留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

局部散射理论在高超声速边界层转捩预测中应用的检验

李斯特 董明

李斯特, 董明. 局部散射理论在高超声速边界层转捩预测中应用的检验. 力学进展, 2021, 51(2): 364-375 doi: 10.6052/1000-0992-21-016
引用本文: 李斯特, 董明. 局部散射理论在高超声速边界层转捩预测中应用的检验. 力学进展, 2021, 51(2): 364-375 doi: 10.6052/1000-0992-21-016
Li S T, Dong M. Verification of local scattering theory as is applied to transition prediction in hypersonic boundary layers. Advances in Mechanics, 2021, 51(2): 364-375 doi: 10.6052/1000-0992-21-016
Citation: Li S T, Dong M. Verification of local scattering theory as is applied to transition prediction in hypersonic boundary layers. Advances in Mechanics, 2021, 51(2): 364-375 doi: 10.6052/1000-0992-21-016

局部散射理论在高超声速边界层转捩预测中应用的检验

doi: 10.6052/1000-0992-21-016
基金项目: 本文受到国家自然科学基金的资助 (U20B2003, 11772224)
详细信息
    作者简介:

    董明, 中国科学院力学研究所研究员、博士生导师. 《气体物理》、《力学学报》、《力学进展》杂志青年编委. 主要研究领域为流动稳定性、边界层转捩、奇异摄动法等. 曾受欧盟玛丽居里学者、国家自然科学基金重点项目等资助

    通讯作者:

    dongming@imech.ac.cn

  • 中图分类号: V211.3

Verification of local scattering theory as is applied to transition prediction in hypersonic boundary layers

More Information
  • 摘要: eN方法是物理意义明确的转捩预测方法之一, 但它无法考虑边界层中的局部突变(如粗糙元、缝隙、台阶等)对转捩的影响. 而后者在飞行器表面经常出现. 近期发展的局部散射理论框架提供了该问题的有效解决途径. 该理论框架从转捩的物理机理出发, 定量刻画局部感受性和线性模态的局部散射两个机制, 并用参数化的感受性系数和透射系数修正转捩判据. 为了验证该理论框架的有效性, 设计了一套高超声速边界层的直接数值模拟方案: 分别在光滑壁与粗糙壁两种工况下引入相同的初始失稳模态, 计算它们触发转捩的过程, 并定量考察粗糙元对转捩的影响. 数值模拟结果与描述线性模态局部散射机制的理论预测吻合很好.

     

  • 图  1  物理模型示意图

    图  2  粗糙元附近的网格分布和贴体坐标系示意图

    图  3  计算域入口增长率随频率的分布

    图  4  基本流压力等值线图

    图  5  突变附近基本流压力等值线图与流线

    图  6  傅里叶分量的幅值与LST (linear stability theory)预测结果的对比

    图  7  各扰动温度幅值沿流向变化

    图  8  归一化透射系数

    图  9  壁面摩阻系数沿流向的变化

    A-1  不同网格数下的壁面摩阻系数对比

    A-2  扰动温度流向演化与Zhao 等 (2019)对比

    表  1  模态扰动参数

    $ i $ $\omega_i$ $\beta_i$ $A_0$
    1 0.6 0.7972 0.001
    2 1 0 0.001
    3 1.6 0 0.0005
    4 1.8 0 0.0005
    5 2.2 0 0.0005
    下载: 导出CSV
    Baidu
  • [1] 董明. 2020. 边界层转捩预测中的局部散射理论. 空气动力学学报, 38: 286-298 (Dong M. 2020. Local scattering theory in boundary layer transition prediction. Acta Aerodynamica Sinica, 38: 286-298).
    [2] 赵磊. 2017. 高超声速后掠钝板边界层横流定常涡失稳的研究. [博士论文]. 天津: 天津大学

    Zhao L. 2017. Study on instability of stationary crossflow vortices in hypersonic swept blunt plate boundary layers. [PhD Thesis]. Tianjin: Tianjin University
    [3] 周恒, 张涵信. 2017. 有关近空间高超声速飞行器边界层转捩和湍流的两个问题. 空气动力学学报, 35: 151-155 (Zhou H, Zhang H X. 2017. Two problems in the transition and turbulence for near space hypersonic flying vehicles. Acta Aerodynamica Sinica, 35: 151-155). doi: 10.7638/kqdlxxb-2017.0016
    [4] Cebeci T, Stewartson K. 1980. On stability and transition in three-dimensional flows. AIAA Journal, 18: 398-405. doi: 10.2514/3.50772
    [5] Dong M. 2020. Scattering of Tollmien-Schlichting waves by localized roughness in transonic boundary layers. Applied Mathematics and Mechanics (English Edition), 41: 1105-1124. doi: 10.1007/s10483-020-2622-6
    [6] Dong M, Li C. 2021. Effect of two-dimensional short rectangular indentations on hypersonic boundary-layer transition. AIAA Journal, DOI: 10.2514/1.J059957
    [7] Dong M, Liu Y H, Wu X S. 2020. Receptivity of inviscid modes in supersonic boundary layers due to scattering of free-stream sound by localised wall roughness. Journal of Fluid Mechanics, 896: A23. doi: 10.1017/jfm.2020.358
    [8] Dong M, Luo J S. 2007. Mechanism of transition in a hypersonic sharp cone boundary layer with zero angle of attack. Applied Mathematics and Mechanics (English Edition), 28: 1019-1028. doi: 10.1007/s10483-007-0804-2
    [9] Dong M, Zhao L. 2021. An asymptotic theory of the roughness impact on inviscid Mack modes in supersonic/hypersonic boundary layers. Journal of Fluid Mechanics, 913: A22. doi: 10.1017/jfm.2020.1146
    [10] Duan L, Wang X W, Zhong X L. 2013. Stabilization of a Mach 5.92 boundary layer by two-dimensional finite-height roughness. AIAA Journal, 51: 266-270. doi: 10.2514/1.J051643
    [11] Fong K D, Wang X W, Zhong X L. 2014. Numerical simulation of roughness effect on the stability of a hypersonic boundary layer. Computers and Fluids, 96: 350-367. doi: 10.1016/j.compfluid.2014.01.009
    [12] Fong K D, Wang X W, Zhong X L. 2015. Parametric study on stabilization of hypersonic boundary layer waves using 2-D surface roughness//53rd AIAA Aerospace Sciences Meeting, 2015, Kissimmee, Florida.
    [13] Fujii K. 2006. Experiment of the two-dimensional roughness effect on hypersonic boundary-layer transition. Journal of Spacecraft and Rockets, 43: 731-738. doi: 10.2514/1.17860
    [14] Kachanov Y S. 1994. Physical mechanisms of laminar-boundary-layer transition. Annual Review of Fluid Mechanics, 26: 411-482. doi: 10.1146/annurev.fl.26.010194.002211
    [15] Liu Y H, Dong M, Wu X S. 2020. Generation of first Mack modes in supersonic boundary layers by slow acoustic waves interacting with streamwise isolated wall roughness. Journal of Fluid Mechanics, 888: A10. doi: 10.1017/jfm.2020.38
    [16] Schneider S P. 2008a. Effects of roughness on hypersonic boundary-layer transition. Journal of Spacecraft and Rockets, 45: 193-209. doi: 10.2514/1.29713
    [17] Schneider S P. 2008b. Summary of hypersonic boundary-layer transition experiments on blunt bodies with roughness. Journal of Spacecraft and Rockets, 45: 1090-1105. doi: 10.2514/1.37431
    [18] Smith A M O. 1956. Transition, pressure gradient, and stability theory//IX International Congress for Applied Mechanics, 1956, Brussels, Belgium.
    [19] Su C H, Zhou H. 2009. Transition prediction of a hypersonic boundary layer over a cone at small angle of attack with the improvement of e-N method. Science in China Series G: Physics, Mechanics and Astronomy, 52: 115-123. doi: 10.1007/s11433-009-0006-4
    [20] Tang Q, Zhu Y D, Chen X, Lee C. 2015. Development of second-mode instability in a Mach 6 flat plate boundary layer with two-dimensional roughness. Physics of Fluids, 27: 064105. doi: 10.1063/1.4922389
    [21] Wheaton B M, Schneider S P. 2010. Roughness-induced instability in a laminar boundary layer at Mach 6//48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 2010, Orlando, Florida.
    [22] Wu X S, Dong M. 2016. A local scattering theory for the effects of isolated roughness on boundary-layer instability and transition: transmission coefficient as an eigenvalue. Journal of Fluid Mechanics, 794: 68-108. doi: 10.1017/jfm.2016.125
    [23] Zhao L, Dong M, Yang Y G. 2019. Harmonic linearized Navier−Stokes equation on describing the effect of surface roughness on hypersonic boundary-layer transition. Physics of Fluids, 31: 034108. doi: 10.1063/1.5086912
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  824
  • HTML全文浏览量:  271
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-09
  • 录用日期:  2021-06-02
  • 网络出版日期:  2021-06-07
  • 刊出日期:  2021-06-25

目录

    /

    返回文章
    返回

    Baidu
    map