CONTINUUM THEORY OF DEFECTS AND ITS APPLICATION TO THE STUDY OF CONSTITUTIVE EQUATIONS Ⅱ. Gauge Field Theories of Defects
-
摘要: 详细评述了缺陷连续统的规范场理论,该理论是近代材料科学和固体力学中新发展起来颇有意义的一个分支。首先强调了Noether定理及其逆定理在构造缺陷规范场理论中的重要性。同时基于Yang-Mills普适规范场构造,包括对SO(3)T(3)群的最小替换和最小耦合原理,系统地介绍了Golebiewska-Lasota,Edelen,Kadic和Edelen等人的原始性工作及他们的贡献。本文表明,Kadic和Edelen的理论是基于一组缺陷动力学的线性连续性方程发展起来的,不能和关于缺陷场的现有几何理论完全协调起来。考虑到这一点,本文提供了另一种方法来建立非线性弹性规范场的相应理论,这里考虑了Poincaré规范群SO(3)T(3).采用类似于研究引力场理论的Kibble方法,导出了缺陷连续统的拉氏密度。非完整坐标变换和非欧联络系数在数学上完全等价于子Poincaré群SO(3)T(3)的规范场。因此,本文的规范场理论和4维物质流形的缺陷场的非线性几何理论是完全一致的,并证明在弱缺陷条件下,可以简化到Kadic和Edelen的结果。Abstract: The gauge field theory of defects as a newly-developed and emerging branch in modern solid mechanics and material science is reviewed in detail. Noether's theorem and its inverse theorem, which play a significant role in the construction of the defect gauge theory is first introduced. The original works and contributions due to Golebicwska-Lasota, Edelen, Kadic and Edelen, etc, are systematically brought in on the basis of Yang-Mills universal gauge theory construction, including the minimal replacement pri...
-
Key words:
- defect continuum /
- material manifold /
- gauge field theory /
- constitutive equations /
- dislocation /
- disclination
计量
- 文章访问数: 2522
- HTML全文浏览量: 182
- PDF下载量: 739
- 被引次数: 0