Review of numerical simulation methods for hypersonic and high-enthalpy non-equilibrium flow
-
摘要: 高性能计算流体力学 (computational fluid dynamic, CFD) 模拟可以与高超飞行试验、高焓地面设备实验研究相互印证, 在热化学非平衡效应研究以及未来高超声速飞行器研制中将发挥更重要的作用. 本文回顾了国内外在热化学非平衡流动CFD研究方面的进展, 概述了相关热化学模型、数值格式研究以及CFD软件研制方面的现状和发展趋势, 最后指出了今后在基础研究、软件开发、模拟应用等方面需要关注的问题. (1) 在热化学模型方面, 常用温度模型并不完全精确, 多振动温度模型具有发展潜力但工程应用受限, 态−态模型更精确但模拟技术尚不成熟, 更为精确的热力学输运模型、有限速率化学反应模型、振动−离解耦合模型以及表面效应模型等是提升热化学非平衡模拟精度的重要物理模型, 值得深入研究; (2) 在数值方法方面, 多物理场耦合模拟是高超热化学非平衡流动CFD研究的热点和趋势, 对CFD方法的鲁棒性和收敛性提出了更高的要求, 值得重点关注和研究, 此外常用数值格式需要针对热化学非平衡流动特征进行适应性改造, RANS方法在热化学非平衡湍流模拟中的计算可靠性仍有待验证; (3) 在数值软件方面, 基于结构/非结构混合网格的数值求解器更加符合工业应用需求, 未来高超数值软件需要具备稳定、鲁棒的多学科、多物理场耦合求解功能, 且能够适应更大网格规模大尺度复杂外形的模拟需求; (4) 可综合应用多种加速技术手段提升热化学非平衡流动数值模拟的计算效率, 计算刚性是热化学非平衡流动数值模拟方法研究的共性基础问题, 刚性消除方法仍需进一步研究和发展.
-
关键词:
- 高超声速 /
- 热化学非平衡 /
- 高焓 /
- 计算流体力学(CFD) /
- 计算刚性
Abstract: High performance simulation of computational fluid dynamics (CFD) can be mutually verified with hypersonic flight tests and high enthalpy ground equipment experiments, and will play a more important role in the research of thermochemical non-equilibrium effects and the development of future hypersonic vehicles. The paper reviews the research progress of CFD method of thermochemical non-equilibrium flow at home and abroad, summarizes the current situation and development trend of related thermochemical models, numerical schemes and development of CFD software, and finally points out the problems that should be paid attention to in basic research, software development, simulation application in the future. (1) In terms of thermochemical models, the commonly used temperature models are not completely accurate. The multi-vibrational temperature model has development potential, but is limited in engineering applications. The state-state models are more accurate but its simulation technology is not yet mature. More accurate thermodynamic transport models, finite-rate chemical reaction models, vibration-dissociation coupling models and surface effect models are important physical models to improve the accuracy of thermochemical nonequilibrium simulation, which are worthy of in-depth study. (2) In terms of numerical methods, multi-physical field coupling simulation is a hot issue and trend in the CFD research of hypersonic thermochemical nonequilibrium flows, which raises higher requirements for the robustness and convergence for CFD methods, and is worthy of special attention and research. In addition, the commonly used numerical schemes need to be remodeled based on the characteristics of thermochemical nonequilibrium flows, and the computational reliability of RANS method in thermochemical nonequilibrium turbulence simulation still needs to be verified and confirmed. (3) In terms of numerical software, the numerical solver based on structured/unstructured hybrid grid is more suitable for the requirements of industrial applications. The future hypersonic numerical software should have stable and robust solver for multidisciplinary multi-physical field coupling solution, and can satisfy the simulation requirements of larger grid scale and large-size complex shapes. (4) The computational efficiency of thermochemical nonequilibrium flow simulation can be improved by comprehensively employing a variety of acceleration techniques. The computational stiffness is a common fundamental problem in the research of thermochemical nonequilibrium numerical simulation method, and the stiffness elimination method still needs further study and develop. -
图 1 不同高度和速度条件下驻点区空气热化学状态以及典型化学反应对应的温度范围(Anderson 2006, Gupta et al. 1990)
图 2 不同温度模型对EXPERT热化学非平衡绕流的影响(王源杰 2016)
图 3 采用不同化学反应模型计算的电子数密度(王源杰 2016)
图 4 不同化学反应模型对高焓双锥流动壁面参数的影响比较(Chaudhry et al. 2020)
图 5 热力学温度模型的数组拓展与简化示意图(李鹏 等 2021a)
图 6 不同空间精度格式对压缩拐角热化学非平衡流场的模拟结果比较(葛明明 2015)
图 7 不同时间推进格式对高超流动模拟的加速效果比较(唐志共, 张益荣 等 2015; 蒋浩 等 2022)
图 8 GPU与CPU加速器运算能力的进展(党冠麟 等 2020)
图 9 多级气体模型自适应模拟方法及其加速效果(陈坚强 2022)
图 10 多级气体模型在热化学非平衡绕流中的模拟效果(李鹏 等 2021c)
-
[1] 陈坚强. 2022. 高超声速数值模拟算法研究及应用. 国家数值风洞基础问题研讨会, 南京. [2] 陈坚强. 2020. 国家数值风洞工程(NNW)关键技术研究进展. 中国科学:技术科学, 1: 79-90 (Chen J Q. 2020. Advances in the Key Technologies of Chinese National Numerical Windtunnel Project. SCIENTIA SINICA Technologica, 1: 79-90).(Chen J Q. 2020. Advances in the Key Technologies of Chinese National Numerical Windtunnel Project. SCIENTIA SINICA Technologica, 1: 79-90 [3] 党冠麟, 刘世伟, 胡晓东, 等. 2020. 基于CPU/GPU异构系统架构的高超声速湍流直接数值模拟研究. 数据与计算发展前沿, 2: 105-116 (Dang G L, Liu S W, Hu X D, et al. 2020. Direct Numerical Simulation of Hypersonic Turbulence Based on CPU/GPU Heterogeneous System Architecture. Frontiers of Data & Computing, 2: 105-116).(Dang G L, Liu S W, Hu X D, et al. 2020. Direct Numerical Simulation of Hypersonic Turbulence Based on CPU/GPU Heterogeneous System Architecture. Frontiers of Data & Computing, 2: 105-116 [4] 丁明松. 2019. 高超声速非平衡流动的磁流体力学控制数值模拟. 北京: 中国人民解放军军事科学院.Ding M S. 2019. Numerical Simulation of Magnetohydro-dynamic Control for Hypersonic Nonequilibrium Flow. Beijing: Academy of Military Sciences. [5] 董海波. 2018. 化学非平衡流计算方法改进及其应用. 大连: 大连理工大学.Dong H B. 2018. An improved method for chemical non-equilibrium flow and its application. Dalian: Dalian University of Technology. [6] 董维中, 高铁锁, 丁明松, 等. 2015. 高超声速飞行器表面温度分布与气动热耦合数值研究. 航空学报, 36: 311-324 (Dong W Z, Gao T S, Ding M S, et al. 2015. Numerical study of coupled surface temperature distribution and aerodynamic heat for hypersonic vehicles. Acta Aeronautica et Astronautica Sinica, 36: 311-324).(Dong W Z, Gao T S, Ding M S, et al. 2015. Numerical study of coupled surface temperature distribution and aerodynamic heat for hypersonic vehicles. Acta Aeronautica et Astronautica Sinica, 36: 311-324 [7] 董维中. 1996. 热化学非平衡效应对高超声速流动影响的数值计算与分析. 北京: 北京航空航天大学.Dong W Z. 1996. Numerical simulation and analysis of thermochemical nonequilibrium effects at hypersonic flow. Beijing: Beihang University. [8] 董维中, 高铁锁, 丁明松, 等. 2010. 硅基材料烧蚀产物对再入体流场特性影响的数值计算. 空气动力学学报, 28: 708-714 (Dong W Z, GAO T S, Ding M S, et al. 2010. Numerical analysis for the effect of Silicon based material ablation on the flowfield around reentry blunt body. Acta Aerodynamica Sinica, 28: 708-714).(Dong W Z, GAO T S, Ding M S, et al. 2010. Numerical analysis for the effect of Silicon based material ablation on the flowfield around reentry blunt body. Acta Aerodynamica Sinica, 28: 708-714 [9] 葛明明. 2015. WCNS在热化学非平衡流数值模拟中的应用与研究. 长沙: 中国人民解放军国防科技技术大学.Ge M M. 2015. Investigation and application of high-order weighted compact nonlinear scheme to thermo-chemical non-equilibrium flow simulations. Changsha: National University of Defense Technology. [10] 郝佳傲. 2018. 高超声速热化学非平衡耦合效应的建模研究. 北京: 北京航空航天大学.HAO J A. 2018. Modeling of thermochemical nonequilibrium coupling effects in hypersonic flows. Beijing: Beihang University. [11] 胡雨濛. 2018. 近空间高超声速气动热的数值模拟. 北京: 北京交通大学.Hu Y M. 2018. Numerical simulation of aerodynamic heating in hypersonic flow in near space. Beijing: Beijing Jiaotong University. [12] 蒋浩, 柳军, 王君媛, 等. 2022. 全隐LU-SGS 算法在高超声速热化学非平衡流刚性问题中的应用. 国防科技大学学报, 44: 1-8 (Jiang H, Liu J, Wang J Y, et al. 2022. Fully implicit LU-SGS algorithms applied to stiff problems in hypersonic thermochemical non-equilibrium flows. Journal of National University of Defense Technology, 44: 1-8). doi: 10.11887/j.cn.202202001(Jiang H, Liu J, Wang J Y, et al. 2022. Fully implicit LU-SGS algorithms applied to stiff problems in hypersonic thermochemical non-equilibrium flows. Journal of National University of Defense Technology, 44: 1-8 doi: 10.11887/j.cn.202202001 [13] 李海燕. 2007. 高超声速高温气体流场的数值模拟. 绵阳: 中国空气动力研究与发展中心.Li H Y. 2007. Numerical simulation of hypersonic and high temperature gas flowfields. Mianyang: China Aerodynamics Research and Development Center. [14] 李红宇. 2014. 有限体积法在复杂外形飞行器高温气体效应研究中的应用. 长沙: 中国人民解放军国防科学技术大学.Li H Y. 2014. Application of finite volume method in high temperature gas effects of complex shape aircraft. Changsha: National University of Defense Technology. [15] 李俊红, 吕俊明, 苗文博, 等. 2022. 壁面催化对再入飞行器等离子体鞘套及电磁参数的影响. 气体物理, 7: 57-64 (Li J H, Lyu J M, Miao W B, et al. 2022. Surface recombination effects on the electromagnetic parameters and the plasma sheath of reentry vehicles. Physics of Gases, 7: 57-64).Li J H, Lyu J M, Miao W B, et al. 2022. Surface recombination effects on the electromagnetic parameters and the plasma sheath of reentry vehicles. Physics of Gases, 2022, 7: 57-64 [16] 李鹏, 陈坚强, 丁明松, 等. 2021a. LENS风洞试验返回器模型气动热特性模拟. 航空学报, 42: 726400 (Li P, Chen J Q, Ding M S, et al. 2021a. Simulation of aerothermal effects on reentry capsule geometry in LENS wind tunnel tests. Acta Aeronautica et Astronautica Sinica, 42: 726400).(Li P, Chen J Q, Ding M S, et al. 2021a. Simulation of aerothermal effects on reentry capsule geometry in LENS wind tunnel tests. Acta Aeronautica et Astronautica Sinica, 42: 726400 [17] 李鹏, 陈坚强, 丁明松, 等. 2021b. NNW-HyFLOW高超声速流动模拟软件框架设计. 航空学报, 42: 625718 (Li P, Chen J Q, Ding M S, et al. 2021b. Framework design of NNW-HyFLOW hypersonic flow simulation software. Acta Aeronautica et Astronautica Sinica, 42: 625718).(Li P, Chen J Q, Ding M S, et al. 2021b. Framework design of NNW-HyFLOW hypersonic flow simulation software. Acta Aeronautica et Astronautica Sinica, 42: 625718 [18] 李鹏, 丁明松, 陈坚强, 等. 2021c. 一种热化学非平衡多级气体模型自适应方法. 中国空气动力研究与发展中心计算空气动力学研究所, 专利授权号: 202110513881.7. [19] 李鹏, 高振勋, 蒋崇文. 2014. 重叠网格方法的研究进展. 力学与实践, 36: 551-565 (Li P, Gao Z X, Jiang C W. 2014. The Progress of the Overlapping Grid Techniques. Mechanics in Engineering, 36: 551-565). doi: 10.6052/1000-0879-14-011(Li P, Gao Z X, Jiang C W. 2014. The Progress of the Overlapping Grid Techniques. Mechanics in Engineering, 36: 551-565 doi: 10.6052/1000-0879-14-011 [20] 李芹, 杨肖峰, 杜雁霞, 等. 2021. 离解氧原子在硅基防热材料表面催化复合过程的KMC模拟. 2021年中国工程热物理学会传热传质学术会议.Li Q, Yang X F, Du Y X, et al. 2021. KMC simulation of recombination of dissociated oxygen atoms on silica based thermal protection materials. 2021 Academic Conference on Heat and Mass Transfer of Chinese Society of Engineering Thermophysics. [21] 刘君, 董海波, 刘瑜. 2018. 化学非平衡流动解耦算法的回顾与新进展. 航空学报, 39: 021090 (Liu J, Dong H B, Liu Y. 2018. Review and recent advances in uncoupled algorithms for chemical non-equilibrium flows. Acta Aeronautica et Astronautica Sinica, 39: 021090).(Liu J, Dong H B, Liu Y. 2018. Review and recent advances in uncoupled algorithms for chemical non-equilibrium flows. Acta Aeronautica et Astronautica Sinica, 39: 021090 [22] 刘朋欣, 李辰, 孙东, 等. 2022. 考虑化学非平衡效应的高温湍流边界层统计特性分析. 空气动力学学报, 40: 124-131 (Liu P X, Li C, Sun D, et al. 2022. Statistical characteristics of high-temperature turbulent boundary layer considering chemical non-equilibrium effect. Acta Aerodynamica Sinica, 40: 124-131).(Liu P X, Li C, Sun D, et al. 2022. Statistical characteristics of high-temperature turbulent boundary layer considering chemical non-equilibrium effect. Acta Aerodynamica Sinica, 40: 124-131 [23] 刘庆宗. 2016. 探测器进入火星大气热化学非平衡流场的数值模拟. 绵阳: 中国空气动力研究与发展中心.Liu Q Z. 2016. Numerical Simulation of Thermochemical Nonequilibrium Flowfield for Mars Entry Vehicles. Mianyang: China Aerodynamics Research and Development Center. [24] 唐志共, 许晓斌, 杨彦广, 等. 2015. 高超声速风洞气动力试验技术进展. 航空学报, 36: 86-97 (Tang Z G, Xu X B, Yang Y G, et al. 2015. Research progress on hypersonic wind tunnel aerodynamic testing techniques. Acta Aeronautica et Astronautica Sinica, 36: 86-97).(Tang Z G, Xu X B, Yang Y G, et al. 2015. Research progress on hypersonic wind tunnel aerodynamic testing techniques. Acta Aeronautica et Astronautica Sinica, 36: 86-97 [25] 唐志共, 张益荣, 陈坚强, 等. 2015. 更准确、更精确、更高效—高超声速流动数值模拟研究进展. 航空学报, 36: 120-134 (Tang Z G, Zhang Y R, Chen J Q, et al. 2015. More fidelity, more accurate, more efficient-progress on numerical simulations for hypersonic flow. Acta Aeronautica et Astronautica Sinica, 36: 120-134).(Tang Z G, Zhang Y R, Chen J Q, et al. 2015. More fidelity, more accurate, more efficient-progress on numerical simulations for hypersonic flow. Acta Aeronautica et Astronautica Sinica, 36: 120-134 [26] 莫凡, 高振勋, 蒋崇文, 等. 2021. 高温化学非平衡效应对高超声速飞行器气动力/热影响的数值研究进展. 中国科学: 物理学/力学/天文学, 51: 104703 (Mo F, Gao Z X, Jiang C W, et al. 2021. Progress in the numerical study on the aerodynamic and thermal characteristics of hypersonic vehicles: High-temperature chemical non-equilibrium effect. SCIENTIA SINICA Physica, Mechanica & Astronomica, 51: 104703).(Mo F, Gao Z X, Jiang C W, et al. 2021. Progress in the numerical study on the aerodynamic and thermal characteristics of hypersonic vehicles: High-temperature chemical non-equilibrium effect. SCIENTIA SINICA Physica, Mechanica & Astronomica, 51: 104703 [27] 粟虹敏. 2021. 可压缩化学反应流动高精度数值方法研究. 西安: 西北工业大学.Su H M. 2021. Investigation on the high accuracy numerical methods for compressible chemically reacting flows. Xi’an: Northwestern Polytechnical University. [28] 孙鹏. 2018. 高超声速热化学非平衡流的仿真模拟. 西安: 西安电子科技大学.Sun P. 2018. Simulation of hypersonic themochemical non-equilibrium flow. Xi’an: Xidian University. [29] 沈青. 2003. 稀薄气体动力学. 北京: 国防工业出版社.Shen Q. 2003. Rarefied Gas Dynamics. Beijing: National Defence Industry Press. [30] 王京盈. 2017. 高速高温流动的化学非平衡及热辐射耦合效应研究. 北京: 北京航空航天大学.Wang J Y. 2017. Numerical study on coupled effects of the chemical nonequilibrium and thermal radiation in high speed and high temperature flows. Beijing: Beihang University. [31] 王源杰. 2016. 考虑多振动温度模型的高温气体效应数值模拟研究. 长沙: 中国人民解放军国防科技技术大学.Wang Y J. 2016. Research of numerical calculation methods based on multi-vibrational temperature model in high-temperature conditions. Changsha: National University of Defense Technology. [32] 肖丰收. 2023. 国家数值风洞NNW-HyFLOW软件使用情况介绍. 北京: 国家数值风洞两委年度会议暨HyFLOW软件发布会. [33] 徐丹, 曾明, 张威, 等. 2014. 采用态-态模型的热化学非平衡喷管流数值研究. 计算物理, 31: 531-538 (Xu D, Zeng M, Zhang W, et al. 2014. Numerical study of thermochemical nonequilibrium nozzle flow in state-to-state model. Chinese Journal of Computational Physics, 31: 531-538).(Xu D, Zeng M, Zhang W, et al. 2014. Numerical study of thermochemical nonequilibrium nozzle flow in state-to-state model. Chinese Journal of Computational Physics, 31: 531-538 [34] 阎超. 2006. 计算流体力学方法及应用. 北京: 北京航空航天大学出版社, [35] 杨肖峰, 李芹, 杜雁霞, 等. 2021. 高超声速飞行器界面多相催化数值研究进展. 航空学报, 42: 625908 (Yang X F, Li Q, Du Y X, et al. 2021. Progress in numerical research on interface heterogeneous catalysis of hypersonic vehicles. Acta Aeronautica et Astronautica Sinica, 42: 625908).(Yang X F, Li Q, Du Y X, et al. 2021. Progress in numerical research on interface heterogeneous catalysis of hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 42: 625908 [36] 姚轩宇, 王春, 喻江, 等. 2019. JF12激波风洞高Mach数超燃冲压发动机实验研究. 气体物理, 4: 25-31 (Yao X Y, Wang C, Yu J, et al. 2019. High-Mach-number scramjet engine tests in JF12 shock tunnel. Physics of Gases, 4: 25-31).(Yao X Y, Wang C, Yu J, et al. 2019. High-Mach-number scramjet engine tests in JF12 shock tunnel. Physics of Gases, 4: 25-31 [37] 原志超. 2017. 高超声速气动热数值模拟研究. 大连: 大连理工大学.Yuan Z C. 2017. Numerical simulation research on hypersonic aero-heating. Dalian: Dalian University of Technology. [38] 曾明, 杭建, 林贞彬, 等. 2006. 不同热化学非平衡模型对高超声速喷管流场影响的数值分析. 空气动力学学报, 24: 346-349 (Zeng M, Hang J, Lin Z B, et al. 2006. Numerical analysis of the effects of different thermo-chemical nonequilibrium models on hypersonic nozzle flow. Acta Aerodynamica Sinica, 24: 346-349).(Zeng M, Hang J, Lin Z B, et al. 2006. Numerical analysis of the effects of different thermo-chemical nonequilibrium models on hypersonic nozzle flow. Acta Aerodynamica Sinica, 24: 346-349 [39] 赵法明. 2019. 高超声速空气化学非平衡流与燃气喷流混合反应流场数值模拟研究. 南京: 南京航空航天大学.Zhao F M. 2019. A numerical investigation for the mixed reacting flowfield of the air chemical nonequilibrium flow and gaseous jet flow. Nanjing: Nanjing University of Aeronautics and Astronautics. [40] 赵钟. 2011. 复杂外形高雷诺数数值模拟的混合网格生成与多重网格法研究. 绵阳: 中国空气动力研究与发展中心.Zhao Z. 2011. Hybrid Grid Generation Technique and MultiGrid Method for Viscous Flow Simulation of Complex Geometries. Mianyang: China Aerodynamics Research and Development Center. [41] 赵钟, 何磊, 何先耀. 2020. 风雷(PHengLEI)通用CFD软件设计. 计算机工程与科学, 42: 210-219 (Zhao Z, He L, He X Y. 2020. Design of General CFD software PHengLEI. Computer Engineering & Science, 42: 210-219). doi: 10.3969/j.issn.1007-130X.2020.02.004(Zhao Z, He L, He X Y. 2020. Design of General CFD software PHengLEI. Computer Engineering & Science, 42: 210-219 doi: 10.3969/j.issn.1007-130X.2020.02.004 [42] 赵钟, 张来平, 何磊, 等. 2019. 适用于任意网格的大规模并行CFD计算框架PHengLEI. 计算机学报, 42: 2368-2383 (Zhao Z, Zhang L P, He L, et al. 2019. PHengLEI: a large scale parallel CFD framework for arbitrary grids. Chinese Journal of Computes, 42: 2368-2383). doi: 10.11897/SP.J.1016.2019.02368(Zhao Z, Zhang L P, He L, et al. 2019. PHengLEI: a large scale parallel CFD framework for arbitrary grids. Chinese Journal of Computes, 42: 2368-2383 doi: 10.11897/SP.J.1016.2019.02368 [43] Adhikari N, Alexeenko A. 2022. Development and Verification of Nonequilibrium Reacting Airflow Modeling in ANSYS Fluent. Journal of Thermophysics and Heat Transfer, 36: 118-128. doi: 10.2514/1.T6271 [44] Anderson J D. 2006. Hypersonic and High-Temperature Gas Dynamics. 2nd ed. Virginia: AIAA [45] Baurle R A, White J A, Drozda T G, et al. 2020. VULCAN-CFD User Manual: Ver. 7.1. 0. NASA/TM-2020-5000767 [46] Bond R B, Tatum K E, Power G D, et al. 2021. Capabilities of HPCMP CREATETM-AV Kestrel v11 for hypersonic flight and ground testing with a two-temperature model. AIAA SciTech Forum [47] Bussing T R A, Murman E M. 1988. Finite-Volume Method for the Calculation of Compressible Chemically Reacting Flows. AIAA Journal, 26: 1070-1078. doi: 10.2514/3.10013 [48] Candler G V. 2015. Next-Generation CFD for Hypersonic and Aerothermal Flows. AIAA 2015-3048. [49] Candler G V. 2019. Rate Effects in Hypersonic Flows. Annual Review of Fluid Mechanics, 51: 379-402. doi: 10.1146/annurev-fluid-010518-040258 [50] Capitelli M, Colonna G, Giordano D, et al. 2005. Tables of Internal Partition Functions and Thermodynamic Properties of High-Temperature Mars-Atmosphere Species from 50K to 50000K. Noordwijk: European Space Agency Publicitions Division [51] Cary A W, Chawner J R, Duque E P, et al. 2021. CFD Vision 2030 Roadmap: Progress and Perspectives. AIAA Aviation Forum [52] Chase M W, Curnutt J L, Prophet H, et al. 1975. JANAF thermochemical tables, 1975 supplement. Journal of Physical and Chemical Reference Data, 4: 1-176. doi: 10.1063/1.555517 [53] Chaudhry R S, Boyd I D, Candler G V. 2020. Vehicle-Scale Simulations of Hypersonic Flows using the MMT Chemical Kinetics Model. AIAA Aviation Forum [54] Chen R F, Wang Z J. 2000. Fast, Block Lower-Upper Symmetric Gauss-Seidel Scheme for Arbitrary Grids. AIAA Journal, 38: 2238-2245. doi: 10.2514/2.914 [55] Crippa S, Krimmelbein N. 2012. Transitional Flow Computations of the NASA Trapezoidal Wing with the DLR TAU Code. AIAA 2012-2845 [56] Cummings R M. 2022. Summary of Progress for the DoD HPCMP Hypersonic Vehicle Simulation Institute. AIAA SciTech Forum [57] Dunn M G, Kang S W. 1973. Theoretical and Experimental Studies of Reentry Plasmas. NASA-CR-2232 [58] Gao Z X, Jiang C W, Lee C H. 2013. Improvement and Application of a Wall Function Boundary Condition for High-Speed Compressible Flows. Science China Technological Sciences, 56: 2501-2515. doi: 10.1007/s11431-013-5349-4 [59] Gao Z X, Lee C H. 2011. Numerical Research on Mixing Characteristics of Different Injection Schemes for Supersonic Transverse Jet. Science China Technological Sciences, 54: 883-893. doi: 10.1007/s11431-010-4277-9 [60] Gartner J W, Kronenburg A, Martin T. 2020. Efficient WENO library for OpenFOAM. SoftwareX, 12: 100611. doi: 10.1016/j.softx.2020.100611 [61] Grantbam W L. 1970. Flight Results of a 25000-Foot-Per-Second Reentry Experiment Using Microwave Reflectomters to Measure Plasma Electron Density and Standoff Distance. NASA TND-6062 [62] Gupta R N, Moss J N, Price J M. 1996. Assessment of Thermochemical Nonequilibrium and Slip Effects for Orbital Reentry Experiment (OREX). AIAA 96-1859 [63] Gupta R N, Yos J M, Thompson R A, et al. 1990. A Review of Reaction Rates and Thermodynamic and Transport Properties for an 11-Species Air Model for Chemical and Thermal Nonequilibrium Calculations to 30000K: NASA Reference Publication 1232. NASA Office of Management Scientific and Technical Information Division [64] Hall E G, Foster J W, Thompson B D, et al. 2022. A Comparison of CREATE™ Kestrel and CFD + + for Resolving Hypersonic Flow. AIAA SciTech Forum [65] Hannemann K. 2003. High Enthalpy Flows in the HEG Shock Tunnel: Experiment and Numerical Rebuilding: AIAA 2003-0978 [66] Hash D, Olejniczak J, Wright M, et al. 2007. FIRE Ⅱ Calculations for Hypersonic Nonequilibrium Aerothermodynamics Code Verification: DPLR, LAURA, and US3D. AIAA 2007-605 [67] Hirschel E H. 2005. Basics of Aerothermodynamics. Heidelberg: Springer [68] Hu S Y, Jiang C W, Gao Z X, et al. 2019. Zonal disturbance region update method for steady compressible viscous flows. Computer Physics Communications, 244: 97-116. doi: 10.1016/j.cpc.2019.06.015 [69] Ishihara T, Ogino Y, Kino T, et al. 2016. Numerical study on wall pressure over cone region of blunt-nosed body in high enthalpy shock tunnel HIEST. Aerospace Science and Technology, 50: 256-265. doi: 10.1016/j.ast.2015.12.015 [70] Jones W L, Cross A E. 1972. Electrostatic-Probe Measurements of Plasma Parameters for Two Reentry Flight Experiments at 25000 Feet Per Second: NASA TND-6617 [71] Kane A A, Peetala R K. 2022. Influence of Vibration–Dissociation Coupling and Number of Reactions in Hypersonic Nonequilibrium Flows. Journal of Fluids Engineering, 144: 081207. doi: 10.1115/1.4053650 [72] Kee R J, Rupley F M, Meeks E, et al. 1996. Chemkin-Ⅲ: A Fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics. Sandia National Laboratories report SAND96-8216 [73] Kim K H, Kim C, Rho O H. 1998. Accurate Computations of Hypersonic Flows Using AUSMPW + Scheme and Shock aligned Grid Technique. AIAA, 1998-2442 [74] Kim S L, Ok H N, Ra S H, et al. 2003. A study on numerical characteristics of air chemistry and application of partially implicit method. Applied & Environmental Microbiology, 63: 4581-4584. [75] Lee S, Kim J G. 2021. Stagnation-point heating and ablation analysis of orbital re-entry experiment. Physics of Fluids, 33: 1-22 [76] Li K, Liu J, Liu W Q. 2015. A new surface catalytic model for silica-based thermal protection material for hypersonic vehicles. Chinese Journal of Aeronautics, 5: 1355-1361. [77] Lockerby D A, Peese J, Barber R W, et al. 2005. Geometric and Constitutive Dependence of Maxwell’s Velocity Slip Boundary Condition. AIP Conference proceedings, 762: 725-730. [78] Lofthouse A J. 2008. Nonequilibrium Hypersonic Aerothermodynamics Using the Direct Simulation Monte Carlo and Navier-Stokes Models. Ann Arbor: University of Michigan [79] MacLean M, Dufrene A, Carr Z, at al. 2015. Measurements and Analysis of Mars Entry, Decent, and Landing Aerothermodynamics at Flight-Duplicated Enthalpies in LENS-XX Expansion Tunnel. AIAA, 2015-1897 [80] MacLean M, Mundy E, Wadhams T, et al. 2008. Analysis and Ground Test of Aerothermal Effects on Spherical Capsule Geometries. AIAA, 2008-4273 [81] Martin A, Boyd I D, 2010. Cozmuta I, et al. Chemistry model for ablating carbon-phenolic material during atmospheric re-entry. AIAA, 2010-1175 [82] Maus J, Laster M, Hornung H. 1992. The G-Range Impulse Facility, A High Performance Free-Piston Shock Tunnel. AIAA, 92-3946 [83] McKenzie R L. 1966. An estimate of the chemical kinetics behind normal shock waves in mixtures of carbon dioxide and nitrogen for conditions typical of Mars entry. NASA, TN D-3287 [84] Neel R E, Godfrey A G, McGrory W D. 2005. Low-Speed, Time-Accurate Validation of GASP Version 4. AIAA, 2005-686 [85] Nelson C C. 2010. An Overview of the NPARC Alliance’s Wind-US Flow Solver. AIAA, 2010-27 [86] Morsa L, Zuppardi G, Votta R, et al. 2014. Influence of chemical models on heat flux for EXPERT and Orion capsules. Journal of Aerospace Engineering, 228: 930-948. [87] Muylaert J, Walpot L, Hauser J. 1992. Standard Model Testing in the European High Enthalpy Facility F4 and Extrapolation to Flight. AIAA, 92-3905 [88] Park C. 1985. On Convergence of Computation of Chemically Reacting Flows. AIAA, 85-0247 [89] Park C. 2001. Chemical kinetic parameters of hyperbolic earth entry. Journal of Thermodynamics and Heat Transfer, 15: 76-90. doi: 10.2514/2.6582 [90] Park C. 1993. Review of Chemical-Kinetic Problems of Future NASA Mission, I: Earth Entries. Journal of Thermophysics and Heat Transfer, 7: 385-397. doi: 10.2514/3.431 [91] Park C, Howe J T, Jaffe R L, et al. 1991. Chemical-kinetic problems of future NASA missions. AIAA, 91-0464 [92] Reynier P. 2016. Survey of high-enthalpy shock facilities in the perspective of radiation and chemical kinetics investigations. Progress in Aerospace Sciences, 85: 1-32. doi: 10.1016/j.paerosci.2016.04.002 [93] Sabo K M, Couchman B L, Harries W L, et al. 2022. Investigation of Thermochemical Non-Equilibrium Models in Hypersonic Flows Using Output-Based Mesh Adaptation, AIAA SciTech Forum. [94] Scott C D. 1985. Effects of Nonequilibrium and Wall Catalysis on Shuttle Heat Transfer. Journal of Spacecraft, 22: 489-499. doi: 10.2514/3.25059 [95] Shang J J, Yan H. 2020. High-Enthalpy Hypersonic Flows. Advances in Aerodynamics, 2: 1-39. doi: 10.1186/s42774-019-0024-5 [96] Singh N, Schwartzentruber T E. 2022. Nonequilibrium Dissociation and Recombination Models for Hypersonic Flows. AIAA Journal, 60: 2810-2825. doi: 10.2514/1.J061154 [97] Sun W, Gou X, Elasrag H A, et al. 2015. Multi-times-scale and correlated dynamic adaptive chemistry modeling of ignition and flame propagation using a real jet fuel surrogate model. Combustion and Flame, 162: 1530-1539. doi: 10.1016/j.combustflame.2014.11.017 [98] Surzhikov S T, Shang J S. 2008. Kinetic Models Analysis for Super-Orbital Aerophysics. AIAA, 2008-1278 [99] Tang C. 2016. An Introduction to DPLR. ARC-E-DAA-TN33803 [100] Thompson K B, Hollis B R, Johnston C O, et al. 2020. LAURA Users Manual: 5.6. NASA/TM-2020-220566 [101] Vlasov V I, Gorshkov A B. 2001. Comparison of the Calculated Results for Hypersonic Flow Past Blunt Bodies with the OREX Flight Test Data. Fluid Dynamics, 36: 812-819. doi: 10.1023/A:1013033221093 [102] Vos J B, Leyland P, van Kemenade V, et, al. 2003. NSMB Handbook 5.0. NSMB Handbook [103] Votta R, Schettino A, Ranuzzi G, et al. 2009. Hypersonic Low-Density Aerothermodynamics of Orion-Like Exploration Vehicle. Journal of Spacecraft and Rockets, 46: 781-787. doi: 10.2514/1.42663 [104] Wang L, Diskin B, Nielsen E J, et al. 2021. Improvements in Iterative Convergence of FUN3D Solutions. AIAA SciTech Forum, 1-22 [105] Zibitsker A L, McQuaid J A, Brehm C, et al. 2022. Fully-Coupled Simulation of Low Temperature Ablator and Hypersonic Flow Solver. AIAA SciTech Forum. [106] Zoby E V. 1983a. Comparisons of STS-1 Experimental and Predicted Heating Rates. Journal of Spacecraft and Rockets, 20: 214-218. doi: 10.2514/3.25582 [107] Zoby E V. 1983b. Analysis of STS-2 Experimental Heating Rates and Transition Data. Journal of Spacecraft and Rockets, 20: 232-237. doi: 10.2514/3.25585