-
摘要: 国家火星探测任务是建设航天强国进程中的重大标志性工程, 是中国航天走向更远深空的里程碑工程. 智能材料这种集材料、结构和功能于一体的先进材料将会对火星探测任务有所助力. 形状记忆聚合物及其复合材料作为一种典型的智能材料, 可在有效减轻载荷的同时实现自主变形, 已经在地球同步轨道航天器的应用中崭露头角. 因此有必要研究这种新型环氧基形状记忆聚合物复合材料应用于火星探测工程的可能性. 首先, 针对“天问一号”火星探测器的任务需求, 设计了一个具有自释放功能的着陆平台国旗装置. 其中的锁紧释放装置由碳纤维增强的形状记忆聚合物复合材料制成, 分别从静态拉伸力学性能、动态热机械性能和形状记忆性能三个角度评估了空间辐照和长期存储对形状记忆聚合物复合材料的影响. 其中, 空间辐照包括γ射线和紫外射线, 辐照剂量分别为5 × 105 rad和23.6 kCal. 长期存储分为低温−196℃、室温25℃和高温85℃存储30天, 和低温−196℃存储457天两组实验. 最后, 从“祝融号”火星车所携带相机拍摄的照片可以看到五星红旗被成功释放, 旗面平整、图案清晰. 这说明所研究的环氧基形状记忆聚合物复合材料可成功应用于火星探测任务, 未来有望以多种结构形式助力我国的火星采样返回乃至其它深空探测任务.
-
关键词:
- 形状记忆聚合物复合材料 /
- 空间辐照 /
- 长期存储 /
- 自释放机构 /
- “天问一号”火星探测器
Abstract: The Mars exploration mission is a major landmark project in building a powerful aerospace country and a milestone project for China's aerospace to move further into deep space. Advanced materials integrating structures with functions can do a favor. Shape memory polymers and their composites, as typical smart materials, can effectively reduce the payload while achieving autonomous deformation, and have been successfully applied to geosynchronous orbit. Therefore, we investigate the feasibility of applying these new materials to Mars explorations. Firstly, according to the requirements of the “Tianwen-1” mission, a self-deployable flag mechanism was proposed. Then from the perspectives of static tensile mechanical properties, dynamic mechanical analysis and shape memory performance, γ and UV irradiation and long-term storage (temperatures (−196 ℃, 25 ℃ and 85 ℃) for 30 days and −196 ℃ for 457 days) effects on shape memory polymer composites were investigated. Finally, according to the photos from the “Zhurong” rover, the National Flag of China was successfully released, and the flag pattern was clear and distinct. This shows that the shape memory polymer composites have been successfully applied to Mars explorations. In the future, it is expected to assist China’s Mars sample return program and other interstellar exploration missions in diverse structural architectures. -
表 1 火星西北部Gala 火山口从2012年至2015年的气候表(数据来自维基百科)
月份 1 2 3 4 5 6 7 8 9 10 11 12 全年 记录最高温/℃ 6 6 1 0 7 14 20 19 7 7 8 8 20 平均最高温/℃ −7 −20 −23 −20 −4 0 2 1 1 4 −1 −3 −5.7 记录最低温/℃ −82 −86 −88 −87 −85 −78 −76 −69 −68 −73 −73 −77 −78.5 平均最低温/℃ −95 −127 −114 −97 −98 −125 −84 −80 −78 −78 −83 −110 −127 -
董聪, 夏人伟. 1996. 智能结构设计与控制中的若干核心技术问题. 力学进展, 026: 166-178 (Dong C, Xia R. 1996. Some key technologies in the design and control of intelligent structures. Advances in Mechanics, 026: 166-178). doi: 10.6052/1000-0992-1996-2-J1996-016 国家航天局. 2021. 天问一号探测器着陆火星首批科学影像图揭幕. http://www.cnsa.gov.cn/n6758823/n6758838/c6812123/content.html 欧阳自远, 李春来, 邹永廖. 2010. 嫦娥一号的初步科学成果. 自然杂志, 32: 249-266 (Ou-Yang Z, Li C, Zou Y. 2010. The primary science results from the Chang’e-1 probe. Chinese Journal of Nature, 32: 249-266). 孙泽洲, 张廷新, 张熇等. 2014. 嫦娥三号探测器的技术设计与成就. 中国科学: 技术科学, 4: 331-343Sun Z, Zhang T, Zhang H, et al. The technical design and achievements of Chang’e-3 probe. Science China Technological Sciences, 4: 331-343). 吴伟仁, 王琼, 唐玉华等. 2017. “嫦娥4号”月球背面软着陆任务设计. 深空探测学报, 4: 111-117 (Wu W, Wang Q, Tang Y, et al. 2017. Design of Chang’e-4 lunar farside soft-landing mission. Journal of Deep Space Exploration, 4: 111-117). doi: 10.15982/j.issn.2095-7777.2017.02.002 杨庆生, 魏巍, 马连华. 2014. 智能软材料热-电-化-力学耦合问题的研究进展. 力学进展, 44: 201404 (Yang Q, Wei W and Ma L. 2014. Research advances in thermos-electro-chemo-mechanical coupling problem for intelligent soft materials. Advances in Mechanics, 44: 201404). doi: 10.6052/1000-0992-13-091 张豆, 刘彦菊, 冷劲松. 2021. 纤维增强形状记忆聚合物复合材料及其航天应用. 复合材料学报, 38: 698-711 (Zhang D, Liu Y, Leng J. 2021. Fiber reinforced shape memory polymer composites and their applications in aerospace. Acta Compositae Sinica, 38: 698-711). doi: 10.13801/j.cnki.fhclxb.20201224.002 Crisp J, Adler M, Matijevic J, et al. 2003. Mars exploration rover mission. Journal of Geophysical Research, 108: E12,8061. Erickson J. 2006. Living the dream-an overview of the Mars exploration project. IEEE Robotics & Automation Magazine, 13: 12-18. Farley K, Williford K, Stack K, et al. 2020. Mars 2020 mission overview. Space Science Reviews, 216: 1-41. doi: 10.1007/s11214-019-0619-5 Gao H, Lan X, Liu L, et al. 2017. Study on performances of colorless and transparent shape memory polyimide film in space thermal cycling, atomic oxygen and ultraviolet irradiation environments. Smart Materials and Structures, 26: 095001. doi: 10.1088/1361-665X/aa7bd7 Gierasch P, Sagan C. 1971. A preliminary assessment of Martian wind regimes. Icarus, 14: 312-318. doi: 10.1016/0019-1035(71)90003-0 Hassler D, Zeitlin C, Wimmer-Schweingruber R, et al. 2014. Mars’ surface radiation environment measured with the Mars Science Laboratory’s Curiosity rover. Science, 343: 6169. Hoffman J, Chaney R, Chaney R, et al. 2008. Phoenix Mars mission—the thermal evolved gas analyzer. Journal of the American Society for Mass Spectrometry, 19: 1377-1383. doi: 10.1016/j.jasms.2008.07.015 Lakdawalla E. 2018. The design and engineering of curiosity: How the Mars rover performs its job. New York: Springer. Lan X, Liu L, Zhang F, et al 2020. World's first spaceflight on-orbit demonstration of a flexible solar array system based on shape memory polymer composites. Science China Technological Sciences, 63: 1436-1451. Lan X, Liu Y, Lv H, et al. 2009. Fiber reinforced shape-memory polymer composite and its application in a deployable hinge. Smart Materials and Structures, 18: 024002. doi: 10.1088/0964-1726/18/2/024002 Leng J, Lan X, Liu Y, et al. 2011. Shape-memory polymers and their composites: Stimulus methods and applications. Progress in Materials Science, 56: 1077-1135. doi: 10.1016/j.pmatsci.2011.03.001 Leng J, Wu X, Liu Y. 2009. Effect of a linear monomer on the thermomechanical properties of epoxy shape-memory polymer. Smart Materials and Strucutres, 18: 095031. doi: 10.1088/0964-1726/18/9/095031 Leng J, Xie F, Wu X, et al. 2013. Effect of the γ-radiation on the properties of epoxy-based shape memory polymers. Journal of Intelligent Material Systems and Structures, 25: 1256-1263. Li C, Liu J, Ren X, et al. 2015. The Chang’e 3 mission overview. Space Science Reviews, 190: 85-101. Li F, Liu L, Lan X, et al. 2019. Ground and geostationary orbital qualification of a sunlight-stimulated substrate based on shape memory polymer composite. Smart Materials and Structures, 28: 075023. doi: 10.1088/1361-665X/ab18b7 Liu T, Liu L, Yu M, et al. 2018. Integrative hinge based on shape memory polymer composites: Material, design, properties and application. Composite Structures, 206: 164-176. doi: 10.1016/j.compstruct.2018.08.041 Liu T, Zhou T, Yao Y, et al. 2017. Stimulus methods of multi-functional shape memory polymer nanocomposites: A review. Composites Part A:Applied Science and Manufacturing, 100: 20-30. doi: 10.1016/j.compositesa.2017.04.022 Liu Y, Du H, Liu L, et al. 2014. Shape memory polymers and their composites in aerospace applications: a review. Smart Materials and Structures, 23: 023001. doi: 10.1088/0964-1726/23/2/023001 Naderi F, McCleese D, Jordan J. 2006. Mars exploration. IEEE Robotics and Automation Magazine, 13: 72-82. NASA. Mars Facts. https://web.archive.org/web/20130607140708/http://quest.nasa.gov/aero/planetary/mars.html. NASA. 2015. Curiosity's Stars and Stripes. https://mars.nasa.gov/resources/4693/curiositys-stars-and-stripes/. NASA. 2020. Messages on Mars Perseverance Rover. https://mars.nasa.gov/mars2020/spacecraft/rover/markings/. Qian Y, Xiao L, Wang Q, et al. 2021. China's Chang'e-5 landing site: Geology, stratigraphy, and provenance of materials. Earth and Planetary Science Letters, 561: 116855. doi: 10.1016/j.jpgl.2021.116855 Taylor E, Jackson G. 2021. Perseverance rover lands on Mars. The Electrochemical Society Interface, 30: 79. Tey S, Huang W, Sokolowski W. 2001. Influence of long-term storage in cold hibernation on strain recovery stress of polyurethane shape memory polymer foam. Smart Materials and Structures, 10: 321-325. doi: 10.1088/0964-1726/10/2/318 Wadhi M, Bonnici M, Handley W. 2021. Pointing and Alignment for the Emirates Mars Mission//IEEE Aerospace Conference (50100), Big Sky, MT, USA, IEEE. Wang C, Dai Y, Kou B, Huang W. 2019. Influence of long-term storage on shape memory performance and mechanical behavior of pre-stretched commercial poly (methyl methacrylate) (PMMA). Polymers (Basel) , 11: 1978. doi: 10.3390/polym11121978 Wikipedia. 2021. Climate of Mars. https://en.wikipedia.org/wiki/Climate_of_Mars. Zhang D, Liu L, Leng L, Liu Y. 2020. Ultra-light release device integrated with screen-printed heaters for CubeSat's deployable solar arrays. Composite Structures, 232: 111561. doi: 10.1016/j.compstruct.2019.111561 Zhang D, Liu L, Xu P, et al. 2022. World's first application of a self-deployable mechanism based on shape memory polymer composites in Mars explorations: ground-based validation and on-Mars qualification. Smart Materials and Structures, 31(11): 115008. Zheng Y. 2020. Mars exploration in 2020. The Innovation, 1: 100036. Zou Y, Zhu Y, Bai Y, et al. 2021. Scientific objectives and payloads of Tianwen-1, China’s first Mars exploration mission. Advances in Space Research, 67: 812-823. doi: 10.1016/j.asr.2020.11.005