1 Prausnitzl M R, Langer R. Transdermal drug delivery. Nature Biotechnology, 2008, 26(11): 1261-1268
|
2 Tanner T, Marks R. Delivering drugs by the transdermal route: review and comment. Skin Research and Technol- ogy, 2008, 14(3): 249-260
|
3 Subedi R K, Oh S, Chun M, et al. Recent advances in transdermal drug delivery. Archives of Pharmacal Re- search, 2010, 33(3): 339-351
|
4 Elias P M. Epidermal lipids, barrier function, and desquamation. Journal of Investigative Dermatology, 1983, 80: S44-S49
|
5 韩璐, 胡晋红, 朱全刚. 经皮给药系统促渗方法研究的新进 展. 中国新药杂志, 2007, 16(4): 274-278
|
6 边佳明, 赵维娟, 许景峰. 国外经皮给药系统的研究进展. 中 国药房, 2005, 16(14): 1112-1114
|
7 McAllister D V, Allen M G, Prausnitz M R. Microfabricated microneedles for gene and drug delivery. Annual Review of Biomedical Engineer, 2000, 2: 289-313
|
8 Prausnitz M R. Microneedle for transdermal drug delivery. Advanced Drug Delivery Reviews, 2004, 56: 581-587
|
9 Arora A, Prausnitz M R, Mitragotri S. Micro-scale devices for transdermal drug delivery. International Journal of Pharmaceutics, 2008, 364(2): 227-236
|
10 Donnelly R F, Singh T R R, Woolfson A D. Microneedlebased drug delivery systems: microfabrication, drug delivery, and safety. Drug Delivery, 2010, 17(4): 187-207
|
11 Garland M J, Miqalska K, Mahmood T M, et al. Microneedle arrays as medical devices for enhanced transdermal drug delivery. Expert Review of Medical Devices,2011, 8(4): 459-482
|
12 Sachdeva V Banga A K Microneedles and their applications. Recent Patents on Drug Delivery & Formulation,2011, 5(2): 95-132
|
13 许宝建, 金庆辉, 赵建龙. 基于MEMS 微针技术的研究现状 与展望. MEMS 器件与技术. 2005, 4: 150-156
|
14 高志义, 刘志东, 张伯礼. 经皮给药技术的新突破—- 微针. 中国医院药学杂志, 2009, 29(7): 571-573
|
15 陈娟, 陈志鹏, 瞿敏明, 等. 微针技术在经皮给药中的应用. 国际药学研究杂志, 2011, 38(2): 142-147
|
16 Kaushik S, Allen H H, Donald D D, et al. Lack of pain associated with microfabricated microneedles. Anesthesia and Analgesia, 2001, 92: 502-504
|
17 Gill H S, Denson D D, Burris B A, et al. Effect of microneedle design on pain in human subjects. Clinical Journal of Pain, 2008, 24(7): 585-594
|
18 Henry S, McAllister D V, Allen M G, et al. Microfabricated microneedles: a novel approach to transdermal drug delivery. Journal of Pharmaceutical Sciences, 1998, 87(8):922-925
|
19 Wang P M, Cornwell M, Hill J, et al. Precise microinjection into skin using hollow microneedles. Journal of Investigative Dermatology, 2006, 126: 1080-1087
|
20 Gattiker G E, Kaler K V I S, Mintchev M P. Electronic mosquito: designing a semi-invasive microsystem for blood sampling, analysis and drug delivery applications. Microsystem Technologies, 2005, 12(1-2): 44-51
|
21 Chaktraborty S, Tsuchiya K. Development and fluidic simulation of microneedles for painless pathological interfacing with living systems. Journal of Applied Physics,2008, 103: 114701
|
22 Lee K, Lee H C, Lee D S, et al. Drawing lithography: three-dimensional fabrication of an ultrahigh-aspect-ratio microneedle. Advanced Materials, 2010, 22(4): 483-486
|
23 Mukeree E V, Issseroff R R, Collins S D. Microneedle array with integrated micronchannels for transdermal sample extraction and in situ analysis. In: Proceedings of the12th International Conference on Solid-State Sensors and Actuators, Boston, MA, 2003. 1439-1441
|
24 Gerstel M S, Place V A. Drug delivery device. US Patent No. 3,964,482, 1976
|
25 Griss P, Stemme G. Side open out-of-plane microneedles for microfluidic transdermal interfacing. Journal of Mi- croelectromechanical Systems, 2003, 12(3): 296-301
|
26 Lin L W, Pisano A P. Silicon-processed microneedles. IEEE Journal of Microelectromechanical Systems, 1999,8(1): 78-84
|
27 Kim K, Lee J B. High aspect ratio tapered hollow metallic microneedle arrays with microfluidic interconnector. Mi- crosystem Technologies, 2007, 13(3-4): 231-235
|
28 Verbaan F J, Bal S M, van den D J B, et al. Assembled microneedle arrays enhance the transport of compounds varying over a large range of molecular weight across human dermatomed skin.Journal of Controlled Re- lease, 2007, 117: 238-245
|
29 Badran M M, Kuntsche J, Fahr A. Skin penetration enhancement by a microneedle device (Dermaroller R?) in vitro: dependency on needle size and applied formulation. European Journal of Pharmaceutical Sciences, 2009, 36:511-523
|
30 Martanto W, Davis S P, Nicholas R H, et al. Transdermal delivery of insulin using microneedles in vivo. Pharmacal Research, 2004, 21: 947-952
|
31 McAllister D V, Wang P M, Davis P, et al. Microfabricated needles for transdermal delivery of macromolecules and nanoparticles: fabrication methods and transport studies. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(24): 13755-13760
|
32 Wang J, Lu J, Suw Y L, et al. Lab-on-a-cable for electrochemical monitoring of phenolic contaminants. Analytical Chemistry, 2000, 72: 2659-2663
|
33 孙潇, 贾书海, 朱军, 等. 新型MEMS 微针设计及其力学性 能. 半导体学报, 2007, 28(1): 113-116
|
34 肖丽君, 陈翔, 汪鹏, 等. 一种聚合物实心微针的制作方法. 微纳电子技术, 2009, 46(12): 744-749
|
35 陈少军, 李以贵, 杉山进. 应用X 射线光刻的微针阵列及掩 模板补偿. 光学精密工程, 2010, 18(2): 420-425
|
36 Li Y G, Yang C S, Liu J Q, et al. Fabrication of a polymer micro needle array by mask-dragging X-ray lithography and alignment X-Ray lithography.Chinese Physics Letters, 2011, 28(3): 038101
|
37 Sullivan S P, Koutsonanos D G, Martin M P, et al. Dissolving polymer microneedle patches for influenza vaccination. Nature Medicine, 2010, 16: 915-920
|
38 Sammoura F, Kang J J, Heo Y M, et al. Plolymeric microneedle fabrication using a microinjection molding technique. Microsystem Technologies, 2007, 13: 517-522
|
39 Lee K, Lee C Y, Jung H. Dissolving microneedles for transdermal drug administration prepared by stepwise controlled drawing of maltose. Biomaterials, 2011, 32: 3134-3140
|
40 Miyano T, Tobinaga Y, Takahiro K, et al. Sugar micro needles as transdermic drug delivery system. Biomedical Microdevices, 2005, 7: 185-188
|
41 Donnelly R F, Morrissey A, McCarron P A, et al. Microstructured devices for transdermal drug delivery and minimally-invasive patient monitoring. Recent Patents on Drug Delivery & Formulation, 2007, 1: 195-200
|
42 Banga A K. Microporation applications for enhancing drug delivery. Expert Opinion on Drug Delivery, 2009,6(4): 343-354
|
43 Khumpuang S, Maeda R, Sugiyama S. Design and fabrication of coupled microneedle array and insertion guide array for safe penetration through skin. In: Proceedings of 2003 International Symposium on Micromechatronics and Human Science, 2003. 233-237
|
44 Braybrook J H. Biodegradation and toxicokinetic studies. In: Braybrook J H, ed. Biocompatiblity: Assessment of Medical Devices and Materials. New York: Wiley, 1997.97-109
|
45 Paik S J, Byun S, Lim J M, et al. In-plane single-crystalsilicon microneedles for minimally invasive microfluidic systems. Sensors and Actuators A-Physical, 2004, 114(2-3): 276-284
|
46 Park J H, Choi S, Seo S, et al. A microneedle roller for transdermal drug delivery. European Journal of Pharma- ceutics and Biopharmaceutics, 2010, 76: 282-289
|
47 沈修成, 刘景全, 王亚军, 等. 基于MEMS 技术的异平面空 心金属微针. 传感技术学报, 2009, 22(2): 151-154
|
48 Davis S P, Martanto W, Allen M G, et al. Hollow metal microneedles for insulin delivery to diabetic rats. IEEE Transactions on Biomedical Engineering, 2005, 52(5):909-915
|
49 Khanna P, Luongo K, Strom J A, et al. Sharpening of hollow silicon microneedles to reduce skin penetration force. Journal of Micromechanics and Microengineering, 2010,20: 045011
|
50 Hashmi S, Ling P, Hashmi G, et al. Genetic transformation of nematodes using arrays of micromechanical piercing structures. Biotechniques, 1995, 19: 766-770
|
51 Lin W Q, Cormier M, Samiee A, et al. Transdermal delivery of antisense oligonucleotides with microprojection patch (macro-flux) technology. Pharmaceutical Research,2001, 18(12): 1789-1793
|
52 Matriano J A, Cormier M, Johnson J, et al. Macroflux microprojection array patch technology: a new and efficient approach for intracutaneous immunization. Pharmaceuti- cal Research, 2002, 19: 63-70
|
53 Mikszta J A, Alarcon J B, Brittingham J M, et al. Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nature Medicine, 2002, 8: 415-419
|
54 Oka K, Aoyagi S, Arai Y, et al. Fabrication of a micro needle for a trace blood test. Sens Actuators A, 2002,97-98: 478-485
|
55 Mukerjee E, Collins S D, Isseroff R R, et al. Microneedle array for transdermal biological fluid extraction and in situ analysis. Sensors and Actuators A-Physical, 2004,114: 267-275
|
56 Liu R, Wang X H, Zhou Z Y, et al. Microneedles array for fluid extraction and drug delivery. In: Proceedings of
|
2003 International Symposium on Micromechatronics and Human Science, 2003. 239-244
|
57 Hendriks F M. Mechanical behaviour of human skin in vivo. Unclassified Report, 2001
|
58 Hendriks F M. Mechanical behaviour of human epidermal and dermal layers in vivo: [PhD Thesis]. Eindhoven: Technische Universiteit Eindhoven, 2005
|
59 Odland G F. Structure of the skin. In: Goldsmith L A, Physiology, Biochemistry, and Molecular Biology of the Skin. Oxford: Oxford University Press, 1991
|
60 Norlén L P O. The skin barrier: structure and physical function. Stockholm: Karolinska Institute, 1999
|
61 Kendall M A F, Chong Y R, Cock A. The mechanical properties of the skin epidermis in relation to targeted gene and drug delivery. Biomaterials, 2007, 28(33): 4968-4977
|
62 Lanir Y. Skin mechanics. In: Skalak R, Chien S. eds. Handbook of Bioengineering. New York: McGraw-Hill,1987. 11
|
63 Wilkes G L, Brown I A, Wildnauer R H. The biomechanical properties of skin. Critical Reviews in Bioengineering,1973, 6: 453-495
|
64 Delalleau A, Josse G, Lagarde J M, et al. A nonlinear elastic behavior to identify the mechanical parameters of human skin in vivo. Skin Research and Technology, 2008,14: 152-164
|
65 Sivamani R K, Maibach H I. Tribology of skin. Journal of Engineering Tribology, 2006, 220: 729-737
|
66 Maeno T, Kobayashi K, Yamazaki N. Relationship between the structure of human finger tissue and the location of tactile receptors. Mechanical Systems Machine El- ements and Manufacturing JSME Series C, 1998, 41(1):94-100
|
67 Srinivasan M A, Dandekar K. An investigation of the mechanics of tactile sense using two-dimensional models of the primate fingertip. Journal of Biomechanical Engi- neering, Transactions of the ASME, 1996, 118: 48-55
|
68 曾衍钧, 倪茜. 皮肤力学进展. 力学进展, 1990, 20(2): 211-224
|
69 卢天健, 徐峰. 皮肤的力学性能概述. 力学进展, 2008, 38(4):393-426
|
70 徐峰, 卢天健. 皮肤组织的热力学行为表征: I. 拉压行为. 西 安交通大学学报(医学版), 2008, 29(3): 247-251
|
71 徐峰, 卢天健. 皮肤组织的热力学行为表征: II. 黏弹性行为. 西安交通大学学报(医学版), 2008, 29(4): 365-369
|
72 孔祥清, 蚊子浮水与针刺力学行为研究: [博士论文]. 大连: 大连理工大学, 2010
|
73 Wildnauer R H, Bothwell J W, Douglass A B. Stratum corneum biomechanical properties: I. Influence of relative humidity on normal andextracted human stratum corneum. Journal of Investigative Dermatology, 1971, 56:72-80
|
74 Edwards C, Marks R. Evaluation of biomechanical properties of human skin. Clinics in Dermatology, 1995, 13:375-380
|
75 Diridollou S, Black D, Lagarde J M, et al. Sex- and site-dependent variations in the thickness and mechanical properties of human skin in vivo. International Journal of Cosmetic Science, 2000, 22: 421-435
|
76 Rivlin R S. Large elastic deformation of isotropic materials: I. Fundamental concepts, II. some uniqueness theories for pure homogeneous deformations. Philosophical Trans- actions of the Royal Society of London Series A, 1948,240: 459-525
|
77 Mooney R. A theory of large elastic deformation. Journal of Applied Physics, 1940, 11: 582-592
|
78 Ogden R W. Large deformation isotropic elasticity on the correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society, Se- ries A, 1972, 326(1567): 565-584
|
79 Kong X Q,Wu C W. Measurement and prediction of insertion force for the mosquito fascicle penetrating into human skin. Journal of Bionic Engineering, 2009, 6: 143-152
|
80 Tong P, Fung Y C. The stress-strain relationship for the skin. Journal of Biomechanics, 1976, 9: 649-657
|
81 Davis S, Landis B, Adams Z H, et al. Insertion of microneedles into skin: measurement and prediction of insertion force and needle fracture force. Journal of Biome- chanics, 2004, 37: 1155-1163
|
82 Park J, Allen M G, Prausnitz M R. Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery. Journal of Controlled Release, 2005,104: 51-66
|
83 Roxhed N, Gasser T C, Griss P. Penetration-Enhanced ultrasharp microneedles and prediction on skin interaction for efficient transdermal drug delivery. Journal of Micro- electromechanical Systems, 2007, 16(6): 1429-1440
|
84 Okamura A M, Simone C, O’Leary M D. Force modeling for needle insertion into soft tissue. IEEE Transactions on Biomedical Engineering, 2004, 10(51): 1707-1716
|
85 Simone C, Okamura A M. Modeling of needle insertion forces for robot-assisted percutaneous therapy. In: Proceeding of the IEEE international conference on robotics and automation (ICRA), Washington, DC, USA 2002.2085-2091
|
86 Abolhassani N, Ratel R, Moallem M. Needle insertion into soft tissue: a survey. Medical Engineering & Physics,2007, 29: 413-431
|
87 Karnopp D. Computer simulation of stick-slip friction in mechanical dynamic systems. Journal of Dynamic Systems Measurement and Control, Transaction of the ASME, 1985, 107: 100-103
|
88 Kataoka H, Washio T, Chinzei K. Measurement of tip and friction acting on a needle during penetration. In: 5th International Conference on Medical Image Computing and Computer-Assisted Intervention, 2002. 216-223
|
89 Frick T B, Marucci D D, Cartmill J A, et al. Resistance forces acting on suture needles. Journal of Biomechanics,2001, 34: 1335-1340
|
90 Hing J T, Brooks A D, Desai J P. A biplanar fluoroscopic approach for the measurement, modeling, and simulation of needle and soft-tissue interaction. Medical Image Anal- ysis, 2007, 11: 62-78
|
91 Ji J, Tay F E H, Jianmin M, et al. Microfabricated microneedle with porous tip for drug delivery. Journal of Micromechanics & Microengineering, 2006, 16: 958-964
|
92 Aoyagi S, Izumi H, Fukuda M. Biodegradable polymer needle with various tip angles and consideration on insertion mechanism of mosquito’s proboscis. Sensors and Actuators A-Physical, 2008, 143: 20-28
|
93 Wilke N, Mulcahy A, Ye S R. Process optimization and characterization of silicon microneedles fabricated by wet etch technology. Microelectronics Journal, 2005, 36: 650-656
|
94 Wilson C J, Beck P A. Fracture testing of bulk silicon microcantilever beams subjected to a side load. Journal of Microelectomechanical Systems, 1996, 5: 142-150
|
95 Shibata T, Nakanishi A, Sakai T, et al. Fabrication and mechanical characterization of microneedle array for cell surgery. In: 14th International Conference on Solid-State Sensors, Actuators and Microsystems, 2007. 719-722
|
96 Kawashima T, Sakai T, Kato N, et al. Mechanical characterization and insertion performance of hollow microneedle array for cell surgery. Journal of Mciro- Nanolithography MEMS and Moems, 2009, 8(3): 033014
|
97 Khanna P, Luongo K, Strom J A, et al. Axial and shear fracture strength evaluation of silicon microneedles. Microsystem Technologies-Micro-and Nanosystems- information Storage and Processing Systems, 2010, 16:973-978
|
98 Widera G, Johnson J, Kim L, et al. Effect of delivery parameters on immunization to ovalbumin following intracutaneous administration by a coated microneedle array patch system. Vaccine, 2006, 24: 1653-1664
|
99 Li G, Badkar A, Nema S, et al. In vitro transdermal delivery of therapeutic antibodies using maltose microneedles. International Journal f Pharmaceutics, 2009, 368: 109-115
|
100 Martanto W, Moore J S, Kashlan O, et al. Microinfusion using hollow microneedles. Pharmaceutical Research,2006, 23(1): 104-113
|
101 Bal S M, Kruithof A C, Zwier R, et al. Influence of microneedle shape on the transport of a fluorescent dye into human skin in vivo. Journal of Controlled Release, 2010,147: 218-224
|
102 Hood R L, Kosoglu M A, Parker M, et al. Effects of microneedle design parameters on hydraulic resistance. ASME Journal of Medical Devices, 2011, 5: 031012
|
103 Bodhale D W, Nisar A, Afzulpurkar N. Structural and microfluidic analysis of hollow side-open polymeric microneedle for transdermal drug delivery applications. Micro u- idics & Nano uidics, 2010, 8: 373-392
|
104 Martanto W, Moore J S, Couse T, et al. Mechanism of fluid infusion during microneedle insertion and retraction. Journal of Controlled Release, 2006, 112: 357-361
|
105 Gardeniers H, Luttge R, Berenschot E, et al. Silicon micromachined hollow microneedles for transdermal liquid transport. Journal of Microelectomechanical Systems,2003, 12: 855-862
|
106 Stoeber B, Liepmann L. Two-dimensional arrays of out-ofplane needles. In: MEMS, ASME International Mechanical Engineering Congress and Exposition, 2000. 355-359
|
107 Gupta J, Park S S, Bondy B, et al. Infusion pressure and pain during microneedle injection into skin of human subjects. Biomaterials, 2011, 32: 6823-6831
|
108 Li W Z, Huo M R, Zhou J P, et al. Super-short solid silicon microneedles for transdermal drug delivery applications. International Journal of Pharmaceutics, 2010,389: 122-129
|
109 Millan M J. The induction of pain: an integrative review. Progress in Neurobiology, 1999, 57: 1-164
|
100 卢天健, 徐峰. 皮肤热疼痛感与伤害性刺激的关联性. 西安 交通大学学报(医学版), 2008, 29(2): 128-133
|
111 Xu F, Lu T J. Introduction to Skin Biothermomechanics and Thermal Pain. Beijing: Science Press Beijing, New York: Springer Heidelberg Dordrecht London, 2010
|
112 Blood-Feeding Techniques of Mosquitoes, http://www.- wordsources.info/words-mod- mosquitoesPt2.html
|
113 Gordon R M, Lumsden W H R. A study of the behavior of the mouth-parts of mosquitoes when taking up blood from living tissue together with some observations on the ingestion of microfilariae. Annals of Tropical Medicine & Parasitology, 1939, 33: 259-278
|
114 Robinson G G. The mouthparts and their function in the female mosquito, Anopheles maculipennis. Parasitology,1939, 31: 212-242
|
115 Snodgrass R E. The anatomical life of the mosquito. Smithsonian Miscellaneous Collections, 1959, 139(8): 1-87
|
116 Hudson A. Notes on the piercing mouthparts of three species of mosquitoes viewed with the scanning electron microscope. The Canadian Entomologist, 1970, 102(4):501-509
|
117 Arnell J H, Nielsen L T. The varipalpus group of aedes (ochlerotatus). Contributions of the American Entomo- logical Institute, 1972, 8(2): 1-48
|
118 Magnarelli L A. Feeding behavior of mosquitoes (diptera: culicidae) on man, raccoons, and white-footed mice. An- nals of the Entomological Society of American, 1979,72(1): 162-166
|
119 Clements A N. The Biology of Mosquitoes. London: Chapman and Hall, 1992
|
120 http://www.radarcan.com/en/mosquitoes.html
|
121 Ramasubramanian M K, Barham O M, Swaminathan V. Mechanics of a mosquito bite with applications to microneedle design. Bioinspiration & Biomimetics, 2008,3: 046001
|
122 Kong X Q, Wu C W. Mosquito proboscis: an elegant biomicroelectromechanical system. Physical Review E,2010, 82: 011910
|
123 Izumi H, Suzuki M, Aoyagi S, et al. Realistic imitation of mosquito’s proboscis: Electrochemically etched sharp and jagged needle and their cooperative inserting motion. Sensors and Actuators A-Physical, 2011, 165: 115-123
|
124 马国军, 吴承伟. 蚊子口针的力学性能. 中国力学大会论文 集, 哈尔滨, 2011. 428
|
125 Ma G J, Shi L T, Wu C W. Biomechanical property of a natural microneedle: the caterpillar spine. ASME Journal of Medical Devices, 2011, 5: 034502
|
126 Timoshenko S P, Gere, J M. Mechanics of Materials, New York: Van Nostrand Reinhold Company, 1972
|
127 吴承伟. 人造微针: 来自蚊子口针的启示. 科学时报, A4,2011.4.14
|
128 Yum K, Wang N, Yu M F. Nanoneedle: A multifunctional tool for biological studies in living cells. Nanoscale, 2010,2: 363-372
|
129 Kolhar P, Doshi N, Mitragotri S. Polymer Nanoneedle- Mediated Intracellular Drug Delivery. Small, 2011, 14:2094-2100
|
130 Pantarotto D, Singh R, McCarthy D, et al. Functionalized carbon nanotubes for plasmid DNA gene delivery. Ange- wandte Chemie-International Edition, 2004, 43: 5242-5246
|
131 Poater A, Saliner A G, Carb′o-Dorca R, et al. Modeling the structure-property relationships of nanoneedles: a journey toward nanomedicine. Journal of Computational Chemistry, 2008, 30(2): 275-284
|
132 Jouzi M, Kerby M B, Tripathi A, et al. Nanoneedle method for high-sensitivity low back-gournd monitoring protein activity. Langmuir, 2008, 24: 10786-10790
|
133 Hoshino T, Konno T, Ishihara K, et al. Live-cell-driven insertion of a nanoneedle. Japanese Journal of Applied Physics, 2009, 48: 107002
|
134 刘芬, 徐克花. 碳纳米管在生物化学传感及生物传输方面的 应用. 化学分析计量, 2009, 18(1): 83-86
|
135 Han S W, Nakamura C, Imai Y, et al. Monitoring of hormonal drug effect in a single breast cancer cell using an estrogen responsive GFP reporter vector delivered by a nanoneedle. Biosensors and Bioelectronics, 2009, 24:1219-1222
|
136 Ahmad MR, Nakajima M, Kojima S, et al. Buckling nanoneedle for characterizing single cells mechanics inside environmental SEM. IEEE Transactions on Nanotechnol- ogy, 2011, 10(2): 226-236
|
137 Kam N W S, O’Connell M, Wisdom J A, et al. Carbon nanotubes as multifunctional biological transporters and near-infrared agents forselective cancer cell destruction. Proceedings of the National Academy of Sciences of the USA, 2005, 102: 11600-11605
|
138 Liu Z, Tabakman S, Welsher K, et al. Carbon nanotubes in biology and medicine: in vitro and in vivo detection imaging and drug delivery Nano Research, 2009, 2: 85
|
139 Yum K, Cho H N, Hu J, et al. Individual nanotube-based needle nanoprobes for electrochemical studies in picoliter microenvironments. ACS Nano, 2007, 1: 440-448
|
140 Chen X, Wu P, Rousseas M, et al. Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. Journal of the American Chemical Society, 2009, 131: 890
|