留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流体数值模拟网格自适应技术研究进展

唐静 崔鹏程 张健 周乃春 吴晓军 龚小权 张耀冰

唐静, 崔鹏程, 张健, 周乃春, 吴晓军, 龚小权, 张耀冰. 流体数值模拟网格自适应技术研究进展. 力学进展, 2023, 53(3): 661-692 doi: 10.6052/1000-0992-23-013
引用本文: 唐静, 崔鹏程, 张健, 周乃春, 吴晓军, 龚小权, 张耀冰. 流体数值模拟网格自适应技术研究进展. 力学进展, 2023, 53(3): 661-692 doi: 10.6052/1000-0992-23-013
Tang J, Cui P C, Zhang J, Zhou N C, Wu X J, Gong X Q, Zhang Y B. Review of mesh adaptation for fluid numerical simulation. Advances in Mechanics, 2023, 53(3): 661-692 doi: 10.6052/1000-0992-23-013
Citation: Tang J, Cui P C, Zhang J, Zhou N C, Wu X J, Gong X Q, Zhang Y B. Review of mesh adaptation for fluid numerical simulation. Advances in Mechanics, 2023, 53(3): 661-692 doi: 10.6052/1000-0992-23-013

流体数值模拟网格自适应技术研究进展

doi: 10.6052/1000-0992-23-013
详细信息
    作者简介:

    周乃春, 1973 年 2 月出生, 湖南省澧县人. 中国空气动力研究与发展中心研究员, 国家数值风洞工程副总设计师. 长期从事计算流体力学算法研究与流体力学工业软件研发

    通讯作者:

    znccxl@foxmail.com

  • 中图分类号: V211.3

Review of mesh adaptation for fluid numerical simulation

More Information
  • 摘要: 计算网格是流体数值模拟误差的主要来源之一, 极大地影响着流动模拟结果的精度. 传统网格生成强烈依赖于用户经验, 加大了复杂飞行器网格生成的难度, 增加了气动特性预测数据的不确定度. 网格自适应技术是结合流动特性的计算网格自主优化技术, 可通过迭代优化消除网格因素造成的数值模拟误差, 能有效提高飞行器气动特性预测精度. 近年来在运输机高升力复杂构型的成功应用, 表明了网格自适应技术已发展到了较为成熟的阶段. 本文针对计算流体力学, 首先系统总结了网格自适应涉及的误差估计、网格编辑和物面几何保形三项关键技术的研究进展, 并介绍了相关的主要并行实现技术. 其次, 文中介绍了网格自适应技术在网格相关性分析、流场细节捕捉、气动特性计算和非定常流动模拟中的主要应用情况. 最后, 本文提出了网格自适应技术研究存在的问题及未来研究方向.

     

  • 图  1  结合网格自适应流场CFD模拟典型流程

    图  2  两个度量张量相交的几何意义示意(Alauzet et al. 2007)

    图  3  度量张量自适应与伴随自适应对比(Balan et al. 2019). 上: 阻力随网格规模的收敛特性, 下: 自适应后网格

    图  4  r型网格优化示意图(Vivarelli et al. 2021). (a)优化前网格, (b)优化后网格

    图  5  自适应笛卡尔网格应用于黏性流动模拟(陈浩 等 2022). (a)自适应后的网格, (b)自适应前后升力曲线对比

    图  6  结构网格类似笛卡尔网格自适应(Su 2015). (a)自适应后的网格, (b)自适应前后压力分布

    图  7  四面体网格各向异性剖分方式 (唐静 等 2015). (a) 一分为二, (b) 一分为四, (c) 一分为四, (d) 一分为八

    图  8  四面体各向异性网格生成(Alauzet和Loseille 2016). (a)流场等值线, (b)各向异性网格

    图  9  层结构网格单元仅法向剖分及“贯穿”剖分 (唐静 等 2015). (a) 一分为二, (b) 一分为四, (c) 穿透细分

    图  10  基于单元的网格剖分模式 (Soukov 2022). (a) 六面体单元, (b) 三棱柱单元, (c) 金字塔单元, (d) 四面体单元

    图  11  剖分单元的相邻单元转换为多面体及多边形标准化示例 (唐静 等 2019)

    图  12  局部Coons曲面拟合示意图(Hindenlang et al. 2011)

    图  13  后台阶流动网格相关性分析(Chila & Kaminski 2006). (a)监测点速度, (b)分离再附点位置

    图  14  第三届高升力构型自适应计算(Alauzet & Clerici et al. 2022). (a)升力系数收敛过程, (b) 阻力系数收敛过程

    图  15  三角翼大攻角流动网格自适应模拟(唐静 等 2019). (a)涡结构对比, (b)压力分布对比

    图  16  飞翼大攻角流动笛卡尔网格自适应模拟(陈浩 等 2022). (a)自适应前涡结构, (b) 自适应后涡结构

    图  17  阿波罗返回舱头激波自适应模拟流场(Bibb et al. 2006). (a)初始网格, (b)自适应两次网格, (c)自适应最终网格

    图  18  声爆激波捕捉自适应模拟压力分布对比(Jones et al. 2006). (a)初始网格压力对比, (b)自适应后压力对比

    图  19  C608低声爆飞机复杂波系各向异性自适应模拟后网格及流场分布(Vanharen et al. 2021)

    图  20  NASA Rotor 37压气机流场模拟(Alauzet & Frazza et al. 2022). (a)自适应后网格及流场, (b)总压比收敛过程

    图  21  第三届高升力构型自适应网格收敛计算(Alauzet & Clerici et al. 2022). (a)自适应网格收敛过程, (b)自适应后机翼等展向位置截面网格分布及流场

    图  22  结合LES和网格自适应圆柱绕流模拟的分离涡系结构(Gou et al. 2018). (a)未使用自适应, (b)使用自适应

    图  23  结合LES和压气机网格自适应模拟流动参数(Odier et al. 2021). (a)压气机构型, (b)自适应前后流动参数对比

    图  24  两级入轨飞行器级间分离自适应模拟(唐静 等 2022). (a)分离前期自适应网格, (b)自适应前后俯仰角对比

    Baidu
  • [1] 陈浩, 华如豪, 袁先旭, 唐志共, 毕林. 2022. 基于自适应笛卡尔网格的飞翼布局流动模拟. 航空学报, 43: 125674 (Chen H, Hua R H, Yuan X X, Tang Z G, Bi L. 2022. Simulation of flow around fly-wing configuration based on adaptive Cartesian grid. Acta Aeronautica et Astronautica Sinica, 43: 125674).

    Chen H, Hua R H, Yuan X X, Tang Z G, Bi L. 2022. Simulation of flow around fly-wing configuration based on adaptive Cartesian grid. Acta Aeronautica et Astronautica Sinica, 43: 125674).
    [2] 崔鹏程, 邓有奇, 唐静, 李彬. 2016. 基于伴随方程的网格自适应及误差修正. 航空学报, 37: 2992-3002 (Cui P C, Deng Y Q, Tang J, Li B. 2016. Adjoint equations-based grid adaptation and error correction. Acta Aeronautica et Astronautica Sinica, 37: 2992-3002).

    (Cui P C, Deng Y Q, Tang J, Li B. 2016. Adjoint equations-based grid adaptation and error correction. Acta Aeronautica et Astronautica Sinica, 37: 2992-3002).
    [3] 崔鹏程, 唐静, 李彬, 马明生, 邓有奇. 2018. 基于超网格的重叠网格守恒插值方法. 航空学报, 39: 121569 (Cui P C, Tang J, Li B, Ma M M, Deng Y Q. 2018. A conservative interpolation method for overset mesh. Acta Aeronautica et Astronautica Sinica, 39: 121569).

    (Cui P C, Tang J, Li B, Ma M M, Deng Y Q. 2018. A conservative interpolation method for overset mesh. Acta Aeronautica et Astronautica Sinica, 39: 121569).
    [4] 龚小权, 吴晓军, 唐静, 李明, 张健. 2022. r型网格自适应在间断Galerkin有限元激波捕捉中的应用. 北京航空航天大学学报, 48: 1889-1898 (Gong X Q, Wu X J, Tang J, Li M, Zhang J. 2022. Application of r-grid adaptive for shock capturing in discontinuous Galerkin finite element method. Journal of Beijing University of Aeronautics and Astronautics, 48: 1889-1898).

    (Gong X Q, Wu X J, Tang J, Li M, Zhang J. 2022. Application of r-grid adaptive for shock capturing in discontinuous Galerkin finite element method. Journal of Beijing University of Aeronautics and Astronautics, 48: 1889-1898).
    [5] 韩志熔, 陆志良, 郭同庆, 陈迎春. 2012. 一种用于分离流动的网格自适应算法. 空气动力学报, 30: 86-89 (Han Z R, Lu Z L, Guo T Q, Chen Y C. 2012. Grid adaption technique for separation flow. Acta Aerodynamica Sinica, 30: 86-89).

    Han Z R, Lu Z L, Guo T Q, Chen Y C. 2012. Grid adaption technique for separation flow. Acta Aerodynamica Sinica, 30: 86-89).
    [6] 李立, 白文, 梁益华. 2011. 基于伴随方程方法的非结构网格自适应技术及应用. 空气动力学报, 29: 316-309 (Li L, Bai W, Liang Y H. 2011. An adjoint-based method for unstructured mesh adaptation and its applications. Acta Aerodynamica Sinica, 29: 316-309).

    Li L, Bai W, Liang Y H. 2011. An adjoint-based method for unstructured mesh adaptation and its applications, Acta Aerodynamica Sinica, 29: 316-309).
    [7] 罗昔联, 顾兆林, 雷康斌, 加濑究. 2009. 一种求解N-S方程的自适应直角网格方法. 西安交通大学学报, 43: 11-17 (Luo X L, Gu Z L, Lei K B, Kase K. 2009. An adaptive Cartesian grid method for the incompressible Navier-Stokes equations. Journal of Xi’an Jiaotong University, 43: 11-17).

    Luo X L, Gu Z L, Lei K B, Kase K. 2009. An adaptive Cartesian grid method for the incompressible Navier-Stokes equations. Journal of Xi’an Jiaotong University, 43: 11-17).
    [8] 任登凤, 谭俊杰, 张军. 2005. 自适应方法在APFSDS干扰流场模拟中的应用. 弹道学报, 17: 1-6 (Ren D F, Tan J J, Zhang J. 2005. Adaptive mesh generation and simulation of APFSDS and SABOTS. Journal of Ballistics, 17: 1-6).

    Ren D F, Tan J J, Zhang J. 2005. Adaptive mesh generation and simulation of APFSDS and SABOTS. Journal of Ballistics, 17: 1-6).
    [9] 苏欣荣, 袁新. 2016. 用于叶轮机械复杂流动的网格自适应方法. 工程热物理学报, 37: 259-263 (Su X R, Yuan X. 2016. Adaptive mesh refinement for complex turbomachinery flow. Journal of Engineering Thermophysics, 37: 259-263).

    Su X R, Yuan X. 2016. Adaptive mesh refinement for complex turbomachinery flow. Journal of Engineering Thermophysics, 37: 259-263).
    [10] 唐静, 郑鸣, 邓有奇, 李彬. 2015. 网格自适应技术在复杂外形流场模拟中的应用. 计算力学学报, 32: 752-757 (Tang J, Zheng M, Deng Y Q, Li B. 2015. Grid adaptation for flow simulation of complicated configuration. Chinese Journal of Computational Mechanics, 32: 752-757). doi: 10.7511/jslx201506007

    (Tang J, Zheng M, Deng Y Q, Li B. 2015. Grid adaptation for flow simulation of complicated configuration. Chinese Journal of Computational Mechanics, 32: 752-757). doi: 10.7511/jslx201506007
    [11] 唐静, 崔鹏程, 贾洪印, 李彬. 2019. 非结构混合网格鲁棒自适应技术. 航空学报, 40: 122894 (Tang J, Cui P C, Jia H Y, Li B. 2019. Robust adaptation techniques for unstructured hybrid mesh. Acta Aeronautica et Astronautica Sinica, 40: 122894).

    (Tang J, Cui P C, Jia H Y, Li B. 2019. Robust adaptation techniques for unstructured hybrid mesh. Acta Aeronautica et Astronautica Sinica, 40: 122894).
    [12] 唐静, 张健, 李彬, 崔鹏程, 周乃春. 2020. 非结构混合网格自适应并行技术. 航空学报, 41: 123202 (Tang J, Zhang J, Li B, Cui P C, Zhou N C. 2020. Parallel algorithms for unstructured hybrid mesh adaptation. Acta Aeronautica et Astronautica Sinica, 41: 123202).

    (Tang J, Zhang J, Li B, Cui P C, Zhou N C. 2020. Parallel algorithms for unstructured hybrid mesh adaptation. Acta Aeronautica et Astronautica Sinica, 41: 123202).
    [13] 唐静, 张健, 张耀冰, 周乃春, 刘刚. 2022. 一种用于TSTO级间分离CFD计算的网格动态优化技术. 空气动力学学报, 41 (Tang J, Zhang J, Zhang Y B, Zhou N C, Liu Gang. 2022. A mesh adaptation method for TSTO stages separation CFD simulation. Acta Aerodynamica Sinica, 41). doi: 10.7638/kqdlxxb-2022.0028

    Tang J, Zhang J, Zhang Y B, Zhou N C, Liu Gang. A mesh adaptation method for TSTO stages separation CFD simulation. Acta Aerodynamica Sinica, 2022, 41 doi: 10.7638/kqdlxxb-2022.0028
    [14] 王利, 周伟江. 2017. 基于伴随方法的网格自适应DG方法. 中国科学:技术科学, 47: 1214-1224 (Wang L, Zhou W J. 2017. An adjoint-based grid adaptive discontinuous Galerkin method. Scientia Sinica Technologica, 47: 1214-1224). doi: 10.1360/N092016-00441

    Wang L, Zhou W J. 2017. An adjoint-based grid adaptive discontinuous Galerkin method. Scientia Sinica Technologica, 47: 1214-1224) doi: 10.1360/N092016-00441
    [15] 王俊杰, 高正红. 2006. 基于复合叉树的自适应笛卡尔网格应用研究. 应用力学学报, 23: 623-626 (Wang J J, Gao Z H. 2006. Adaptive Cartesian grid based on an omni-tree. Chinese Journal of Applied Mechanics, 23: 623-626).

    Wang J J, Gao Z H. 2006. Adaptive Cartesian grid based on an omni-tree. Chinese Journal of Applied Mechanics, 23: 623-626).
    [16] 肖涵山, 陈作斌, 刘刚, 江雄. 2003. 基于Euler方程的三维自适应笛卡尔网格应用研究. 空气动力学学报, 21: 202-210 (Xiao H S, Chen Z B, Liu G, Jiang X. 2003. Application of 3-D adaptive Cartesian grid algorithm based on the Euler equations. Acta Aerodynamica Sinica, 21: 202-210).

    Xiao H S, Chen Z B, Liu G, Jiang X. 2003. Application of 3-D adaptive Cartesian grid algorithm based on the Euler equations. Acta Aerodynamica Sinica, 21: 202-210).
    [17] 许和勇, 叶正寅. 2011. 三维非结构自适应多重网格技术. 空气动力学学报, 29: 365-369 (Xu H Y, Ye Z Y. 2011. A technique of three dimensional unstructured adaptive multigrid. Acta Aerodynamica Sinica, 29: 365-369).

    Xu H Y, Ye Z Y. 2011. A technique of three dimensional unstructured adaptive multigrid. Acta Aerodynamica Sinica, 29: 365-369).
    [18] 阎超, 屈峰, 赵雅甜, 于剑, 武从海, 张树海. 2020. 航空航天CFD物理模型和计算方法的述评与挑战. 空气动力学学报, 38: 829-857 (Yan C, Qu F, Zhao Y T, Yu J, Wu C H, Zhang S H. 2020. Review of development and challenges for physical modeling and numerical scheme of CFD in aeronautics and astronautics. Acta Aerodynamica Sinica, 38: 829-857).

    (Yan C, Qu F, Zhao Y T, Yu J, Wu C H, Zhang S H. 2020. Review of development and challenges for physical modeling and numerical scheme of CFD in aeronautics and astronautics. Acta Aerodynamica Sinica, 38: 829-857
    [19] 杨夏勰, 周春华. 2014. 目标函数误差估算及网格自适应处理. 空气动力学报, 32: 688-693 (Yang X X, Zhou C H. 2014. Output-based error estimation and grid adaptation. Acta Aerodynamica Sinica, 32: 688-693).

    Yang X X, Zhou C H. Output-based error estimation and grid adaptation. Acta Aerodynamica Sinica, 2014, 32: 688-693.
    [20] 张贺, 钟诚文, 宫建, 毕志献, 韩曙光. 2014. 气体动理论BGK格式的网格自适应方法. 航空学报, 35: 687-694 (Zhang H, Zhong C W, Gong J, Bi Z X, Han S G. 2014. Adaptive mesh refinement for gas-kinetic BGK scheme. Acta Aeronautica et Astronautica Sinica, 35: 687-694).

    Zhang H, Zhong C W, Gong J, Bi Z X, Han S G. 2014. Adaptive mesh refinement for gas-kinetic BGK scheme. Acta Aeronautica et Astronautica Sinica, 35: 687-694).
    [21] 张扬, 张来平, 赫新, 邓小刚. 2016. 基于自适应混合网格的脱体涡模拟. 航空学报, 37: 3605-3614 (Zhang Y, Zhang L P, He H, Deng X G. 2016. Detached eddy simulation based on adaptive hybrid grids. Acta Aeronautica et Astronautica Sinica, 37: 3605-3614). doi: 10.7527/S1000-6893.2016.0175

    Detached eddy simulation based on adaptive hybrid grids. 2016. Acta Aeronautica et Astronautica Sinica, 37: 3605-3614). doi: 10.7527/S1000-6893.2016.0175
    [22] 邹建锋, 盛东, 方磊, 郑耀. 2015. 各向异性网格自适应计算在超燃模拟中的应用. 航空动力学报, 30: 2140-2150 (Zou J F, Sheng D, Fang L, Zheng Y. 2015. Applications of anisotropic unstructured mesh adaption in supersonic combustion simulations. Journal of Arospace Power, 30: 2140-2150).

    Zou J F, Sheng D, Fang L, Zheng Y. 2015. Applications of anisotropic unstructured mesh adaption in supersonic combustion simulations. Journal of Aerospace Power, 30: 2140-2150).
    [23] Alauzet F, Frey P J, George P L, Mohammadi B. 2007. 3D transient fixed point mesh adaptation for time-dependent problems: application to CFD simulations. Journal of Computational Physics, 222: 592-623. doi: 10.1016/j.jcp.2006.08.012
    [24] Alauzet F. 2010. Size gradation control of anisotropic meshes. Finite Elements in Analysis and Design, 46: 181-202. doi: 10.1016/j.finel.2009.06.028
    [25] Alauzet F and Loseille A. 2016. A decade of progress on anisotropic mesh adaptation for computational fluid dynamics. Computer-Aided Design, 72: 13-39. doi: 10.1016/j.cad.2015.09.005
    [26] Alauzet F. 2016. A parallel matrix-free conservative solution interpolation on unstructured tetrahedral meshes. Computer Methods in Applied Mechanics and Engineering, 299: 116-142. doi: 10.1016/j.cma.2015.10.012
    [27] Alauzet F, Clerici F, Loseille A, Morisco C T, Vanharen J. Some progress on CFD high lift prediction using metric-based anisotropic mesh adaptation. AIAA Scitech 2022 Forum, 2022, San Diego, CA & Virtual.
    [28] Alauzet F, Frazza L, Papadogiannis D. 2022. Periodic adjoints and anisotropic mesh adaptation in rotating frame for high-fidelity RANS turbomachinery applications. Journal of Computational Physics, 450: 110814. doi: 10.1016/j.jcp.2021.110814
    [29] Alrutz T. 2005. Hybrid grid adaptation in TAU. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 89: 115.
    [30] Antepara O, Lehmkuhl O, Chiva J, Correll R. 2013. Parallel adaptive mesh refinement simulation of the flow around a square cylinder at Re = 22000. Procedia Engineering, 61: 246-250. doi: 10.1016/j.proeng.2013.08.011
    [31] Azarenok B N, Ivanenko S A, Tang T. 2003. Adaptive mesh redistribution methods based on Godunov's scheme. Communications in Mathematical Sciences, 1: 152-179. doi: 10.4310/CMS.2003.v1.n1.a10
    [32] Baker T J. 2005. Mesh generation: art or science. Progress in Aerospace Sciences, 41: 29-63. doi: 10.1016/j.paerosci.2005.02.002
    [33] Balan A, Park M A, Anderson W K. 2019. Adjoint-based anisotropic mesh adaptation for a stabilized finite-element flow solver. AIAA Aviation 2019 Forum. Dallas, Texas, AIAA.
    [34] Balan A, Park M A, Wood S L, Anderson W K. 2020. Verification of anisotropic mesh adaptation for complex aerospace applications. AIAA Scitech 2020 Forum. Orlando, FL.
    [35] Balan A, Park M A, Wood S L, Anderson W K, Rangarajan A, Sanjaya D P, May G. 2022. A review and comparison of error estimators for anisotropic mesh adaptation for flow simulations. Computers and Fluids, 234: 105259. doi: 10.1016/j.compfluid.2021.105259
    [36] Bartels R E, Vatsa V, Carlson J-R, Park M, Mineck R E. FUN3D grid refinement and adaptation studies for the Ares launch vehicle. AIAA Paper, 2010: 4372.
    [37] Bibb K L, Gnoffo P A, Park M A, Jones W T. Parallel, gradient-based anisotropic mesh adaptation for re-entry vehicle configurations. AIAA Paper, 2006: 3579.
    [38] Bonfiglioli A, Paciorri R, Mascio A D. 2012. The Role of mesh generation, adaptation, and refinement on the computation of flows featuring strong shocks. Modelling and Simulation in Engineering, 2012: 1-15.
    [39] Budd C J, Russell R D, Walsh E. 2015. The geometry of r-adaptive meshes generated using optimal transport methods. Journal of Computational Physics, 282: 113-137. doi: 10.1016/j.jcp.2014.11.007
    [40] Buning P G, Pulliam T H. Cartesian off-body grid adaption for viscous time-accurate flow simulation. AIAA Paper, 2011: 3693.
    [41] Campbell R, Carter M. 2008. Efficient unstructured grid adaptation methods for sonic boom prediction. AIAA Paper, 2008: 7327.
    [42] Cavallo P A, Sinha N, Feldman G M. 2005. Parallel unstructured mesh adaptation method for moving body applications. AIAA Journal, 43: 1937-1945. doi: 10.2514/1.7818
    [43] Ceze M A, Fidkowski K J. 2013. Anisotropic hp-adaptation framework for functional prediction. AIAA Journal, 51: 492-509. doi: 10.2514/1.J051845
    [44] Ceze M A, Fidkowski K J. 2014. Drag prediction using adaptive discontinuous finite elements. AIAA Journal of Aircraft, 51: 1284-1294. doi: 10.2514/1.C032622
    [45] Chand K K, Lee K D. Adaptation of structured grids with redistribution and embedding. AIAA Paper, 1999: 36515.
    [46] Chen J, Zheng J, Zheng Y, Si H, Hassan O, Morgan K. 2017. Improved boundary constrained tetrahedral mesh generation by shell transformation. Applied Mathematical Modelling, 51: 764-790. doi: 10.1016/j.apm.2017.07.011
    [47] Chila R J, Kaminski D A. Automated grid independence via unstructured adaptive refinement. AIAA Paper, 2006: 3062.
    [48] Clerici F, Alauzet F, Spalart P R. Coupled adjoint solver and turbulent error estimate for anisotropic mesh adaptation in high-fidelity RANS simulations. AIAA Scitech 2022 Forum. San Diego, 2022, CA & Virtual.
    [49] Copeland S R, Lonkar A K, Palacios F, Alonso J J. Adjoint-based goal-oriented mesh adaptation for nonequilibrium hypersonic flows. AIAA Paper, 2013: 0552.
    [50] Coppeans A W, Fidkowski K J, Martins J R R A. Output-based mesh adaptation using overset methods for structured meshes. AIAA Scitech 2022 Forum. San Diego, 2022, CA & Virtual.
    [51] Cui P C, Chen J T, Li B, Li H, Ma M S, Tang J. 2021. A wide-template and high-accuracy data transfer method for unstructured adjoint-based grid adaptation. Journal of Physics: Conference Series, 012021: 1-8.
    [52] Digonnet H, Coupez T, Laure P, Silva L. 2019. Massively parallel anisotropic mesh adaptation. International Journal of High Performance Computing Applications, 33: 3-24. doi: 10.1177/1094342017693906
    [53] Farrell P E, Piggott M D, Pain C C, Gorman G J, Wilson C R. 2009. Conservative interpolation between unstructured meshes via supermesh construction. Computer Methods in Applied Mechanics and Engineering, 198: 2632-2642. doi: 10.1016/j.cma.2009.03.004
    [54] Fidkowski K J, Darmofal D L. 2011. Review of output-based error estimation and mesh adaptation in computational fluid dynamics. AIAA Journal, 49: 673-694. doi: 10.2514/1.J050073
    [55] Frey P J, Alauzet F. 2005. Anisotropic mesh adaptation for CFD computations. Computer Methods in Applied Mechanics and Engineering, 194: 5068-5082. doi: 10.1016/j.cma.2004.11.025
    [56] Galimov A Y, Sahni O, Jr. R T L, Shephard M S, Drew D A, Jansen K E. 2010. Parallel adaptive simulation of a plunging liquid jet. Acta Mathematica Scientia, 30B: 522-538.
    [57] Gou J, Su X, Yuan X. 2018. Adaptive mesh refinement method-based large eddy simulation for the flow over circular cylinder at ReD = 3900. International Journal of Computational Fluid Dynamics, 32: 1-18. doi: 10.1080/10618562.2018.1461845
    [58] Gunney B T N, Anderson R W. 2016. Advances in patch-based adaptive mesh refinement scalability. Journal of Parallel and Distributed Computing, 89: 65-84. doi: 10.1016/j.jpdc.2015.11.005
    [59] Habashi W G, Dompierre J, Bourgault Y, Ait-Ali-Yahia D, Fortin M, Vallet M-G. 2000. Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver-independent CFD. Part I: general principles. International Journal for Numerical Methods in Fluids, 32: 725-744. doi: 10.1002/(SICI)1097-0363(20000330)32:6<725::AID-FLD935>3.0.CO;2-4
    [60] Haimes R, Dannenhoffer J F. EGADSlite: a lightweight geometry kernel for HPC. AIAA Paper, 2018: 1401.
    [61] Hartmann R. 2013. Higher-order and adaptive discontinuous Galerkin methods with shock-capturing applied to transonic turbulent delta wing flow. International Journal for Numerical Methods in Fluids, 72: 883-894. doi: 10.1002/fld.3762
    [62] Hindenlang F, Neudorfer J, Gassner G, Munz C-D. Unstructured three-dimensional high order grids for discontinuous Galerkin schemes. AIAA Paper, 2011: 3853.
    [63] Hunt J C R, Wray A A, Moin P. Eddies, streams, and convergence zones in turbulent flows. Studying Turbulence using Numerical Simulation Databases: 2. Proceedings of the 1988 Summer Program, NASA, Dec. 1988, 193–208.
    [64] Ibanez D, Barral N, Krakos J, Loseille A, Michal T, Park M. 2017. First benchmark of the unstructured grid adaptation working group. Procedia Engineering, 203: 154-166. doi: 10.1016/j.proeng.2017.09.800
    [65] Ji H, Lien F S, Yee E. 2010. A new adaptive mesh refinement data structure with an application to detonation. Journal of Computational Physics, 229: 8981-8993. doi: 10.1016/j.jcp.2010.08.023
    [66] Jones W T, Nielsen E J, Park M A. Validation of 3D adjoint based error estimation and mesh adaptation for sonic boom prediction. AIAA Paper, 2006: 1150.
    [67] Joubarne E, Guibault F, Braun O, Avellan F. 2009. Numerical capture of wing tip vortex improved by mesh adaptation. International Journal for Numerical Methods in Fluids, 67: 8-32.
    [68] Kamkar S J, Wissink A M, Sankaran V, Jameson A. 2011. Feature-driven Cartesian adaptive mesh refinement for vortex-dominated flows. Journal of Computational Physics, 230: 6271-6298. doi: 10.1016/j.jcp.2011.04.024
    [69] Karman S L. Multi-block hierarchical unstructured grid generation with adaptation. AIAA Paper, 2014: 0116.
    [70] Karypis G, Kumar V. 1998. Multilevel k-way partitioning scheme for irregular graphs. Journal of Parallel and Distributed Computing, 48: 96-129. doi: 10.1006/jpdc.1997.1404
    [71] Kavouklis C, Kallinderis Y. 2010. Parallel adaptation of general three-dimensional hybrid meshes. Journal of Computational Physics, 229: 3454-3473. doi: 10.1016/j.jcp.2010.01.011
    [72] Kirk B S, Peterson J W, Stogner R H, Carey G F. 2006. libMesh: a C + + library for parallel adaptive mesh refinement/coarsening simulations. Engineering with Computers, 22: 237-254. doi: 10.1007/s00366-006-0049-3
    [73] Knutson A L, Johnson H B, Candler G V. Adaptive mesh refinement in US3D. AIAA Scitech 2021 Forum, Virtual Event.
    [74] Laflin K R, Klausmeyer S M.A fast and simple solution-resolution assessment for improved CFD predictions. AIAA Paper, 2005: 1218.
    [75] Lee K D and Loellbach J M. A mapping technique for solution adaptive grid control. AIAA Paper, 1989: 2178.
    [76] Lepage C Y, Suerich-Gulick F, Habashi W G. Anisotropic 3-D mesh adaptation on unstructured hybrid meshes. AIAA Paper, 2002: 0859.
    [77] Lepage C Y, St-Cyr A, Habashi W G. Parallel unstructured mesh adaptation on distributed memory systems. AIAA Paper, 2004: 2532.
    [78] Linn R V, Awruch A M. 2017. Edge-Based Anisotropic Mesh adaptation of unstructured meshes with applications to compressible flows. Engineering with Computers, 33: 1007-1025. doi: 10.1007/s00366-017-0513-2
    [79] Liu Z, Yang Y, Gong A, Zhou W. 2015. Unstructured adaptive grid refinement for flow feature capture. Procedia Engineering, 99: 477-483. doi: 10.1016/j.proeng.2014.12.561
    [80] Loseille A. 2007. Achievement of global second order mesh convergence for discontinuous flows with adapted unstructured meshes. 18th AIAA Computational Fluid Dynamics Conference. Miami, FL.
    [81] Loseille A, Alauzet F. Optimal 3d highly anisotropic mesh adaptation based on the continuous mesh framework. Proceedings of the 18th International Meshing Roundtable, Springer, 2009.
    [82] Loseille A.Unstructured mesh generation and adaptation. Elsevier, 2016, 263-302.
    [83] Luo Y X, Fidkowski K J. Output-based space-time mesh adaptation for unsteady aerodynamics. AIAA Paper, 2011: 491.
    [84] MacNeice P, Olson K M, Mobarry C, Fainchtein R d, Packer C. 2000. PARAMESH: A parallel adaptive mesh refinement community toolkit. Computer Physics Communications, 126: 330-354. doi: 10.1016/S0010-4655(99)00501-9
    [85] Marcum D, Alauzet F. 2017. 3D Metric-aligned and orthogonal solution adaptive mesh generation. Procedia Engineering, 203: 78-90. doi: 10.1016/j.proeng.2017.09.790
    [86] Menier V, Loseilley A, Alauzet F. CFD validation and adaptivity for viscous flow simulations. AIAA Paper, 2014: 2925.
    [87] Michal T, Krakos J, Kamenetskiy D, Galbraith M, Ursachi C I, Park M A, Anderson W K, Alauzet F, Loseille A. 2021. Comparing unstructured adaptive mesh solutions for the high lift common research airfoil. AIAA Journal, 59: 3566-3584. doi: 10.2514/1.J060088
    [88] Moigne Y L. Adaptive mesh refinement sensors for vortex flow simulations. European Congress on Computational Methods in Appied Sciences and Engineering, Jyvaskyla, 2004, 6: 24-28.
    [89] Moxey D, Green M D, Sherwin S J, Peiro J. 2015. An isoparametric approach to high-order curvilinear boundary-layer meshing. Computer Methods in Applied Mechanics and Engineering, 23: 636-650.
    [90] Mozaffari S, Guilmineau E, Visonneau M, Wackers J. 2022. Average-based mesh adaptation for hybrid RANS/LES simulation of complex flows. Computers and Fluids, 232: 105202. doi: 10.1016/j.compfluid.2021.105202
    [91] Nagata T. 2005. Simple local interpolation of surfaces using normal vectors. Computer Aided Geometric Design, 22: 327-347. doi: 10.1016/j.cagd.2005.01.004
    [92] Nemec M, Aftosmis M, Wintzer M. Adjoint-based adaptive mesh refinement for complex geometries. AIAA Paper, 2008: 725.
    [93] Odier N, Thacker A, Harnieh M, Staffelbach G, Gicquel L. 2021. A mesh adaptation strategy for complex wall-modeled turbomachinery LES. Computers and Fluids, 214: 104766. doi: 10.1016/j.compfluid.2020.104766
    [94] Palacios F, Duraisamy K, Alonso J J, Zuazua E. 2012. Robust grid adaptation for efficient uncertainty quantification. AIAA Journal, 50: 1538-1546. doi: 10.2514/1.J051379
    [95] Park M A. Adjoint-based, three-dimensional error prediction and grid adaptation. AIAA Paper, 2002: 3286.
    [96] Park M A, Darmofal D L. Parallel anisotropic tetrahedral adaptation. AIAA Paper, 2008: 917.
    [97] Park M A, Carlson J-R. Turbulent output-based anisotropic adaptation. AIAA Paper, 201: 168.
    [98] Park M A, Krakos J A, Michal T, Loseille A, Alonso J J. 2016. Unstructured grid adaptation: status, potential impacts, and recommended investments toward CFD vision 2030. 46th AIAA Fluid Dynamics Conference. Washington, D. C.
    [99] Park M A, Barral N, Ibanez D, Kamenetskiy D S, Krakos J A, Michal T, Loseille A. 2018. Unstructured grid adaptation and solver technology for turbulent flows. 2018 AIAA Aerospace Sciences Meeting. Kissimmee, Florida.
    [100] Park M A, Kleb B, Anderson W K, Wood S L, Balan A, Zhou B Y, Gauger N R. 2020. Exploring unstructured mesh adaptation for hybrid Reynolds-averaged Navier-Stokes/large eddy simulation. In AIAA Scitech 2020 Forum. Orlando, FL.
    [101] Pirzadeh S Z. An adaptive unstructured grid method by grid subdivision, local remeshing, and grid movement. AIAA Paper, 1999: 3255.
    [102] Qin N, Zhu Y. Grid adaptation for shock/turbulent boundary layer interaction. AIAA Paper, 1998: 0227.
    [103] Robichaud M, Ait Ali Yahia D, Peeters M, Baruzzi G, Kozel V, Habashi W G. 3-D anisotropic adaptation for external and turbomachinery flows on hybrid unstructured grids. AIAA Paper, 2000: 2248.
    [104] Roy C J. Strategies for driving mesh adaptation in CFD. AIAA Paper, 2009: 1302.
    [105] Sahni O, Ovcharenko A, Chitale K C, Jansen K E. 2017. Parallel anisotropic mesh adaptation with boundary layers for automated viscous flow simulations. Engineering with Computers, 33: 767-795. doi: 10.1007/s00366-016-0437-2
    [106] Schloegel K, Karypis G, and Kumar V. 2001. Wavefront diffusion and LMSR: algorithms for dynamic repartitioning of adaptive meshes. IEEE Transactions on Parallel and Distributed Systems, 12: 451-466. doi: 10.1109/71.926167
    [107] Senguttuvan V, Chalasani S, Luke E A, Thompson D S. Adaptive mesh refinement using general elements. AIAA Paper, 2005: 927.
    [108] Shenoy R, Smith M J, Park M A. 2014. Unstructured overset mesh adaptation with turbulence modeling for unsteady aerodynamic interactions. Journal of Aircraft, 51: 161-174. doi: 10.2514/1.C032195
    [109] Shephard M S, Flaherty J E, Jansen K E, Li X, Luo X, Chevaugeon N, Remacle J F, Beall M W, O’Bara R M. 2005. Adaptive mesh generation for curved domains. Applied Numerical Mathematics, 52: 251-271. doi: 10.1016/j.apnum.2004.08.040
    [110] Sheshadri A, Crabilly J, Jameson A. Mesh deformation and shock capturing techniques for high-order simulation of unsteady compressible flows on dynamic meshes. AIAA Paper, 2015: 1741
    [111] Shih A, Ito Y, Koomullil R. Solution adaptive mesh generation using feature-aligned embedded surface meshes. AIAA Paper, 2007: 558.
    [112] Si H, Gärtner K. 3D boundary recovery by constrained Delaunay tetrahedralization. International Journal for Numerical Methods in Engineering, 2011, 85: 1341–1364.
    [113] Silva L, Coupez T, Digonnet H. 2016. Massively parallel mesh adaptation and linear system solution for multiphase flows. International Journal of Computational Fluid Dynamics, 30: 431-436. doi: 10.1080/10618562.2016.1223066
    [114] Sirois Y, McKenty F, Gravel L, Guibault F. 2012. Hybrid mesh adaptation applied to industrial numerical combustion. International Journal for Numerical Methods in Fluids, 70: 222-245.
    [115] Slotnick J, Khodadoust A, Alonso J, Darmofal D, Gropp W, Lurie E, Mavriplis D. CFD vision 2030 study: a path to revolutionary computational aeroscience. NASA/CR, 2014: 218178.
    [116] Soni B K, Koomullil R, Thompson D S, Thornburg H. 2000. Solution adaptive grid strategies based on point redistribution. Computer Methods in Applied Mechanics and Engineering, 189: 1183-1204. doi: 10.1016/S0045-7825(99)00373-4
    [117] Soukov S A. 2022. Parallel CFD-algorithm on unstructured adaptive meshes. Mathematical Models and Computer Simulations, 14: 19-27. doi: 10.1134/S2070048222010197
    [118] Stiller J. 2007. Point-normal interpolation schemes reproducing spheres, cylinders and cones. Computer Aided Geometry Design, 24: 286-301. doi: 10.1016/j.cagd.2007.03.007
    [119] Su X R. 2015. Accurate and robust adaptive mesh refinement for aerodynamic simulation with multi-block structured curvilinear mesh. International Journal for Numerical Methods in Fluids, 77: 747-766. doi: 10.1002/fld.4004
    [120] Tang J, Ma M, Li B, Cui P. 2019. A local and fast interpolation method for mesh deformation. Progress in Computational Fluid Dynamics, 19: 282-292. doi: 10.1504/PCFD.2019.102042
    [121] Tang J, Cui P C, Li B, Zhang Y B, Si H. 2020. Parallel hybrid mesh adaptation by refinement and coarsening. Graphical Models, 111: 101084. doi: 10.1016/j.gmod.2020.101084
    [122] Tang J, Zhang J, Li B, Zhou N C. 2020. Unsteady flow simulation with mesh adaptation. International Journal of Modern Physics B, 34: -2040080.
    [123] Tang J, Zhang J, Wu X J, Zhang Y B, Zhou N. 2022. Parallel implementation for dynamic mesh optimization on distributed computer system. 2022 6th High Performance Computing and Cluster Technologies Conference, Fuzhou, China.
    [124] Vanharen J, Loseille A, Alauzet F. Nearfield anisotropic mesh adaptation for the third AIAA sonic boom workshop. AIAA Paper, 2021: 0347.
    [125] Venditti D A, Darmofal D L. 2002. Grid adaptation for functional outputs: application to two-dimensional inviscid flows. Journal of Computational Physics, 176: 40-69. doi: 10.1006/jcph.2001.6967
    [126] Vivarelli G, Qin N, Shahpar S. Combined Hessian and adjoint error-based anisotropic mesh adaptation for turbomachinery flows. AIAA Paper, 2017: 1946.
    [127] Vivarelli G, Qin N, Shahpar S, Radford D. 2021. Anisotropic adjoint sensitivity-based mesh movement for industrial applications. Computers and Fluids, 221: 104929. doi: 10.1016/j.compfluid.2021.104929
    [128] Waithe K. Application of USM3D for sonic boom prediction by utilizing a hybrid procedure. 46th AIAA Aerospace Sciences Meeting and Exhibit. Savannah, GA, 2008.
    [129] Waltz J. Parallel adaptive refinement for 3d unstructured grids. AIAA Paper, 2003: 1115.
    [130] Wang G, Mian H H, Ye Z Y. 2015. Improved point selection method for hybrid-unstructured mesh deformation using radial basis functions. AIAA Journal, 53: 1016-1025. doi: 10.2514/1.J053304
    [131] Woopen M, May G, Schütz J. 2014. Adjoint-based error estimation and mesh adaptation for hybridized discontinuous Galerkin methods. International Journal for Numerical Methods in Fluids, 76: 811-834. doi: 10.1002/fld.3959
    [132] Wu T, Liu X, An W, Huang Z, Lyu H. 2022. A mesh optimization method using machine learning technique and variational mesh adaptation. Chinese Journal of Aeronautics, 35: 27-41. doi: 10.1016/j.cja.2021.05.018
    [133] Xiao Z, Ollivier-Gooch C, Vazquez J D Z. 2022. Anisotropic tetrahedral mesh adaptation with improved metric alignment and orthogonality. Computer Aided Design, 143: 103136. doi: 10.1016/j.cad.2021.103136
    [134] Xie Z Q, Sevilla R, Hassan O, Morgan K. 2013. The generation of arbitrary order curved meshes for 3d finite element analysis. Computational Mechanics, 51: 361-374. doi: 10.1007/s00466-012-0736-4
    [135] Xu J, Chernikov A N. 2014. Automatic curvilinear quality mesh generation driven by smooth boundary and guaranteed fidelity. Procedia Engineering, 82: 200-212. doi: 10.1016/j.proeng.2014.10.384
    [136] Yamahara T, Nakahashi K, Kim H-J. Adaptive mesh refinement using viscous adjoint method for multi-element airfoil computations. AIAA Paper, 200: 416.
    [137] Yang H Q, Chen Z J, Przekwas A. Adaptive Mesh refinement with high-order scheme for an unstructured pressure-based solver. AIAA Paper, 2014: 0077.
    [138] Zaki M, Ruffin S M. Conservation and grid adaptation enhancements to a normal ray refinement technique for Cartesian-grid based Navier-Stokes solvers. AIAA Paper, 2012: 0301.
    [139] Zhang S J, Liu J, Chen Y S. Adaptation for hybrid unstructured grid with hanging node method. AIAA Paper, 2001: 2657.
    [140] Zou J F, Zhou C L, Zhang Y, Zheng Y. 2021. Verification of anisotropic mesh adaptation for unsteady mixing and reacting flow. AIAA Journal, 59: 4071-4085. doi: 10.2514/1.J060098
  • 加载中
图(24)
计量
  • 文章访问数:  1115
  • HTML全文浏览量:  643
  • PDF下载量:  632
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-23
  • 录用日期:  2023-06-17
  • 网络出版日期:  2023-06-18
  • 刊出日期:  2023-09-30

目录

    /

    返回文章
    返回

    Baidu
    map