留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非厄米力学系统基本原理与研究进展

耿琳琳 袁锦波 程文 胡更开 周萧明

耿琳琳, 袁锦波, 程文, 胡更开, 周萧明. 非厄米力学系统基本原理与研究进展. 力学进展, 2024, 54(1): 1-60 doi: 10.6052/1000-0992-23-034
引用本文: 耿琳琳, 袁锦波, 程文, 胡更开, 周萧明. 非厄米力学系统基本原理与研究进展. 力学进展, 2024, 54(1): 1-60 doi: 10.6052/1000-0992-23-034
Geng L L, Yuan J B, Cheng W, Hu G K, Zhou X M. Fundamental principles and research progress of non-Hermitian mechanical systems. Advances in Mechanics, 2024, 54(1): 1-60 doi: 10.6052/1000-0992-23-034
Citation: Geng L L, Yuan J B, Cheng W, Hu G K, Zhou X M. Fundamental principles and research progress of non-Hermitian mechanical systems. Advances in Mechanics, 2024, 54(1): 1-60 doi: 10.6052/1000-0992-23-034

非厄米力学系统基本原理与研究进展

doi: 10.6052/1000-0992-23-034
基金项目: 国家自然科学基金 (12225203, 11991030, 11991033, 11622215, 11872111) 资助项目.
详细信息
    作者简介:

    周萧明, 北京理工大学教授、博士生导师. 主要从事复合材料与超材料波动力学及其在航空航天、海洋工程、工业装备等领域的波动与振动控制应用等研究, 在《Journal of the Mechanics and Physics of Solids》《Nature Communications》等期刊发表学术论文50余篇. 2022年获得国家杰出青年科学基金, 2016年获得优秀青年科学基金. 任中国力学学会波动力学专业组组长、《固体力学学报》期刊编委

    通讯作者:

    zhxming@bit.edu.cn

  • 中图分类号: O343, O321

Fundamental principles and research progress of non-Hermitian mechanical systems

More Information
  • 摘要: 非厄米理论是研究开放系统动力学行为的一种理论框架, 其概念起源于量子力学, 借助该理论可以揭示出奇异点、手性模态转换、拓扑趋肤效应等新奇现象, 为反常波动与振动调控提供了新思路. 本文着重以力学的语言对非厄米系统的基础概念进行介绍, 阐明经典系统与非厄米系统的关联和扩展关系, 并介绍相关前沿研究进展. 首先介绍非厄米力学系统中的奇异点、宇称-时间反演对称性等基本概念, 并介绍奇异点微扰理论及其在高灵敏度传感等领域的应用机理, 之后介绍奇异点附近特征值曲面的拓扑结构, 以及环绕奇异点的模态演化规律, 最后介绍非厄米力学系统中的拓扑波动行为.

     

  • 图  1  两自由度无阻尼质量弹簧系统示意图

    图  2  无阻尼系统特征值在二维参数空间(κ2, κ0)中厄米简并点附近的分布曲面

    图  3  (a) 含损耗和增益的两自由度质量弹簧系统示意图, (b)该系统的紧束缚模型示意图

    图  4  两模态力学系统$ {{\mathcal{P}\mathcal{T}}} $变换操作及PT对称性的原理示意图

    图  5  PT对称系统特征值及模态场幅值比分布曲线. (a) 特征值实部分布曲线, (b) 特征值虚部分布曲线, (c) 模态场幅值比分布曲线

    图  6  (a)含损耗的两自由度质量弹簧系统示意图, (b) 具有非对称损耗的两模态紧束缚模型示意图

    图  7  具有奇异点行为的时变质量调制单自由度系统. 来自文献(Yuan et al. 2022)

    图  8  基于状态空间法得到的特征频率(a)实部, (b)虚部以及(c)特征向量矩阵行列式|det(Us)|随ωm/ω0的变化; 基于谐波平衡法得到的特征频率(d)实部, (e)虚部以及(f)|det(UH)|随ωm/ω0的变化. 来自文献(Yuan et al. 2022)

    图  9  (a)具有平衡损耗/增益性质的PT 对称声学模型(Zhu et al. 2014), (b) 基于电声耦合实验实现PT对称声学系统(Fleury et al. 2015), (c) 具有高阶奇异点的四能级声腔系统(Ding et al. 2016), (d) 具有奇异弧的三能级声腔系统(Tang et al. 2020), (e) 具有非对称反射行为的非厄米声学超表面(Wang et al. 2019)

    图  10  (a) 具有分流压电材料的PT 对称弹性超材料梁(Wu et al. 2019), (b) PT对称压电弹性波超材料(Li & Wang 2023), (c) PT对称二维弹性体(Rosa et al. 2021), (d) 具有反馈响应外力系统的PT对称弹性梁(Cai et al. 2022)

    图  11  (a) 含损耗的三自由度质量弹簧系统示意图. 来自文献(Geng et al. 2021a), (b) 三模态非厄米力学系统示意图, (c) 具有纯虚数耦合的两态反PT对称系统示意图

    图  12  ${{\mathcal{P}\mathcal{T}}} $变换操作及反PT对称性的图形化解释

    图  13  (a) 具有间接耗散耦合的反 PT 对称光波导系统(Yang et al. 2017), (b) 电阻耦合的反PT 对称电路系统(Choi et al. 2018), (c) 反PT 对称光学谐振器系统(Zhang et al. 2020)

    图  14  二阶奇异点(a) ωm/ω0=1.91和 (b) ωm/ω0=2.12处, 特征频率随微扰的变化关系. 来自文献(Yuan et al. 2022)

    图  15  (a)基于时变质量奇异点的高灵敏缺陷检测传感器模型, (b) 奇异点传感器对缺陷响应的频谱特性, (c) 线性谐振式传感器对缺陷响应的频谱特性. 来自文献(Yuan et al. 2022)

    图  16  双端口声学系统示意图

    图  17  (a) 可实现声波单向不可见的PT对称声学超表面(Li et al. 2019), (b) 紧凑型非对称吸声结构(Li et al. 2021), (c) 亚波长通风超表面结构(Zhu et al. 2022)

    图  18  两自由度质量弹簧阻尼系统示意图

    图  19  特征值(a)实部Re(λ)和(b)虚部Im(λ)在二维参数空间(κ2, γ2)的分布曲面. 来自文献(Geng et al. 2021b)

    图  20  含时变调制刚度和阻尼机构的两态质量弹簧系统示意图. 来自文献(Geng et al. 2021b)

    图  21  起始点位于对称相附近、不同输入态和不同环绕方向时(a) ~ (d)本征态在黎曼面上的演化轨迹以及(e) ~ (h)模态幅值随时间的演化曲线: (a)和(e)高损耗模态输入, 逆时针环绕; (b)和(f)低损耗模态输入, 逆时针环绕; (c)和(g)高损耗模态输入, 顺时针环绕; (d)和(h)低损耗模态输入, 顺时针环绕. 来自文献(Geng et al. 2021b)

    图  22  起始点位于破缺相附近、不同输入态和不同环绕方向时 (a) ~ (d)本征态在黎曼面上的演化轨迹以及(e) ~ (h)模态幅值随时间的演化曲线: (a)和(e)高损耗模态输入, 逆时针环绕; (b)和(f)低损耗模态输入, 逆时针环绕; (c)和(g)高损耗模态输入, 顺时针环绕; (d)和(h)低损耗模态输入, 顺时针环绕. 来自文献(Geng et al. 2021b)

    图  23  特征值实部(a)和虚部(b)在二维参数空间(κL, κR)的分布曲面, (c) 反PT对称相和反PT对称破缺相处, 模态1和模态2的模态场幅值比分布. 来自文献(Geng et al. 2021a)

    图  24  含时变调制刚度机构的三态质量弹簧系统示意图. 来自文献(Geng et al. 2021a)

    图  25  起始点位于破缺相附近、不同输入态和不同环绕方向时 (a) ~ (d)本征态在黎曼面上的演化轨迹以及(e) ~ (h)模态幅值随时间的演化曲线: (a)和(e)模态1输入, 逆时针环绕; (b)和(f)模态2输入, 逆时针环绕; (c)和(g)模态1输入, 顺时针环绕; (d)和(h)模态2输入, 顺时针环绕. 来自文献(Geng et al. 2021a)

    图  26  起始点位于对称相附近、不同输入态和不同环绕方向时(a) ~ (d)本征态在黎曼面上的演化轨迹以及(e) ~ (h)模态幅值随时间的演化曲线: (a)和(e)模态1输入, 逆时针环绕; (b)和(f)模态2输入, 逆时针环绕; (c)和(g)模态1输入, 顺时针环绕; (d)和(h)模态2输入, 顺时针环绕. 来自文献(Geng et al. 2021a)

    图  27  耦合声波导系统示意图. 来自文献(Duan et al. 2023)

    图  28  特征值(a)虚部Im(λ)和(b)实部Re(λ)在二维参数空间(β1,κ)的分布曲面, 不同参数位置处系统的模态场分布: (c)对称相参数点; (d)破缺相参数点; (e)参数轨迹起始点. 来自文献(Duan et al. 2023)

    图  29  不同输入态和不同环绕方向时模态幅值的数值解和理论解. (a)模态L输入, 逆时针环绕; (b)模态G输入, 逆时针环绕; (c)模态L输入, 顺时针环绕; (d)模态G输入, 顺时针环绕

    图  30  图29所示四种不同激励情况下, 波导系统中|Δθ|/π的数值和理论结果. 插图为输入和输出单元的声压场分布

    图  31  一维周期单原子链模型

    图  32  不同双向刚度情况时波矢q随频率$\varOmega $变化的频散曲线: (a) $ \varepsilon = 0 $; (b) $ \varepsilon = - 0.4 $; (c) $ \varepsilon = 0.4 $

    图  33  具有双向刚度的弹簧在变形循环过程中系统势能的变化: (a) 不同工况下弹簧的变形状态; (b) $\varepsilon = 0.4$时双向刚度弹簧经历(a)中变形循环后, 两侧外力及对应位移随弹簧变形的演化; (c) 弹簧双向刚度相同时, 系统总势能经过变形循环后保持不变; 弹簧双向刚度系数为(d) $\varepsilon = - 0.4$ 和 (e) $\varepsilon = 0.4$时, 非保守力做功, 系统总势能经过变形循环后发生改变

    图  34  具有不同双向刚度系数弹簧链的拓扑相. 约束波数为实数时, 不同双向刚度系数(a) ε=0, (b) ε=−0.4和(c) ε=0.4时弹簧链的色散曲线. (d)和(e) 将色散曲线沿波矢增大方向映射到复频率空间的曲线: (d) 双向刚度系数为0时, 系统对应缠绕数为0; (e) 双向刚度系数为−0.4时, 系统对应缠绕数为−1; (f) 双向刚度系数为0.4时, 系统对应缠绕数为1, 其中黄色标记表示外激励频率点

    图  35  具有不同双向刚度系数的有限长弹簧链对应的模态分布曲线: (a) ~ (c)第100阶模态分布曲线; (d) ~ (f)第50阶模态分布曲线

    图  36  二维非厄米周期晶格系统. (a) 具有非对称刚度的弹簧单元; (b) 由非对称弹簧组成的二维周期晶格系统, 蓝色箭头表示正向(k1)刚度, 橙色箭头表示负向(k2)刚度, 绿色虚线表示可以由黑线所示弹簧单元沿着晶格矢量周期性平移得到的双向刚度弹簧; (c) 周期晶格系统的第一布里渊区, 灰色区域表示最简布里渊区

    图  37  双向刚度系数为$\varepsilon = 0.4$时, 二维非厄米周期晶格系统的色散曲面: (a)和(c) 第一支和第二支色散曲面的实部; (b)和(d) 第一支和第二支色散曲面的虚部

    图  38  由双向刚度系数为$\varepsilon = 0.4$的弹簧组成的二维晶格色散及拓扑性质. (a) 二维非厄米周期晶格系统第一支色散曲面实部和虚部分量, 蓝色和灰色切面分别表示波矢沿$ - \pi /4$$ - 3\pi /4$方向的色散切面; (b) 波矢沿$ - \pi /4$方向的色散切面; (c) 将(b)对应切面沿波矢增大方向映射到复频率空间中的曲线; (d) 波矢沿$ - 3\pi /4$方向的色散切面; (e) 将(d)对应切面沿波矢增大方向映射到复频率空间中的曲线

    图  39  (a) 双向刚度系数为$\varepsilon = 0.4$的弹簧组成的二维晶格拓扑数随波矢角度分布图, (b) 厄米晶格本征模态分布, (c)和(d) 非厄米晶格的局域化本征模态分布

    图  40  (a) 奇弹性介质中四种变形模式示意图, (b)通过旋转-体膨胀非对称耦合实现非保守力做功与路径相关, (c)通过两种剪切变形非对称耦合实现非保守力做功与路径相关

    图  41  (a)具有奇弹性模量的超材料梁结构 (Chen et al. 2021), (b)基于压电材料和反馈控制设计实现的奇弹性材料 (Cheng & Hu 2021), (c) 具有非对称二阶张量密度的非厄米力学系统(Wu et al. 2023), (d) 静态力学超材料中的非厄米拓扑效应(Wang et al. 2023)

    图  42  不同声学介质中声压和速度激励产生的极化场. (a)传统声学介质, (b) 声学Willis介质, (c) 非互易声学Willis介质

    图  43  (a) 一维双端口声学波导系统示意图, (b)散射体速度和体应变的演化工况, 在(b)所示工况下, 不同声学系统的做功情况: (c) 传统声学介质; (d) 声学Willis介质; (e) 非互易声学Willis介质

    图  44  (a) ~(c)不同耦合系数对应的色散曲线, (d) 一维非互易声学Willis介质拓扑数与耦合系数的关系

    图  45  非互易声学Willis介质中的声趋肤效应. (a) 有限长非互易声学Willis介质模型图, 其中左右两侧为辐射边界, 背景介质为传统声学介质, 中间为有限长度的非互易声学Willis介质, 二者密度和体积模量相同, (b)基于传递矩阵法计算得到的声压场分布曲线 (红色圆圈标记) 和有限元计算结果 (实线)

    图  46  非互易声学Willis介质的设计与声学特性. (a) 非局部声散射体示意图, (b)由空腔-非局部散射体-空腔组成的散射体单胞示意图, (c)基于参数反演计算得到的等效参数, (d)和(e)阵列结构局域化声场响应的数值模拟和连续介质理论预测结果

    图  47  三种W1指向情况下, 缠绕数随W2指向Arg(W2)和空间方位角θ的分布云图. (a) Arg(W1)=π/4, (b) Arg(W1)=0, (c) Arg(W1)=−π/4. 来自文献(Cheng & Hu 2022)

    图  48  (a)二维非局部声学散射体示意图; 不同耦合向量指向情况下, 基于连续介质理论和有源正方形晶格预测得到的声学趋肤效应(b) ~ (d), 以及相应远场辐射图(c) ~ (e). 来自文献(Cheng & Hu 2022)

    Baidu
  • [1] Ahmed W W, Farhat M, Staliunas K, et al. 2023. Machine learning for knowledge acquisition and accelerated inverse-design for non-Hermitian systems. Communications Physics, 6: 2. doi: 10.1038/s42005-022-01121-9
    [2] Ashida Y, Gong Z, Ueda M. 2020. Non-Hermitian physics. Advances in Physics, 69 : 249-435.
    [3] Bender C M. 2007. Making sense of non-Hermitian Hamiltonians. Reports on Progress in Physics, 70 : 947-1018.
    [4] Bender C M, Boettcher S. 1998. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Physical Review Letters, 80 : 5243-5246.
    [5] Bender C M, Boettcher S, Meisinger P N. 1999. PT-symmetric quantum mechanics. Journal of Mathematical Physics, 40 : 2201-2229.
    [6] Berry M V. 1984. Quantal phase factors accompanying adiabatic changes. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 392 : 45-57.
    [7] Berry M V. 2004. Physics of nonhermitian degeneracies. Czechoslovak Journal of Physics, 54 : 1039-1047.
    [8] Cai R, Jin Y, Li Y, et al. 2022. Exceptional points and skin Modes in non-Hermitian metabeams. Physical Review Applied, 18: 014067. doi: 10.1103/PhysRevApplied.18.014067
    [9] Cai R, Jin Y, Li Y, et al. 2023. Absorption-lasing effects and exceptional points in parity-time symmetric non-Hermitian metaplates. Journal of Sound and Vibration, 555: 117710. doi: 10.1016/j.jsv.2023.117710
    [10] Callaway J. 2013. Quantum Theory of the Solid State. Academic Press; London.
    [11] Chen W, Kaya Özdemir Ş, Zhao G, et al. 2017. Exceptional points enhance sensing in an optical microcavity. Nature, 548: 192-196. doi: 10.1038/nature23281
    [12] Chen Y, Li X, Scheibner C, et al. 2021. Realization of active metamaterials with odd micropolar elasticity. Nature communications, 12: 5935. doi: 10.1038/s41467-021-26034-z
    [13] Cheng W, Hu G. 2021. Odd elasticity realized by piezoelectric material with linear feedback. Science China Physics, Mechanics & Astronomy, 64 : 2.
    [14] Cheng W, Hu G. 2022. Acoustic skin effect with non-reciprocal Willis materials. Applied Physics Letters, 121 : 041701.
    [15] Cheng Z, Yu Z. 2021. Supervised machine mearning topological states of one-dimensional non-Hermitian systems. Chinese Physics Letters, 38 : 070302.
    [16] Choi Y, Hahn C, Yoon J W, et al. 2018. Observation of an anti-PT-symmetric exceptional point and energy-difference conserving dynamics in electrical circuit resonators. Nature Communications, 9: 2182. doi: 10.1038/s41467-018-04690-y
    [17] Choi Y, Hahn C, Yoon J W, et al. 2017. Extremely broadband, on-chip optical nonreciprocity enabled by mimicking nonlinear anti-adiabatic quantum jumps near exceptional points. Nature Communications, 8: 14154. doi: 10.1038/ncomms14154
    [18] Christensen J, Willatzen M, Velasco V R, et al. 2016. Parity-time synthetic phononic media. Physical Review Letters, 116: 207601. doi: 10.1103/PhysRevLett.116.207601
    [19] De Carlo M, De Leonardis F, Soref R A, et al. 2022. Non-Hermitian sensing in photonics and electronics: A review. Sensors, 22: 3977. doi: 10.3390/s22113977
    [20] Dembowski C, Dietz B, Gräf H D, et al. 2004. Encircling an exceptional point. Physical Review E, 69: 056216. doi: 10.1103/PhysRevE.69.056216
    [21] Ding K, Fang C, Ma G. 2022. Non-Hermitian topology and exceptional-point geometries. Nature Reviews Physics, 4 : 745-760.
    [22] Ding K, Ma G, Xiao M, et al. 2016. Emergence, coalescence, and topological properties of multiple exceptional points and their experimental realization. Physical Review X, 6: 021007.
    [23] Ding K, Ma G, Zhang Z Q, et al. 2018. Experimental demonstration of an anisotropic exceptional point. Physical Review Letters, 121: 085702. doi: 10.1103/PhysRevLett.121.085702
    [24] Dong Z, Li Z, Yang F, et al. 2019. Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point. Nature Electronics, 2: 335-342. doi: 10.1038/s41928-019-0284-4
    [25] Doppler J, Mailybaev A A, Böhm J, et al. 2016. Dynamically encircling an exceptional point for asymmetric mode switching. Nature, 537: 76-79. doi: 10.1038/nature18605
    [26] Duan Y, Geng L, Guo Q, et al. 2023. Acoustic chiral mode switching by dynamic encircling of exceptional points. Applied Physics Letters, 123:101701
    [27] El-Ganainy R, Makris K G, Khajavikhan M, et al. 2018. Non-Hermitian physics and PT symmetry. Nature Physics, 14: 11-19. doi: 10.1038/nphys4323
    [28] Elbaz G, Pick A, Moiseyev N, et al. 2022. Encircling exceptional points of Bloch waves: mode conversion and anomalous scattering. Journal of Physics D:Applied Physics, 55: 235301. doi: 10.1088/1361-6463/ac5859
    [29] Fan H, Chen J, Zhao Z, et al. 2020. Antiparity-time symmetry in passive nanophotonics. ACS Photonics, 7: 3035-3041. doi: 10.1021/acsphotonics.0c01053
    [30] Fleury R, Sounas D, Alù A. 2015. An invisible acoustic sensor based on parity-time symmetry. Nature Communications, 6 : 5905.
    [31] Fruchart M, Hanai R, Littlewood P B, et al. 2019. Non-reciprocal robotic metamaterials. Nature communications, 10: 4608. doi: 10.1038/s41467-019-12599-3
    [32] Geib N, Sasmal A, Wang Z, et al. 2021. Tunable nonlocal purely active nonreciprocal acoustic media. Physical Review B, 103: 165427. doi: 10.1103/PhysRevB.103.165427
    [33] Geng L, Zhang W, Zhang X, et al. 2021a. Chiral mode transfer of symmetry-broken states in anti-parity-time-symmetric mechanical system. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 477 : 20210641.
    [34] Geng L, Zhang W, Zhang X, et al. 2021b. Topological mode switching in modulated structures with dynamic encircling of an exceptional point. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 477 : 20200766.
    [35] Ghosh S N, Chong Y D. 2016. Exceptional points and asymmetric mode conversion in quasi-guided dual-mode optical waveguides. Scientific Reports, 6 : 19837.
    [36] Gilary I, Mailybaev A A, Moiseyev N. 2013. Time-asymmetric quantum-state-exchange mechanism. Physical Review A, 88 : 010102.
    [37] Gong Z, Ashida Y, Kawabata K, et al. 2018. Topological phases of non-hermitian systems. Physical Review X, 8: 031079.
    [38] Graefe E M, Mailybaev A A, Moiseyev N. 2013. Breakdown of adiabatic transfer of light in waveguides in the presence of absorption. Physical Review A, 88 : 033842.
    [39] Gu Z, Gao H, Cao P C, et al. 2021. Controlling sound in non-hermitian acoustic systems. Physical Review Applied, 16: 057001. doi: 10.1103/PhysRevApplied.16.057001
    [40] Guo A, Salamo G J, Duchesne D, et al. 2009. Observation of PT-symmetry breaking in complex optical potentials. Physical Review Letters, 103: 093902. doi: 10.1103/PhysRevLett.103.093902
    [41] Haken H. 1983. Synergetics—an Introduction. Springer-Verlag Berlin Heidelberg; Berlin.
    [42] Hassan A U, Zhen B, Soljačić M, et al. 2017. Dynamically encircling exceptional points: Exact evolution and polarization state conversion. Physical Review Letters, 118: 093002. doi: 10.1103/PhysRevLett.118.093002
    [43] Haus H A, Huang W. 1991. Coupled-mode theory. Proceedings of the IEEE, 79 : 1505-1518.
    [44] Heiss W D. 1999. Phases of wave functions and level repulsion. The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 7 : 1-4.
    [45] Hodaei H, Hassan A U, Wittek S, et al. 2017. Enhanced sensitivity at higher-order exceptional points. Nature, 548: 187-191. doi: 10.1038/nature23280
    [46] Hou Z, Assouar B. 2018. Tunable elastic parity-time symmetric structure based on the shunted piezoelectric materials. Journal of Applied Physics, 123 : 085101.
    [47] Huang H, Chen J, Huo S. 2021. Recent advances in topological elastic metamaterials. Journal of Physics: Condensed Matter, 33 : 503002.
    [48] Huang J, Zhou X. 2019. A time-varying mass metamaterial for non-reciprocal wave propagation. International Journal of Solids and Structures, 164 : 25-36.
    [49] Huang J, Zhou X. 2020. Non-reciprocal metamaterials with simultaneously time-varying stiffness and mass. Journal of Applied Mechanics, 87 : 071003.
    [50] Kato T. 1966. Perturbation Theory for Linear Operators. Springer; Verlag Berlin Heidelberg.
    [51] Kazemi H, Hajiaghajani A, Nada M Y, et al. 2021. Ultra-sensitive radio frequency biosensor at an exceptional point of degeneracy induced by time modulation. IEEE Sensors Journal, 21: 7250-7259.
    [52] Kazemi H, Nada M Y, Nikzamir A, et al. 2022. Experimental demonstration of exceptional points of degeneracy in linear time periodic systems and exceptional sensitivity. Journal of Applied Physics, 131: 144502. doi: 10.1063/5.0084849
    [53] Kittel C A M, Paul and McEuen, Paul 1996. Introduction to Solid State Physics. Wiley; New York.
    [54] Klitzing K V, Dorda G, Pepper M. 1980. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Physical Review Letters, 45 : 494-497.
    [55] Kononchuk R, Cai J, Ellis F, et al. 2022. Exceptional-point-based accelerometers with enhanced signal-to-noise ratio. Nature, 607: 697-702. doi: 10.1038/s41586-022-04904-w
    [56] Lai Y H, Lu Y K, Suh M G, et al. 2019. Observation of the exceptional-point-enhanced Sagnac effect. Nature, 576: 65-69. doi: 10.1038/s41586-019-1777-z
    [57] Li A, Chen W, Wei H, et al. 2022. Riemann-encircling exceptional points for efficient asymmetric polarization-locked devices. Physical Review Letters, 129: 127401. doi: 10.1103/PhysRevLett.129.127401
    [58] Li D, Huang S, Cheng Y, et al. 2021. Compact asymmetric sound absorber at the exceptional point. Science China Physics, Mechanics & Astronomy, 64 : 244303.
    [59] Li H X, Rosendo-López M, Zhu Y F, et al. 2019. Ultrathin acoustic parity-time symmetric metasurface cloak. Research, 2019: 1-7.
    [60] Li H, Mekawy A, Krasnok A, et al. 2020. Virtual parity-time symmetry. Physical Review Letters, 124: 193901. doi: 10.1103/PhysRevLett.124.193901
    [61] Li P H, Wang Y Z. 2023. Negative refraction and exceptional point with Parity-Time symmetry in a piezoelectric mechanical metamaterial. Mechanics of Materials, 181 : 104647.
    [62] Liu X, Huang G, Hu G. 2012. Chiral effect in plane isotropic micropolar elasticity and its application to chiral lattices. Journal of the Mechanics and Physics of Solids, 60 : 1907-1921.
    [63] Liu Z P, Zhang J, Özdemir Ş K, et al. 2016. Metrology with PT-Symmetric Cavities: Enhanced Sensitivity near the PT-Phase Transition. Physical Review Letters, 117: 110802. doi: 10.1103/PhysRevLett.117.110802
    [64] Lu J, Deng W, Huang X, et al. 2023. Non-hermitian topological phononic metamaterials. Advanced Materials: 2307998.
    [65] Luigi Lugiato F P, Massimo Brambilla. 2015. Nonlinear Optical Systems. Cambridge University Press; Cambridge.
    [66] Ma F, Imam A, Morzfeld M. 2009. The decoupling of damped linear systems in oscillatory free vibration. Journal of Sound and Vibration, 324 : 408-428.
    [67] Milburn T J, Doppler J, Holmes C A, et al. 2015. General description of quasiadiabatic dynamical phenomena near exceptional points. Physical Review A, 92: 052124. doi: 10.1103/PhysRevA.92.052124
    [68] Miri M A, Alù A. 2019. Exceptional points in optics and photonics. Science, 363 : eaar7709.
    [69] Mousavi S H, Khanikaev A B, Wang Z. 2015. Topologically protected elastic waves in phononic metamaterials. Nature Communications, 6 : 8682.
    [70] Muhlestein M B, Sieck C F, Alù A, et al. 2016. Reciprocity, passivity and causality in Willis materials. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 472 : 20160604.
    [71] Özdemir Ş K, Rotter S, Nori F, et al. 2019. Parity–time symmetry and exceptional points in photonics. Nature Materials, 18: 783-798. doi: 10.1038/s41563-019-0304-9
    [72] Peng B, Özdemir Ş K, Lei F, et al. 2014. Parity–time-symmetric whispering-gallery microcavities. Nature Physics, 10: 394-398. doi: 10.1038/nphys2927
    [73] Peng Y G, Mazor Y, Alù A. 2022. Fundamentals of acoustic Willis media. Wave Motion, 112: 102930.
    [74] Qi Y, Qiu C, Xiao M, et al. 2020. Acoustic realization of quadrupole topological insulators. Physical Review Letters, 124: 206601. doi: 10.1103/PhysRevLett.124.206601
    [75] Quan L, Yves S, Peng Y, et al. 2021. Odd Willis coupling induced by broken time-reversal symmetry. Nature Communications, 12: 2615. doi: 10.1038/s41467-021-22745-5
    [76] Rosa M I N, Mazzotti M, Ruzzene M. 2021. Exceptional points and enhanced sensitivity in PT-symmetric continuous elastic media. Journal of the Mechanics and Physics of Solids, 149 : 104325.
    [77] Rüter C E, Makris K G, El-Ganainy R, et al. 2010. Observation of parity–time symmetry in optics. Nature Physics, 6: 192. doi: 10.1038/nphys1515
    [78] Scheibner C, Souslov A, Banerjee D, et al. 2020. Odd elasticity. Nature Physics, 16: 475-480. doi: 10.1038/s41567-020-0795-y
    [79] Shang C, Liu S, Shao R, et al. 2022. Experimental identification of the second‐order non‐Hermitian skin effect with physics‐graph‐informed machine learning. Advanced Science, 9: 2202922. doi: 10.1002/advs.202202922
    [80] Shankar S, Souslov A, Bowick M, et al. 2022. Topological active matter. Nature Reviews Physics, 4: 380-398. doi: 10.1038/s42254-022-00445-3
    [81] Shen H, Zhen B, Fu L. 2018. Topological Band Theory for non-Hermitian Hamiltonians. Physical Review Letters, 120 : 146402.
    [82] Sieck C F, Alù A, Haberman M R. 2017. Origins of Willis coupling and acoustic bianisotropy in acoustic metamaterials through source-driven homogenization. Physical Review B, 96 : 104303.
    [83] Stenholm S. 1984. Foundations of Laser Spectroscopy. Wiley-Interscience; New York.
    [84] Tang W, Ding K, Ma G. 2021. Direct measurement of topological properties of an exceptional parabola. Physical Review Letters, 127 : 034301.
    [85] Tang W, Jiang X, Ding K, et al. 2020. Exceptional nexus with a hybrid topological invariant. Science, 370: 1077-1080. doi: 10.1126/science.abd8872
    [86] Thouless D J, Kohmoto M, Nightingale M P, et al. 1982. Quantized hall conductance in a two-dimensional periodic potential. Physical Review Letters, 49: 405-408. doi: 10.1103/PhysRevLett.49.405
    [87] Tian Y, Ge H, Lu M H, et al. 2019. Research advances in acoustic metamaterials. Acta Physica Sinica, 68 : 194301-194301-194301-194312.
    [88] Tokura Y, Yasuda K, Tsukazaki A. 2019. Magnetic topological insulators. Nature Reviews Physics, 1 : 126-143.
    [89] Uzdin R, Mailybaev A, Moiseyev N. 2011. On the observability and asymmetry of adiabatic state flips generated by exceptional points. Journal of Physics A-Mathematical and Theoretical, 44 : 435302.
    [90] Uzdin R, Moiseyev N. 2012. Scattering from a waveguide by cycling a non-Hermitian degeneracy. Physical Review A, 85 : 031804.
    [91] Veletsos A S, Ventura C E. 1986. Modal analysis of non-classically damped linear systems. Earthquake Engineering & Structural Dynamics, 14 : 217-243.
    [92] Wang A, Meng Z, Chen C Q. 2023. Non-Hermitian topology in static mechanical metamaterials. Science advances, 9 : eadf7299.
    [93] Wang C, Sweeney William R, Stone A D, et al. 2021a. Coherent perfect absorption at an exceptional point. Science, 373: 1261-1265. doi: 10.1126/science.abj1028
    [94] Wang H, Zhang X, Hua J, et al. 2021b. Topological physics of non-Hermitian optics and photonics: a review. Journal of Optics, 23: 123001. doi: 10.1088/2040-8986/ac2e15
    [95] Wang X, Fang X, Mao D, et al. 2019. Extremely asymmetrical acoustic metasurface mirror at the exceptional point. Physical Review Letters, 123: 214302. doi: 10.1103/PhysRevLett.123.214302
    [96] Welters A. 2011. On explicit recursive formulas in the spectral perturbation analysis of a Jordan block. SIAM Journal on Matrix Analysis and Applications, 32 : 1-22.
    [97] Wiersig J. 2014. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: Application to microcavity sensors for single-particle detection. Physical Review Letters, 112 : 203901.
    [98] Willis J R. 1981. Variational principles for dynamic problems for inhomogeneous elastic media. Wave Motion, 3 : 1-11.
    [99] Wu Q, Chen Y, Huang G. 2019. Asymmetric scattering of flexural waves in a parity-time symmetric metamaterial beam. The Journal of the Acoustical Society of America, 146 : 850-862.
    [100] Wu Q, Xu X, Qian H, et al. 2023. Active metamaterials for realizing odd mass density. Proceedings of the National Academy of Sciences, 120: e2209829120. doi: 10.1073/pnas.2209829120
    [101] Wu Y, Zhou P, Li T, et al. 2021. High-order exceptional point based optical sensor. Optics Express, 29: 6080-6091. doi: 10.1364/OE.418644
    [102] Xiao Z, Li H, Kottos T, et al. 2019. Enhanced sensing and nondegraded thermal noise performance based on PT-symmetric electronic circuits with a sixth-order exceptional point. Physical Review Letters, 123: 213901. doi: 10.1103/PhysRevLett.123.213901
    [103] Xin L, Siyuan Y, Harry L, et al. 2020. Topological mechanical metamaterials: A brief review. Current Opinion in Solid State and Materials Science, 24: 100853. doi: 10.1016/j.cossms.2020.100853
    [104] Xing T, Pan Z, Tao Y, et al. 2020. Ultrahigh sensitivity stress sensing method near the exceptional point of parity-time symmetric systems. Journal of Physics D:Applied Physics, 53: 205102. doi: 10.1088/1361-6463/ab761d
    [105] Xu H, Mason D, Jiang L, et al. 2016. Topological energy transfer in an optomechanical system with exceptional points. Nature, 537: 80-83. doi: 10.1038/nature18604
    [106] Yang F, Liu Y C, You L. 2017. Anti-PT symmetry in dissipatively coupled optical systems. Physical Review A, 96 : 053845.
    [107] Yang X, Li J, Ding Y, et al. 2022. Observation of transient parity-time symmetry in electronic systems. Physical Review Letters, 128: 065701. doi: 10.1103/PhysRevLett.128.065701
    [108] Yang Z, Zhang K, Fang C, et al. 2020. Non-Hermitian Bulk-boundary correspondence and auxiliary generalized brillouin zone theory. Physical Review Letters, 125: 226402. doi: 10.1103/PhysRevLett.125.226402
    [109] Yoon J W, Choi Y, Hahn C, et al. 2018. Time-asymmetric loop around an exceptional point over the full optical communications band. Nature, 562: 86-90. doi: 10.1038/s41586-018-0523-2
    [110] Yuan J, Geng L, Huang J, et al. 2022. Exceptional points induced by time-varying mass to enhance the sensitivity of defect detection. Physical Review Applied, 18: 064055. doi: 10.1103/PhysRevApplied.18.064055
    [111] Zhang H, Huang R, Zhang S D, et al. 2020. Breaking anti-PT symmetry by spinning a resonator. Nano Letters, 20: 7594-7599. doi: 10.1021/acs.nanolett.0c03119
    [112] Zhang L, Yang Y, Ge Y, et al. 2021a. Acoustic non-Hermitian skin effect from twisted winding topology. Nature Communications, 12: 6297. doi: 10.1038/s41467-021-26619-8
    [113] Zhang L F, Tang L Z, Huang Z H, et al. 2021b. Machine learning topological invariants of non-Hermitian systems. Physical Review A, 103: 012419. doi: 10.1103/PhysRevA.103.012419
    [114] Zhang X L, Chan C T. 2019. Dynamically encircling exceptional points in a three-mode waveguide system. Communications Physics, 2 : 63.
    [115] Zhang X L, Jiang T, Chan C T. 2019. Dynamically encircling an exceptional point in anti-parity-time symmetric systems: asymmetric mode switching for symmetry-broken modes. Light-Science & Applications, 8 : 88.
    [116] Zhang X L, Wang S, Hou B, et al. 2018. Dynamically encircling exceptional points: In situ control of encircling loops and the role of the starting point. Physical Review X, 8: 021066.
    [117] Zhong J, Wang K, Park Y, et al. 2021. Nontrivial point-gap topology and non-Hermitian skin effect in photonic crystals. Physical Review B, 104: 125416. doi: 10.1103/PhysRevB.104.125416
    [118] Zhou Z, Jia B, Wang N, et al. 2023. Observation of perfectly-chiral exceptional point via bound state in the continuum. Physical Review Letters, 130: 116101. doi: 10.1103/PhysRevLett.130.116101
    [119] Zhu X, Ramezani H, Shi C, et al. 2014. PT-symmetric acoustics. Physical Review X, 4: 031042.
    [120] Zhu Y, Long H, Liu C, et al. 2022. An ultra-thin ventilated metasurface with extreme asymmetric absorption. Applied Physics Letters, 120: 141701. doi: 10.1063/5.0086859
    [121] 陈阿丽, 汪越胜, 王艳锋, 等. 2022. 声学/弹性相位梯度超表面设计: 原理、功能基元、可调和编码. 力学进展, 52 : 948-1011. (Chen A L, Wang Y S, Wang Y F, et al. 2022. Design of acoustic/elastic phase gradient metasurfaces: Principles, functional elements, tunability, and coding. Advances in Mechanics, 52 : 948-1011).

    Chen A L, Wang Y S, Wang Y F, et al. 2022. Design of acoustic/elastic phase gradient metasurfaces: Principles, functional elements, tunability, and coding. Advances in Mechanics, 52: 948-1011
    [122] 陈毅, 刘晓宁, 向平, 等. 2016. 五模材料及其水声调控研究. 力学进展, 46: 201609. (Chen Y, Liu X N, Xiang P, et al. 2016. Pentamode material for underwater acoustic wave control. Advances in Mechanics, 46: 201609). doi: 10.6052/1000-0992-16-010

    Chen Y, Liu X N, Xiang P, et al. 2016. Pentamode material for underwater acoustic wave control. Advances in Mechanics, 46: 201609. doi: 10.6052/1000-0992-16-010
    [123] 陈毅, 张泉, 张亚飞, 等. 2021. 弹性拓扑材料研究进展. 力学进展, 51: 189-256. (Chen Y, Zhang Q, Zhang Y F, et al. 2021. Research progress of elastic topological materials. Advances in Mechanics, 51: 189-256). doi: 10.6052/1000-0992-21-015

    Chen Y, Zhang Q, Zhang Y F, et al. 2021. Research progress of elastic topological materials. Advances in Mechanics, 51: 189-256. doi: 10.6052/1000-0992-21-015
    [124] 尹剑飞, 蔡力, 方鑫, 等. 2022. 力学超材料研究进展与减振降噪应用. 力学进展, 52: 508-586. (Yin J F, Cai L, Fang X, et al. 2022. Review on research progress of mechanical metamaterials and their applications in vibration and noise control. Advances in Mechanics, 52: 508-586). doi: 10.6052/1000-0992-22-005

    Yin J F, Cai L, Fang X, et al. 2022. Review on research progress of mechanical metamaterials and their applications in vibration and noise control. Advances in Mechanics, 52: 508-586. doi: 10.6052/1000-0992-22-005
    [125] 祝雪丰, 彭玉桂, 沈亚西. 2017. 宇称时间对称性声学. 物理, 46: 740-748. (Zhu X F, Peng Y G, Shen Y X. 2017. Parity-time symmetric acoustics. Physics, 46: 740-748).

    Zhu X F, Peng Y G, Shen Y X. 2017. Parity-time symmetric acoustics. Physics, 46: 740-748
  • 加载中
图(48)
计量
  • 文章访问数:  1816
  • HTML全文浏览量:  440
  • PDF下载量:  653
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-11
  • 录用日期:  2023-12-27
  • 网络出版日期:  2024-01-09
  • 刊出日期:  2024-03-24

目录

    /

    返回文章
    返回

    Baidu
    map