-
摘要:
造血系统是人体中复杂的调控系统, 包括复杂的造血器官和各种血液细胞的增生、分化、成熟、死亡等过程和对这些过程的反馈控制, 是典型的非线性时滞动力系统. 血细胞生成过程的失调可以引起很多动态血液病. 血细胞生成的系统动力学研究对于人们了解和治疗这些血液病有重大意义. 本文从造血系统的基本知识、常见动态血液病的临床表现及其动力学特征、理论模型的建立和对模型的动力学分析等方面综述血细胞生成的系统动力学研究进展.
Abstract:Hematopoiesis is a complex regulation system in human body, which is a typical nonlinear delay dynamical system, including proliferation, maturation and apoptosis of different types of blood cells, and feedback controls to these processes. Deregulations in the hematopoiesis can induce many dynamical blood diseases. Studies of hematological dynamics are important for understanding and treating these diseases. This paper surveys recent progresses in hematological dynamics studies, including basic knowledge of the hematopoiesis, clinical manifestation of dynamical blood disease and their dynamical characteristics, theoretical models and dynamical analysis.
-
Key words:
- Hematopoiesis /
- dynamical blood disease /
- delay dynamics /
- bifurcation /
- control
-
1 Glass L, Mackey M. From Clocks to Chaos—The Rhythms of Life. New Jersey, Princeton University Press, 1975 2 Israels L, Israels E. Mechanisms in hematology. Core Health Services Inc, 2002 3 Adamson J. The relationship of erythropoietin and iron metabolism to red blood cell production in humans. Seminars in Oncology, 1999, 2: 9-15 4 Price T, Ghatta G, Dale D. Effect of recombinant granulocyte colony-stimulating factor on neutrophil kinetics in normal young and elderly humans. Blood, 1999, 88: 335-340 5 Ratajckzak M, Ratajczak J, Marlicz W, et al. Recombinant human thrombopoietin(TPO) stimulates erythropoiesis by inhibiting erythroid progenitor cell apoptosis. British Journal of Haematology, 1997, 98: 8-17 6 Tanimukai S, Kimura T, Stakabe H, et al. Recombinant human c-Mpl ligand (thrombopoietin) not only acts on megakaryocyte progenitors, but also on erythroid and multipotential progenitors in vitro. Experimental Hematology,1997, 25: 1025-1033 7 Foley C, Mackey M. Dynamic hematological disease: A review. Journal of Mathematical Biology, 2009, 58: 285-322 8 Mackey M, Milton J. Dynamical disease. Annals of the New York Academy of Sciences, 1987, 504: 16-32 9 Haurie C, Dale D, Mackey M. Occurrence of periodic oscillations in the differential blood counts of congenital, idiopathic, and cyclical neutropenic patients before and during treatment with G-CSF. Experimental Hematology,1999, 27: 401-409 10 Colijn C, Mackey M. A mathematical model of hematopoiesis: II. cyclical neutropenia. Journal of Theoretical Biology, 2005, 237: 133-146 11 Colijn C, Mackey M. A mathematical model of hematopoiesis: I. periodic myelogenous leukemia. Journal of Theoretical Biology, 2005, 237: 117-132 12 Apostu R, Mackey M. Understanding cyclical thrombocytopenia: A mathematical modeling approach. Journal of Theoretical Biology, 2008, 251: 297-316 13 Hammond W, Price T, Souza L, et al. Treatment of cyclic neutropenia with granulocyte colony stimulating factor. The New England Journal of Medicine, 1989, 320: 1306-1311 14 Vainstein V, Ginosara Y, Shohamb M, et al. The complex effect of granulocyte colony-stimulating factor on human granulopoiesis analyzed by a new physiologicallybased mathematical model. Journal of Theoretical Biology,2005, 234: 311-327 15 张伟, 胡海岩. 非线性动力学理论与应用的新进展. 北京: 科 学出版社, 2009 16 徐鉴, 裴利军. 时滞系统动力学近期研究进展与展望. 力学 进展, 2006, 36: 17-30 17 Lei J, Mackey M. Stochastic differential delay equation, moment stability, and application to hematopoietic stem cell regulation system. SIAM Journal on Applied Mathematics,2007, 67: 387-407 18 Lei J, Mackey M. Multistability in an age-structured model of hematopoiesis: Cyclical neutropenia. Journal of Theoretical Biology, 2011, 270: 143-153 19 Zhuge C, Lei J, Mackey M. Neutrophil dynamics in response to chemotherapy and G-CSF. Journal of Theoretical Biology, 2012, 293: 111-120 20 Bélair J, Mackey M. A model for the regulation of mammalian platelet. Annals of the New York Academy of Sciences,1987, 504: 280-282 21 Bélair J, Mackey M. Age-structure and two-delay models for erythropoiesis. Mathematical Biosciences, 1995, 128:317-346 22 Bernard S, Bélair J, Mackey M. Oscillations in cyclical neutrophenia: new evidence based on mathematical modeling. Journal of Theoretical Biology, 2003, 223: 283-298 23 Haurie C, Dale D, Rudnicki R, et al. Modeling complex neutrophil dynamics in the grey collie. Journal of Theoretical Biology, 2000, 192: 167-181 24 Haurie C, Mackey M, Dale D. Cyclical neutropenia and other periodic hematological disease: a review of mechanisms and mathematical models. Blood, 1998, 92: 2629-2640 25 Mackey M. Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis. Blood, 1978, 51: 941-956 26 Mackey M. Periodic anto-immune hemolytic anemia: an induced dynamical disease. Bulletin of Mathematical Biology,1979, 41: 829-834 27 Mahaffy J, Bélair J, Mackey M. Hematopoietic model with moving boundary condition and state dependent delay: application in erythropoiesis. Journal of Theoretical Biology,2000, 206: 585-603 28 Santillan M, Mahaffy J, Bélair J, et al. Regulation of platelet production: the normal response to perturbation and cyclical platelet disease. Journal of Theoretical Biology,2000, 206: 585-603 29 Mackey M. Mathematical models of hematopoietic cell replication and control. In: Othmer H, Adler F, Lewis M, et al. eds. Case Studies in Mathematical Modeling— -Ecology, Physiology and Cell Biology. New Jersey: Prentice-Hall, 1997. 151-182 30 Colijn C, Mackey M. Bifurcation and bistability in a model of hematopoietic regulation. SIAM Journal on Applied Dynamical Systems, 2007, 6: 378-394 31 Mackey M. Cell kinetic status of haematopoietic stem cells. Cell Prolif, 2001, 34: 71-83 32 Abkowitz J, Holly R, Hammond W. Cyclic hematopoiesis in dogs: studies of erythroid burst forming cells confirm and early stem cell defect. Experimental Hematology,1988, 16: 941-945 33 Beulter E, Lichtman M, Coller B, et al. Williams Hematology. New York: McGraw-Hill, 1995 34 Deubelbeiss K, Dancey J, Harker L, et al. Neutrophil kinetics in the dog. The Journal of Clinical Investigation,1975, 55: 833-839 35 Novak J, Necas E. Proliferation differentiation pathways of murine haematopoiesis: correlation of lineage fluxes. Cell Proliferation, 1994, 27: 597-633 36 Mackey M, Glass L. Oscillation and chaos in physiological control systems. Science, 1977, 197: 287-289 37 Lei J, Mackey M. Deterministic Brownian motion generated from differential delay equation. Physical Review E,2011, 84: 041105 38 Li D, Zheng Z. Multiple attractors and generalized synchronization in delayed Mackey-Glass systems. Chinese Physics B, 2008, 17: 4009-4013 39 Namajunas A, Pyragas K, Tamasevicius A. An electronic analog of the Mackey-Glass system. Physics Letters A,1995, 201: 42-46 40 R¨ost G, Wu J. Domain-decomposition method for the global dynamics of delay differential equations with unimodal feedback. Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences, 2007,463: 2655-2669 41 Shahverdiev E, Nuriev R, Hashimov R, et al. Chaos synchronization between the Mackey-Glass systems with multiple time delays. Chaos Solitons & Fractals, 2006, 29:854-861 42 Sano S, Uchida A, Yoshimori S, et al. Dual synchronization of chaos in Mackey-Glass electronic circuits with time-delay feedback. Physical Review E, 2007, 75: 016207 43 Walther HO. The 2-dimensional attractor of dx= dt = ?? x(t)+f(x(t??1)). In: Memoirs of the American Mathematical Society, Vol. 544, Providence, RI, 1995. 44 Wei J, Fan D. Hopf bifurcation analysis in a Mackey-Glass system. International Journal of Bifurcation and Chaos,2007, 17: 2149-2157 45 Crawford J, Dale D, Lyman G. Chemotherapy-induced neutropenia: Risks, consequences, and new directions for its management. Cancer, 2003, 100: 228-237 46 Rahman Z, Esparza-Guerra L, Yap H, et al. Chemotherapy-induced neutropenia and fever in patients with metastasic breast carcinoma receiving salvage chemotherapy. Cancer, 1997, 79: 1150-1157 47 Skeel RT, ed. Handbook of Cancer Chemotherapy. 7th edn. New York: Lippincott Williams & Wilkins, 2007 48 Fogli S, Danesi R, Braud F, et al. Drug distribution and pharmacokinetic/pharmacodynamics relationship of paclitaxel and gemcitabine in patients with non-small-cell lung cancer. Annals of Oncology, 2001, 12: 1553-1559 49 Gianni L, Kearns C, Giani A, et al. Nonlinear pharmacokinetics and metabolism of Palitaxel and its pharmacokinetic/ pharmacodynamics relationships in humans. Journal of Clinical Oncology, 2011, 13: 180-190 50 Henningsson A, Karlsson M, Viganó L, et al. Mechanismbased pharmacokinetic model for paclitaxel. Journal Clinical Oncology, 2001, 19: 4065-4073 51 Minkin, P, Zhao M, Chen Z, et al. Quantification of sunitinib in human plasma by high-performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 874: 84-88 52 Mou C, Ganju N, Sridhar K, et al. Simultaneous quantitation of plasma doxorubicin and prochlorperazine content by high-performance liquid chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 1997, 703: 217-224 53 Morikawa N, Mori T, Abe T, et al. Pharmacokinetics of methotrexate in plasma and cerebrospinal fluid. The Annals of Pharmacotherapy, 1997, 31: 1153-1156 54 Peng B, Hayes M, Resta D, et al. Pharmacokinetics and pharmacodynamics of imatinib in a phase I trial with chronic myeloid leukemia patients. Journal of Clinical Oncology, 2004, 22: 935-942 55 Karl S, Mader I, Cristofanon S, et al. Histone deacetylase inhibitors prime medulloblastoma cells for chemotherapyinduced apoptosis by enhancing p53-dependent Bax activation. Oncogene, 2011, 30: 2275-2281 56 Brooks G, Langlois G, Lei J, et al. Neutrophil dynamics after chemotherapy and G-CSF: the role of pharmacokinetics in shaping the response. Journal of Theoretical Biology(submitted). 57 Marshall J. Control of Time-delay Systems. London: The Institution of Electrical Engineers, 1979 58 Butler R, Waites T, Lamar R, et al. Timing of G-CSF administration during intensive chemotherapy for breast cancer (abstract). American Society of Clinical Oncology,1992, 11: 1411 59 Koumakis G, Vassilomanolakis M, Barbounis V, et al. Optimal timing (preemptive versus supportive) of granulogyte colony-stimulating factor administration following high-dose cyclophosphamide. Oncology, 1999: 56: 28-35 60 Meisenberg B, Davis T, Melaragno R, et al. A comparison of therapeutic schedules for administering granulocyte colony-stimulating factor to nonhuman primates after high-dose chemotherapy. Blood, 1992, 79: 2267-2272 61 Morstyn G, Campbell L, Lieschke G, et al. Treatment of chemotherapy-induced neutropenia by subcutaneously administered granulocyte colony-stimulating factor with optimization of dose and duration of therapy. Journal of Clinical Oncology, 1989, 7: 1554-1562 62 雷锦誌. 系统生物学—- 建模, 分析, 模拟. 上海: 上海科学 技术出版社, 2010 63 Colijn C, Foley C, Mackey M. G-CSF treatment of canine cyclical neutropenia: a comprehensive mathematical model. Experimental Hematology, 2007, 35: 898-907 64 Foley C, Bernard S, Mackey M. Cost-effective G-CSF therapy strategies for cyclical neutropenia: Mathematical modelling based hypotheses. Journal of Theoretical Biology, 2006, 238: 754-763 65 Zhuge C, Sun X, Lei J. On positive solutions and the Omega limit set for a class of delay differential equations. Journal of Dynamics and Differential Equations arXiv:1202.3529 66 Hearn T, Haurie C, Mackey M. Cyclical neutropenia and the periopherial control of white blood cell production. Journal of Theoretical Biology, 1998, 192: 167-181 67 Press W, Teukolsky S, Flannery B. Numerical Recipes in C. 2nd edn. Cambridge: Cambridge University, 1992 68 Henderson E, Lister T, Greaves M. Leukemia. London: Saunders, 1996 69 Fortin P, Mackey M. Periodic chronic myelogenous leukemia: Spectral analysis of blood cell counts and etiological implications. British Journal of Haematology,1999, 104: 336-345 70 Guerry D, Dale D, Omine M, et al. Periodic hematopoiesis in human cyclic neutropenia. The Journal of Clinical Investigation,1973, 52: 3220-3230 71 King-Smith E, Morley A. Computer simulation of granulopoiesis: normal and impaired granulopoiesis. Blood,1970, 36: 254-262 72 Morley A, King-Smith E, Stohlman F. The oscillatory nature of hemopoiesis. In: Stohlman F, ed. Hemopoietic Cellular Proliferation, New York: Grune & Stratton, 1969,3-14 73 Go R. Ideopathic cyclic thrombocytopenia. Blood Review,2005, 19: 53-59 74 Swinburne J, Mackey M. Cyclical thrombocytopenia: Characterisation by spectral analysis and a review. Journal of Theoretical Medicine, 2000, 2: 81-91 75 Cohen T, Cooney D. Cyclic thrombocytopenia: case report and review of literature. Scandinavian Journal of Haematology, 1974, 12: 9-17 76 von Schulthess G, Gessner U. Oscillating platelet counts in healthy individuals: Experimental investigation and quantitative evaluation of thrombocytopenia feedback control. Scandinavian Journal of Haematology, 1986, 36: 473-479
计量
- 文章访问数: 1641
- HTML全文浏览量: 82
- PDF下载量: 2618
- 被引次数: 0