴期间大气表面层风场的粉尘输运数值模拟. 中国力学大会2019, 2019年8月25-28日, 杭州.
    [12] 周力行, 廖昌明, 陈涛 . 1994. 强旋气-粒两相湍流的统一二阶矩封闭模型. 工程热物理学报. 15:327-330

    (Zhou L, Liao C, Chen T . 1994. A unified second-order moment two-phase turbulence model for strongly swirling gas-particle flows. Journal of Engineering Thermophysics, 15:327-330).
    [13] Adrian R J, Meinhart C D, Tomkins C D. 2000. Vortex organization in the outer region of the turbulent boundary layer. Journal of Fluid Mechanics, 422:1-54.
    [14] Ahn J, Lee J H, Lee J, Kang J H, Sung H J. 2015. Direct numerical simulation of a 30R long turbulent pipe flow at $Re_ au=3008$. Physics of Fluids, 27:065110.
    [15] álamo J C, Jimenez J, Zandonade P, Moser R D. 2006. Self-similar vortex clusters in the turbulent logarithmic region. Journal of Fluid Mechanics, 561:329-358.
    [16] Alfredsson P H, Segalini A, ?rlü R. 2011. A new scaling for the streamwise turbulence intensity in wall-bounded turbulent flows and what it tells us about the "outer" peak. Physics of Fluids, 23:041702.
    [17] Anderson R S, Haff P K. 1988. Simulation of Eolian Saltation. Science, 241:820-823.
    [18] Baas A C, Sherman D J. 2005. Formation and behavior of aeolian streamers. Journal of Geophysical Research-Earth Surface, 110:F03011.
    [19] Baas A C. 2006. Wavelet power spectra of Aeolian sand transport by boundary layer turbulence. Geophysical Research Letters, 33:L05403.
    [20] Bagchi P, Balachandar S. 2003. Effect of turbulence on the drag and lift of a particle. Physics of Fluids, 15:3496-3513.
    [21] Bagnold R A. 1941. The physics of blown sand and desert dunes. Nature, 18:167-187.
    [22] Bailey S C C, Vallikivi M, Hultmark M, Smits A J. 2014. Estimating the value of von Karman's constant in turbulent pipe flow. Journal of Fluid Mechanics, 749:79-98.
    [23] Balachandar S, Eaton J K. 2010. Turbulent dispersed multiphase flow. Annual Review of Fluid Mechanics, 42:111-133.
    [24] Balakumar B J, Adrian R J. 2007. Large- and very-large-scale motions in channel and boundary-layer flows. Philos Trans A Math Phys Eng Sci, 365:665-681.
    [25] Bandyopadhyay P R, Hussain P A K M F. 1984. The coupling between scales in shear flows. Physics of Fluids, 27:2221-2228.
    [26] Barenblatt G I, Prostokishin V M. 1993. Scaling laws for fully developed turbulent shear flows. Part 1. Basic hypotheses and analysis. Journal of Fluid Mechanics, 248:513-520.
    [27] Bernardini M, Pirozzoli S, Orlandi P. 2014. Velocity statistics in turbulent channel flow up to. Journal of Fluid Mechanics, 742:171-191.
    [28] Blackwelder R F, Kovasznay L S G. 1972. Time scales and correlations in a turbulent boundary layer. Physics of Fluids, 15:1545-1554.
    [29] Brown G L, Thomas A S W. 1977. Large structure in a turbulent boundary layer. Physics of Fluids, 20:S243-S252.
    [30] Cantwell B J. 1981. Organized motion in turbulent-flow. Annual Review of Fluid Mechanics, 13:457-515.
    [31] Caporaloni M, Tampieri F, Trombetti F. 1975. Transfer of particles in nonisotropic air turbulence. Journal of the Atmospheric Sciences, 32:565-568.
    [32] Carneiro M V, Rasmussen K R, Herrmann H J. 2015. Bursts in discontinuous Aeolian saltation. Scientific Reports, 5:11109.
    [33] Carper M A, Porte-Agel F. 2004. The role of coherent structures in subfilter-scale dissipation of turbulence measured in the atmospheric surface layer. Journal of Turbulence, 5:040.
    [34] Castillo L, George W K. 2001. Similarity analysis for turbulent boundary layer with pressure gradient: Outer flow. AIAA Journal, 39:41-47.
    [35] Chauhan K A. 2007. Study of canonical wall-bounded turbulent flows. [PhD Thesis]. Illinois: Illinois Institute of Technology.
    [36] Chauhan K A, Nagib H, Monkewitz P. 2007. On the composite logarithmic profile in zero pressure gradient turbulent boundary layers. //45th AIAA Aerospace Sciences Meeting and Exhibit.
    [37] Chauhan K A, Hutchins N, Monty J, Marusic I. 2013. Structure inclination angles in the convective atmospheric surface layer. Boundary-Layer Meteorology, 147:41-50.
    [38] Chhabra R P, Agarwal L, Sinha N Kl. 1999. Drag on non-spherical particles: An evaluation of available methods. Powder Technology, 101:288-295.
    [39] Choi H, Moin P. 2012. Grid-point requirement for large eddy simulation: Chapman's estimation revisited. Physics of Fluids, 24:011702.
    [40] Cooper D I, Leclerc M Y, Archuleta J, Coulter R, Eichinger W E, Kao C Y J, Nappo C J. 2006. Mass exchange in the stable boundary layer by coherent structures. Agricultural & Forest Meteorology, 136:114-131.
    [41] Corrsin S, Kistler A L. 1954. Free-stream boundaries of turbulent flows. N.A.C.A. Tech. Note no. 3133.(See also N.A.C.A. Tech. Rep. no.1244, 1955).
    [42] De Graaff D B, Eaton J K. 2000. Reynolds-number scaling of the flat-plate turbulent boundary layer. Journal of Fluid Mechanics, 422:319-346.
    [43] Deck S, Renard N, Laraufie R, Weiss P-é. 2014. Large-scale contribution to mean wall shear stress in high-Reynolds-number flat-plate boundary layers up to $Re_ heta=13650$. Journal of Fluid Mechanics, 743:202-248.
    [44] Deng B, Huang W, Xu C. 2016. Origin of effectiveness degradation in active drag reduction control of turbulent channel flow at $Re_ au=1000$. Journal of Turbulence, 17:758-786.
    [45] Deng S, Pan C, Wang J J, He G S. 2018. On the spatial organization of hairpin packets in a turbulent boundary layer at low-to-moderate Reynolds number. Journal of Fluid Mechanics, 844:635-668.
    [46] Dennis D J C. 2015. Coherent structures in wall-bounded turbulence. Anais Da Academia Brasileira De Ciências, 87:513-537.
    [47] Dixit S A, Ramesh O N. 2018. Streamwise self-similarity and log scaling in turbulent boundary layers. Journal of Fluid Mechanics, 851:R1.
    [48] Dritselis C D, Vlachos N S. 2008. Numerical study of educed coherent structures in the near-wall region of a particle-laden channel flow. Physics of Fluids, 20:055103.
    [49] Drobinski P, Carlotti P, Newsom R K, Banta R M, Foster R C, Redelsperger J L. 2004. The structure of the near neutral atmospheric surface layer. Journal of the Atmospheric Sciences, 61:699-714.
    [50] Dupont S, Bergametti G, Marticorena B, Simoens S. 2013. Modeling saltation intermittency. Journal of Geophysical Research-Atmospheres, 118:7109-7128.
    [51] Elghobashi S. 1994. On predicting particle-laden turbulent flows. Applied Scientific Research, 52:309-329.
    [52] Elgobashi S, Balachandar S, Prosperetti A. 2006. An updated classification map of particle-laden turbulent flows. IUTAM Symposium on Computational Approaches to Multiphase Flow, 81:3-10.
    [53] Falco R E. 1977. Coherent motions in the outer region of turbulent boundary layers. The Physics of Fluids, 20:S124-S132.
    [54] Fernholz H H, Krause E, Nockemann M, Schober M. 1995. Comparative measurements in the canonical boundary-layer at $Re _{delta 2}leq 6 imes 10^{4}$ on the wall of the German-Dutch Wind Tunnel. Physics of Fluids, 7:1275-1281.
    [55] Flores O, Jiménez J, álamo J C D. 2007. Vorticity organization in the outer layer of turbulent channels with disturbed walls. Journal of Fluid Mechanics, 591:145-154.
    [56] Frisch U. 1995. Turbulence. Cambridge: Cambridge University Press.
    [57] Furuichi N, Terao Y, Wada Y, Tsuji Y. 2018. Further experiments for mean velocity profile of pipe flow at high Reynolds number. Physics of Fluids, 30:7.
    [58] Ganapathisubramani B, Longmire E K, Marusic I, Pothos S. 2005. Dual-plane PIV technique to determine the complete velocity gradient tensor in a turbulent boundary layer. Experiments In Fluids, 39:222-231.
    [59] Geiss S, Dreizler A, Stojanovic Z. 2004. Investigation of turbulence modification in a non-reactive two phase flow. Experiments in Fluids, 36:344-354.
    [60] George W K. 1995. Some new ideas for similarity of turbulent shear flows. Turbulence, Heat and Mass Transfer, 1:13-24.
    [61] George W K. 2007. Is there a universal log law for turbulent wall-bounded flows? Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365:789-806.
    [62] Greeley R, Blumberg D G, Williams S H. 1996. Field measurements of the flux and speed of wind-blown sand. Sedimentology, 43:41-52.
    [63] Gu H, Wang G, Zhu W, Zheng X J. 2019. Gusty wind disturbances and large-scale turbulent structures in the neutral atmospheric surface layer. Science China Physics, Mechanics & Astronomy, 62:114711.
    [64] Guala M, Hommema S E, Adrian R J. 2006. Large-scale and very-large-scale motions in turbulent pipe flow. Journal of Fluid Mechanics, 554:521-542.
    [65] Guala M, Metzger M, Mckeon B J. 2011. Interactions within the turbulent boundary layer at high Reynolds number. Journal of Fluid Mechanics, 666:573-604.
    [66] Hadinoto K, Jones E N, Yurteri C, Curtis J S. 2005. Reynolds number dependence of gas-phase turbulence in gas-particle flows. International Journal of Multiphase Flow, 31:416-434.
    [67] Hagen G. 1839. Ueber die Bewegung des Wassers in engen cylindrischen R?hren. Annalen der Physik, 122:423-442.
    [68] Han G, Liu L, Bo T, Zheng X. 2019 a. A predictive model for the streamwise velocity in the near-neutral atmospheric surface layer. Journal of Geophysical Research-Atmospheres, 124:238-251.
    [69] Han G, Wang G, Zheng X. 2019 b. The applicability of Taylor's hypothesis for estimating the mean streamwise length scales of large-scale structures in the near-neutral atmospheric surface layer. Boundary-Layer Meteorol, 172:215-237.
    [70] He G, Jin G, Yang Y. 2017. Space-time correlations and dynamic coupling in turbulent flows. Annual Review of Fluid Mechanics, 49:51-70.
    [71] He G W, Zhang J B. 2006. Elliptic model for space-time correlations in turbulent shear flows. Phys Rev E Stat Nonlin Soft Matter Phys, 73:055303.
    [72] Head M R, Bandyopadhyay P. 1981. New aspects of turbulent boundary-layer structure. Journal of Fluid Mechanics, 107:297-338.
    [73] Heisel M, Dasari T, Liu Y, Hong J R, Coletti F, Guala M. 2018. The spatial structure of the logarithmic region in very-high-Reynolds-number rough wall turbulent boundary layers. Journal of Fluid Mechanics, 857:704-747.
    [74] Helland E, Occelli R, Tadrist L. 2005. Numerical study of cluster and particle rebound effects in a circulating fluidised bed. Chemical Engineering Science, 60:27-40.
    [75] H?gstr?m U, Hunt J C R, Smedman A S. 2002. Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer. Boundary-Layer Meteorology, 103:101-124.
    [76] Homann H, Jérémie B, Rainer G. 2013. Effect of turbulent fluctuations on the drag and lift forces on a towed sphere and its boundary layer. Journal of Fluid Mechanics, 721:155-179.
    [77] Hommema S E, Adrian R J. 2003. Packet structure of surface eddies in the atmospheric boundary layer. Boundary-Layer Meteorology, 106:147-170.
    [78] Horiguchi M, Hayashi T, Adachi A, Onogi S. 2012. Large-scale turbulence structures and their contributions to the momentum flux and turbulence in the near-neutral atmospheric boundary layer observed from a 213 m tall meteorological tower. Boundary-Layer Meteorology, 144:179-198.
    [79] Hoyas S, Jiménez J. 2006. Scaling of the velocity fluctuations in turbulent channels up to $Re_ au=2003$. Physics of Fluids, 18:011702.
    [80] Hoyas S, Oberlack M, Kraheberger S, Alcantara-Avila F. 2018. Turbulent channel flow at $Re_ au=10000$// APS Division of Fluid Dynamics Meeting. Nov. 18-20, Atlanta, USA.
    [81] Hultmark M, Vallikivi M, Bailey S C C, Smits A J. 2012. Turbulent pipe flow at extreme Reynolds numbers. Physical Review Letters, 108:094501.
    [82] Hultmark M, Vallikivi M, Bailey S C C, Smits A J. 2013. Logarithmic scaling of turbulence in smooth- and rough-wall pipe flow. Journal of Fluid Mechanics, 728:376-395.
    [83] Hunt J C R, Carlotti P. 2001. Statistical structure at the wall of the high Reynolds number turbulent boundary layer. Flow Turbulence & Combustion, 66:453-475.
    [84] Hunt J C R, Morrison J F. 2000. Eddy structure in turbulent boundary layers. European Journal of Mechanics, 19:673-694.
    [85] Hutchins N, Hambleton W T, Marusic I. 2005. Inclined cross-stream stereo particle image velocimetry measurements in turbulent boundary layers. Journal of Fluid Mechanics, 541:21-54.
    [86] Hutchins N, Marusic I. 2007 a. Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. Journal of Fluid Mechanics, 579:1-28.
    [87] Hutchins N, Marusic I. 2007 b. Large-scale influences in near-wall turbulence. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365:647-664.
    [88] Hutchins N, Marusic I, Monty J, Klewicki J. 2012. Towards Reconciling the Large-Scale Structure of Turbulent Boundary Layers in the Atmosphere and Laboratory. Boundary-Layer Meteorology, 145:273-306.
    [89] Hutchins N, Monty J P, Ganapathisubramani B, Ng H C H, Marusic I. 2011. Three-dimensional conditional structure of a high-Reynolds-number turbulent boundary layer. Journal of Fluid Mechanics, 673:255-285.
    [90] Inoue M, Mathis R, Marusic I, Pullin D I. 2012. Inner-layer intensities for the flat-plate turbulent boundary layer combining a predictive wall-model with large-eddy simulations. Physics of Fluids, 24:075102.
    [91] Jackson D W T. 1996. Potential inertial effects in aeolian sand transport: Preliminary results. Sedimentary Geology, 106:193-201.
    [92] Jackson N L, Sherman D J, Hesp P A, Klein A H F, Ballasteros Jr F, Nordstrom K F. 2006. Small-scale spatial variations in aeolian sediment transport on a fine-sand beach. Journal of Coastal Research, 39:379-383.
    [93] Jacob C, Anderson W. 2016. Conditionally averaged large-scale motions in the neutral atmospheric boundary layer: Insights for aeolian processes. Boundary-Layer Meteorology, 162:1-21.
    [94] Kaftori D, Hetsroni G, Banerjee S. 1995. Particle behavior in the turbulent boundary layer. II. Velocity and distribution profiles. Physics of Fluids, 7:1107-1121.
    [95] Kaimal J C, Wyngaard J C. 1989. The Kansas and Minnesota experiments. Boundary-Layer Meteorology, 50:31-47.
    [96] Kaye B H, Boardman R P. 1962. Cluster formation in dilute suspensions// Proceedings of Symposium on the Interaction between Fluids and Particles, Institution of Chemical Engineers, London.
    [97] Kim J, Balachandar S. 2012. Mean and fluctuating components of drag and lift forces on an isolated finite-sized particle in turbulence. Theoretical and Computational Fluid Dynamics, 26:185-204.
    [98] Kim J, Moin P, Moser R. 1987. Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of Fluid Mechanics, 177:133-166.
    [99] Kim K C, Adrian R J. 1999. Very large-scale motion in the outer layer. Physics of Fluids, 11:417-422.
    [100] Klewicki J C. 2010. Reynolds number dependence, scaling, and dynamics of turbulent boundary layers. Journal of Fluids Engineering-Transactions of the Asme, 132:094001.
    [101] Klewicki J C, Fife P, Wei T. 2009. On the logarithmic mean profile. Journal of Fluid Mechanics, 638:73-93.
    [102] Kline S J, Reynolds W C, Schraub F A, Runstadler P W. 1967. The structure of turbulent boundary layers. Journal of Fluid Mechanics, 30:741-773.
    [103] Kovasznay L S G, Kibens V, Blackwelder R F. 1970. Large-scale motion in the intermittent region of a turbulent boundary layer. Journal of Fluid Mechanics, 41:283-325.
    [104] Krogstad P ?, Antonia R A. 1994. Structure of turbulent boundary layers on smooth and rough walls. Journal of Fluid Mechanics, 277:1-21.
    [105] Kulick J D, Fessler J R, Eaton J K. 1994. Particle response and turbulence modification in fully developed channel flow. Journal of Fluid Mechanics, 277:109-134.
    [106] Kunkel G J, Marusic I. 2006. Study of the near-wall-turbulent region of the high-Reynolds-number boundary layer using an atmospheric flow. Journal of Fluid Mechanics, 548:375-402.
    [107] Kussin J, Sommerfeld M. 2002. Experimental studies on particle behaviour and turbulence modification in horizontal channel flow with different wall roughness. Experiments in Fluids, 33:143-159.
    [108] Lee J, Sung H. 2011. Very-large-scale motions in a turbulent boundary layer. Journal of Fluid Mechanics, 673:80-120.
    [109] Lee M, Moser R D. 2015. Direct numerical simulation of turbulent channel flow up to $Re_ ausim 5200$. Journal of Fluid Mechanics, 774:395-415.
    [110] Lee M, Ulerich R, Malaya N, Moser R D. 2014. Experiences from leadership computing in simulations of turbulent fluid flows. Computing in Science & Engineering, 16:24-31.
    [111] Lee J, Lee C. 2015. Modification of particle-laden near-wall turbulence: Effect of Stokes number. Physics of Fluids, 27:023303.
    [112] Li D, Wei A, Luo K. 2016. Direct numerical simulation of a particle-laden flow in a flat plate boundary layer. International Journal of Multiphase Flow, 79:124-143.
    [113] Li Y, Mclaughlin J B, Kontomaris K. 2001. Numerical simulation of particle-laden turbulent channel flow. Physics of Fluids, 13:2957-2967.
    [114] Li J, Wang H, Liu Z, Chen S, Zheng C. 2012. An experimental study on turbulence modification in the near-wall boundary layer of a dilute gas-particle channel flow. Experiments in Fluids, 53:1385-1403.
    [115] Liljegren L M, Vlachos N S. 1990. Laser velocimetry measurements in a horizontal gas-solid pipe flow. Experiments in Fluids, 9:205-212.
    [116] Liu H, Bo T, Liang Y. 2017 a. The variation of large-scale structure inclination angles in high Reynolds number atmospheric surface layers. Physics of Fluids, 29:035104.
    [117] Liu H, Wang G, Zheng X. 2017 b. Spatial length scales of large-scale structures in atmospheric surface layers. Physical Review Fluids, 2:064606.
    [118] Liu H, Wang G, Zheng X. 2019. Amplitude modulation between multi-scale turbulent motions in high-Reynolds-number atmospheric surface layers. Journal of Fluid Mechanics, 861:585-607.
    [119] Liu Z, Adrian R J, Hanratty T J. 2001. Large-scale modes of turbulent channel flow: Transport and structure. Journal of Fluid Mechanics, 448:53-80.
    [120] Ljus C, Johansson B, Almstedt A E. 2002. Turbulence modification by particles in a horizontal pipe flow. International Journal of Multiphase Flow, 28:1075-1090.
    [121] Lozano-Durán A, Jiménez J. 2014. Effect of the computational domain on direct simulations of turbulent channels up to $Re_ au= 4200$. Physics of Fluids, 26:011702.
    [122] Lucci F, Ferrante A, Elghobashi S. 2011. Is Stokes number an appropriate indicator for turbulence modulation by particles of taylor-length-scale size? Physics of Fluids, 23:025101.
    [123] Luo K, Hu C, Wu F. 2017. Direct numerical simulation of turbulent boundary layer with fully resolved particles at low volume fraction. Physics of Fluids, 29:053301.
    [124] Luo K, Fan J, Cen K. 2005. Modulations on turbulent characteristics by dispersed particles in gas-solid jets. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 461:3279-3295.
    [125] Mand? M. 2009. Turbulence modulation by non-spherical particles. [PhD Thesis]. Aalborg: Department of Energy Technology, Aalborg University.
    [126] Marchioli C, Soldati A. 2002. Mechanisms for particle transfer and segregation in a turbulent boundary layer. Journal of Fluid Mechanics, 468:283-315.
    [127] Martin R L, Kok J F. 2018. Distinct thresholds for the initiation and cessation of aeolian saltation from field measurements. Journal of Geophysical Research: Earth Surface, 123:1546-1565.
    [128] Marusic I, Heuer W D C. 2007. Reynolds number invariance of the structure inclination angle in wall turbulence. Physical Review Letters, 99:114504.
    [129] Marusic I, Hutchins N. 2008. Study of the log-layer structure in wall turbulence over a very large range of Reynolds number. Flow Turbulence & Combustion, 81:115-130.
    [130] Marusic I, Kunkel G J. 2003. Streamwise turbulence intensity formulation for flat-plate boundary layers. Physics of Fluids, 15:2461-2464.
    [131] Marusic I, Kunkel G J, Porte-Agel F. 2001. Experimental study of wall boundary conditions for large-eddy simulation. Journal of Fluid Mechanics, 446:309-320.
    [132] Marusic I, Mathis R, Hutchins N. 2010 a. High Reynolds number effects in wall turbulence. International Journal of Heat and Fluid Flow, 31:418-428.
    [133] Marusic I, Mathis R, Hutchins N. 2010 b. Predictive model for wall-bounded turbulent flow. Science, 329:193-196.
    [134] Marusic I, Mathis R, Hutchins N. 2011. A wall-shear stress predictive model. Journal of Physics: Conference Series, 318:012003.
    [135] Marusic I, McKeon B J, Monkewitz P A, Nagib H M, Smits A J, Sreenivasan K R. 2010 c. Wall-bounded turbulent flows at high Reynolds numbers: Recent advances and key issues. Physics of Fluids, 22:065102.
    [136] Marusic I, Monty J P, Hultmark M, Smits A J. 2013. On the logarithmic region in wall turbulence. Journal of Fluid Mechanics, 716:R3.
    [137] Mathis R, Hutchins N, Marusic I. 2009 a. Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. Journal of Fluid Mechanics, 628:311-337.
    [138] Mathis R, Hutchins N, Marusic I. 2011 a. A predictive inner-outer model for streamwise turbulence statistics in wall-bounded flows. Journal of Fluid Mechanics, 681:537-566.
    [139] Mathis R, Marusic I, Chernyshenko S I, Hutchins N. 2013. Estimating wall-shear-stress fluctuations given an outer region input. Journal of Fluid Mechanics, 715:163-180.
    [140] Mathis R, Marusic I, Hutchins N, Sreenivasan K R. 2011 b. The relationship between the velocity skewness and the amplitude modulation of the small scale by the large scale in turbulent boundary layers. Physics of Fluids, 23:121702.
    [141] Mathis R, Monty J P, Hutchins N, Marusic I. 2009 b. Comparison of large-scale amplitude modulation in turbulent boundary layers, pipes, and channel flows. Physics of Fluids, 21:111703.
    [142] McEwan I K, Willetts B B. 1991. Numerical model of the saltation cloud. Aeolian Grain Transport 1. Acta Mechanica (Suppl), 53-66.
    [143] Mckeon B J, Li J, Jiang W, Morrison J F, Smits A J. 2004. Further observations on the mean velocity distribution in fully developed pipe flow. Journal of Fluid Mechanics, 501:135-147.
    [144] Mckeon B J, Morrison J F. 2007. Asymptotic scaling in turbulent pipe flow. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365:771-787.
    [145] McLaughlin J B. 1989. Aerosol particle deposition in numerically simulated channel flow. Physics of Fluids A: Fluid Dynamics, 1:1211-1224.
    [146] Metzger M M, Klewicki J C. 2001. A comparative study of near-wall turbulence in high and low Reynolds number boundary layers. Physics of Fluids, 13:692-701.
    [147] Millikan C B. 1938. A critical discussion of turbulent flows in channels and circular tubes//Proceedings of the Fifth International Congress of Applied Mechanics, 386-392.
    [148] Moin P, Kim J. 1982. Numerical investigation of turbulent channel flow. Journal of Fluid Mechanics, 118:1280-1284.
    [149] Moin P, Mahesh K. 1998. Direct numerical simulation: A tool in turbulence research. Annual Review of Fluid Mechanics, 30:539-578.
    [150] Monty J P, Stewart J A, Williams R C, Chong M S. 2007. Large-scale features in turbulent pipe and channel flows. Journal of Fluid Mechanics, 589:147-156.
    [151] Monty J P. 2005. Developments in smooth wall turbulent duct flows. [PhD Thesis]. Melbourne: Department of Mechanical and Manufacturing Engineering, University of Melbourne.
    [152] Morris S C, Stolpa S R, Slaboch P E, Klewicki J C. 2007. Near-surface particle image velocimetry measurements in a transitionally rough-wall atmospheric boundary layer. Journal of Fluid Mechanics, 580:319-338.
    [153] Morrison J F, Mckeon B J, Jiang W, Smits A J. 2004. Scaling of the streamwise velocity component in turbulent pipe flow. Journal of Fluid Mechanics, 508:99-131.
    [154] Moser R D, Kim J, Mansour N N. 1999. Direct numerical simulation of turbulent channel flow up to $Re_ au=590$. Physics of Fluids, 11:943-945.
    [155] Nagib H M, Chauhan K A. 2008. Variations of von Kármán coefficient in canonical flows. Physics of Fluids, 20:101518.
    [156] Nagib H M, Chauhan K A, Monkewitz P A. 2007. Approach to an asymptotic state for zero pressure gradient turbulent boundary layers. Philosophical Transactions of the Royal Society A-Mathematical Physical And Engineering Sciences, 365:755-770.
    [157] Nickels T B, Marusic I, Hafez S, Hutchins N, Chong M S. 2007. Some predictions of the attached eddy model for a high Reynolds number boundary layer. Philosophical Transactions of the Royal Society A-Mathematical Physical And Engineering Sciences, 365:807-822.
    [158] Ninto Y, Garcia M H. 1996. Experiments on particle—turbulence interactions in the near-wall region of an open channel flow: Implications for sediment transport. Journal of Fluid Mechanics, 326:285-319.
    [159] Oertel H. 2005. Prandtl's Essntials of Fluid Mechanics. 2nd edn. Springer.
    [160] Offen G, Kline S. 1975. A proposed model of the bursting process in turbulent boundary layers. Journal of Fluid Mechanics, 70:209-228.
    [161] Orszag S A, Patterson G S. 1972. Numerical simulation of turbulence //M. Rosenblatt bt C. Van Atta eds.Statistical Models of' Ttirhulciice., New York: Springer.
    [162] ?sterlund J M, Johansson A V, Nagib H M, Hites M H. 2000. A note on the overlap region in turbulent boundary layers. Physics of Fluids, 12:1-4.
    [163] Owen P R. 1969. Pneumatic transport. Journal of Fluid Mechanics, 39:407-432.
    [164] Pan Y, Banerjee S. 1996. Numerical simulation of particle interactions with wall turbulence. Physics of Fluids, 8:2733-2755.
    [165] Panton R L. 2001. Overview of the self-sustaining mechanisms of wall turbulence. Progress in Aerospace Sciences, 37:341-383.
    [166] Pathikonda G, Christensen K T. 2017. Inner-outer interactions in a turbulent boundary layer overlying complex roughness. physical Review Fluids, 2:044603.
    [167] Perry A E, Henbest S, Chong M S. 1986. A theoretical and experimental study of wall turbulence. Journal of Fluid Mechanics, 165:163-199.
    [168] Porté Agel F. 2004. The role of coherent structures in subfilter-scale dissipation of turbulence measured in the atmospheric surface layer. Journal of Turbulence, 5:040.
    [169] Portela L M, Oliemans R V A. 2003. Eulerian-Lagrangian DNS/LES of particle-turbulence interactions in wall-bounded flows. International Journal for Numerical Methods in Fluids, 43:1045-1065.
    [170] Prandtl L. 1910. Eine Beziehung zwischen Warmeaustausch and Stromungswiderstand der Flussigkeiten. Phys. Z., 11:1072-1078.
    [171] Prandtl L. 1925. Bericht über Untersuchungen zur ausgebildeten Turbulenz. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 5:136-139.
    [172] Rashidi Mr, Hetsroni G, Banerjee S. 1990. Particle-turbulence interaction in a boundary layer. International Journal of Multiphase Flow, 16:935-949.
    [173] Rasmussen K R, S?rensen M. 1999. Aeolian mass transport near the saltation threshold. Earth Surface Processes and Landforms, 24:413-422.
    [174] Reichardt H. 1933. Die Quadratischen Mittelwerte der Lanesschwankungen in der Turbulenten Kanalstromung. Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), 3:177-180.
    [175] Reynolds O. 1894. On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philosophical Transactions of the Royal Society of London A, 186:123-164.
    [176] Richter D H, Sullivan P P. 2014. Modification of near-wall coherent structures by inertial particles. Physics of Fluids, 26:103304.
    [177] Righetti M, Giovanni P R. 2004. Particle-fluid interactions in a plane near-wall turbulent flow. Journal of Fluid Mechanics, 505:93-121.
    [178] Robinson S K. 1991. Coherent motions in the turbulent boundary layer. Annual Review of Fluid Mechanics, 23:601-639.
    [179] Rogers C B, Eaton J K. 1991. The effect of small particles on fluid turbulence in a flat-plate, turbulent boundary layer in air. Physics of Fluids A: Fluid Dynamics, 3:928-937.
    [180] Samie M, Marusic I, Hutchins N, Fu M K, Fan Y, Hultmark M, Smits A J. 2018. Fully resolved measurements of turbulent boundary layer flows up to $Re_ au=20000$. Journal of Fluid Mechanics, 851, 391-415.
    [181] Sato Y, Koichi H. 1996. Transport process of turbulence energy in particle-laden turbulent flow. International Journal of Heat and Fluid Flow, 17:202-210.
    [182] Schlatter P, ?rlü R. 2010. Quantifying the interaction between large and small scales in wall-bounded turbulent flows: A note of caution. Physicsof Fluids, 22:051704.
    [183] Schlichting H, Gersten K, Krause E, Oertel H J, Mayes C. 2000. Boundary Layer Theory. 8th edn. Springer.
    [184] Schultz M P, Flack K A. 2013. Reynolds-number scaling of turbulent channel flow. Physics of Fluids, 25:011702.
    [185] Serafimovich A, Thomas C, Foken T. 2011. Vertical and horizontal transport of energy and matter by coherent motions in a tall spruce canopy. Boundary-Layer Meteorology, 140:429-451.
    [186] Sillero J A, Jimenez J, Moser R D. 2013. One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to $delta^{+}$ approximate to 2000. Physics of Fluids, 25:105102.
    [187] Sillero J A, Jimenez J, Moser R D. 2014. Two-point statistics for turbulent boundary layers and channels at Reynolds numbers up to $delta^{+}$ approximate to 2000. Physics of Fluids, 26:105109.
    [188] Smits A J, Mckeon B J, Marusic I. 2011. High-Reynolds number wall turbulence. Annual Review of Fluid Mechanics, 43:353-375.
    [189] Spalart P R. 1988. Vortex methods for separated flows// VKI, Computational Fluid Dynamics.
    [190] Squire D T, Baars W J, Hutchins N, Marusic I. 2016. Inner-outer interactions in rough-wall turbulence. Journal of Turbulence, 17:1159-1172.
    [191] Squire D T, Hutchins N, Morrill-Winter C, Schultz M P, Klewicki J C, Marusic I. 2017. Applicability of Taylor's hypothesis in rough and smooth-wall boundary layers. Journal of Fluid Mechanics, 812:398-417.
    [192] Stout J E, Zobeck T M. 1997. Intermittent saltation. Sedimentology, 44:959-970.
    [193] Talluru K M, Baidya R, Hutchins N, Marusic I. 2014. Amplitude modulation of all three velocity components in turbulent boundary layers. Journal of Fluid Mechanics, 746:R1.
    [194] Tanaka T, Eaton, J.K.. 2008. Classification of turbulence modification by dispersed spheres using a novel di-mensionless number. Physical Review Letters, 101:114502.
    [195] Tanaka T, Eaton J K. 2010. Sub-Kolmogorov resolution partical image velocimetry measurements of particle laden forced turbulence. Journal of Fluid Mechanics, 643:177-206.
    [196] Taniere A, Oesterle B, Monnier J C. 1997. On the behaviour of solid particles in a horizontal boundary layer with turbulence and saltation effects. Experiments in Fluids, 23:463-471.
    [197] Tay Godwin F K, Kuhn D C S, Tachie M F. 2015. Effects of sedimenting particles on the turbulence structure in a horizontal channel flow. Physics of Fluids, 27:025106.
    [198] Theodorsen T. 1952. Mechanism of turbulence// Proceedings of the Second Midwestern Conference on Fluid Mechanics. Ohio State University, USA.
    [199] Theodorsen T. 1955 The structure of turbulence// 50 Jahre Grenzschichtforschung. H. Gortler & W. Tollmien Vieweg and Sohn. pp52-56.
    [200] Tomkins C D. 1997. A partucle image velocimetry study of ciherent structures in a turbulent boundary layer. [PhD Thesis]. Urbana-Champaign: University of Illions.
    [201] Tomkins C D, Adrian R J. 2003. Spanwise structure and scale growth in turbulent boundary layers. Journal of Fluid Mechanics, 490:37-74.
    [202] Tritton D J. 1967. Some new correlation measurements in a turbulent boundary layer. Journal of Fluid Mechanics, 28:439-462.
    [203] Tsuji Y, Marusic I, Johansson A V. 2016. Amplitude modulation of pressure in turbulent boundary layer. International Journal of Heat And Fluid Flow, 61:2-11.
    [204] Tsuji Y, Morikawa Y. 1982. LDV measurements of an air-solid two-phase flow in a horizontal pipe. Journal of Fluid Mechanics, 120:385-409.
    [205] Tsuji Y, Morikawa Y, Shiomi H. 1984. LDV measurements of an air-solid two-phase flow in a vertical pipe. Journal of Fluid Mechanics, 139:417-434.
    [206] Vallikivi M, Hultmark M, Smits A J. 2015 a. Turbulent boundary layer statistics at very high Reynolds number. Journal of Fluid Mechanics, 779:371-389.
    [207] Vallikivi M, Ganapathisubramani B, Smits A J. 2015 b. Spectral scaling in boundary layers and pipes at very high Reynolds numbers. Journal of Fluid Mechanics, 771:303-326.
    [208] Varaksin A Y, Polezhaev Y V, Polyakov A F. 2000. Effect of particle concentration on fluctuating velocity of the disperse phase for turbulent pipe flow. International Journal of Heat and Fluid Flow, 21:562-567.
    [209] Vincenti P, Klewicki J, Morrill-Winter C, White C M, Wosnik M. 2013. Streamwise velocity statistics in turbulent boundary layers that spatially develop to high Reynolds number. Experiments in Fluids, 54:1629.
    [210] Von Kármán T. 1930. Mechanische ?nlichkeit und turbulenz. Nachrichten von der Gesellschaft der Wissenschaften zu G?ttingen, Mathematisch-Physikalische Klasse, 1930: 58-76.
    [211] Wang G, Zheng X. 2016. Very large scale motions in the atmospheric surface layer: A field investigation. Journal of Fluid Mechanics. 802:464-489.
    [212] Wang G, Zheng X, Tao J. 2017. Very large scale motions and PM10 concentration in a high-Re boundary layer. Physics of Fluids, 29:061701.
    [213] Wang P, Feng S, Zheng X, Sung H. 2019. The scale characteristics and formation mechanism of aeolian sand streamers based on large eddy simulation, Journal of Geophysical Research Atmosphere, 124:11372-11388.
    [214] Wang J, Levy E K. 2006. Particle behavior in the turbulent boundary layer of a dilute gas-particle flow past a flat plate. Experimental Thermal and Fluid Science, 30:473-483.
    [215] Wang Q, Squires K D. 1996. Large eddy simulation of particle-laden turbulent channel flow. Physics of Fluid, 8:1207-1223.
    [216] Wang W, Pan C, Wang J. 2018. Quasi-bivariate variational mode decomposition as a tool of scale analysis in wall-bounded turbulence. Experiments in Fluids, 59:1-18.
    [217] Wei T, Fife P, Klewicki J, Mcmurtry P. 2005. Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows. Journal of Fluid Mechanics, 522:303-327.
    [218] Willert C, Eisfelder M, Stanislas M, Klinner J, Talamelli A. 2017. Near-wall statistics of a turbulent pipe flow at shear Reynolds numbers up to 40000. Journal of Fluid Mechanics, 826:R5.
    [219] WMO. 1983. Guide to Meteorological Instruments and Methods of Observation. 5th edn. Geneva: The World Meteorological Organization.
    [220] Wu X, Moin P. 2009. Forest of hairpins in a low-Reynolds-number zero-pressure-gradient flat-plate boundary layer. Physics of Fluids, 21:091106.
    [221] Yamamoto Y, Tsuji Y. 2018. Numerical evidence of logarithmic regions in channel flow at $Re_ au= 8000$. Physical Review Fluids, 3:012602.
    [222] Yang H, Bo T. 2018. Scaling of wall-normal turbulence intensity and vertical eddy Structures in the atmospheric surface layer. Boundary-Layer Meteorology, 166:199-216.
    [223] Yang X, Sadique J, Mittal R, Meneveau C. 2015. Integral wall model for large eddy simulations of wall-bounded turbulent flows. Physics of Fluids, 27:025112.
    [224] Yao Y, Huang W, Xu C. 2018. Amplitude modulation and extreme events inturbulent channel flow. Acta Mechanica Sinica, 34:1-9.
    [225] Yin G, Huang W, Xu C. 2018. Prediction of near-wall turbulence using minimal flow unit. Journal of Fluid Mechanics, 841:654-673.
    [226] Zagarola M V, Smits A J. 1998. Mean-flow scaling of turbulent pipe flow. Journal of Fluid Mechanics, 373:33-79.
    [227] Zeng Q, Cheng X, Hu F, Peng Z. 2010. Gustiness and coherent structure of strong winds and their role in dust emission and entrainment. Advances in Atmospheric Sciences, 27:1-13.
    [228] Zhang W, Wang Y, Sang J L. 2008. Simultaneous PIV and PTV measurements of wind and sand particle velocities. Experiments in Fluids, 45:241-256.
    [229] Zhang Y, Hu R, Zheng X. 2018. Large-scale coherent structures of suspended dust concentration in the neutral atmospheric surface layer: A large-eddy simulation study. Physics of Fluids, 30:046601.
    [230] Zhao R, Smits A J. 2006. Binormal cooling errors in crossed hot-wire measurements. Experiments in Fluids, 40:212-217.
    [231] Zhao R, Smits A J. 2007. Scaling of the wall-normal turbulence component in high-Reynolds-number pipe flow. Journal of Fluid Mechanics, 576:457-473.
    [232] Zheng X. 2009. Mechanics of Wind-blown Sand Movements. Springer Science & Business Media.
    [233] Zheng X. 2018. Modulations of sand particles on VLSMs in sand-laden flows. JFM Symposia: From Fundamentals to Applied Fluid Mechanics. November 9-11, Beijing.
    [234] Zheng X, Jin T, Wang P. 2020. The influence of surface stress fluctuation on saltation sand transport around threshold. Journal of Geophysical Research: Earth Surface, 125: e2019JF005246.
    [235] Zheng X, Wang G, Bo T, Zhu W. 2015. Field observations on the turbulent features of the near-surface flow fields and dust transport during dust storms. Procedia IUTAM, 17:13-19.
    [236] Zheng X, Zhang J, Wang G, Liu H, Zhu W. 2013. Investigation on very large scale motions (VLSMs) and their influence in a dust storm. Science China (Physics, Mechanics & Astronomy), 56:306-314.
  • 加载中
计量
  • 文章访问数:  3552
  • HTML全文浏览量:  780
  • PDF下载量:  1077
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-04
  • 刊出日期:  2020-10-08

目录

    /

    返回文章
    返回

    Baidu
    map