Volume 42 Issue 5
Sep.  2012
Turn off MathJax
Article Contents
SUN Bohua. ON EXISTENCE OF THE SOLUTION IN THEORIES OF STRUCTURES[J]. Advances in Mechanics, 2012, 42(5): 538-546. doi: 10.6052/1000-0992-11-156
Citation: SUN Bohua. ON EXISTENCE OF THE SOLUTION IN THEORIES OF STRUCTURES[J]. Advances in Mechanics, 2012, 42(5): 538-546. doi: 10.6052/1000-0992-11-156

ON EXISTENCE OF THE SOLUTION IN THEORIES OF STRUCTURES

doi: 10.6052/1000-0992-11-156
More Information
  • Corresponding author: SUN Bohua
  • Received Date: 2011-11-18
  • Rev Recd Date: 2012-03-06
  • Publish Date: 2012-09-25
  • This article explains the basic concepts relevant to the existence of solutions and its significance for the linear elasticity theory and linear elastic structure, outlines the solution of differential equations and the existence of the elasticity, evaluates the original contribution to the existence of solutions of the multi-structure by Wang Dajun and Hu Hai-chang, and presents Wang-Hu positive definiteness and compactness in the theories of elastic structures.

     

  • loading
  • 1 Courant R, Hilbert D. Methods of Mathematical Physics. New York: Interscience Publising, INC, 1953
    2 Михин С Г.Проблема Минимума Квадратичного Функциона λа.Государственное издателъство тихнико теоретической литературы,1952.
    3 Friedrichs K. On the boundary-value problems of the theory of elasticity and Korn’s inequality. Annals of Mathe-matics,1947, 48(2)
    4 михлин С Т.Вариационные Методы Ращения задач Математической физики,успехи Матем наук,Т,Т,м.Вып. 6 (40), 1950.
    5 Зйдус ДМ.Осмещанной загаче теорин упгугости,дАн сссР,Т. 76, No. 2, 1951.
    6 Payne L E, Weinberger H F. On Korn’s inequality. Arch. Rational Mech. Anal., 1961, 8
    7 Fichera G. Linear elliptic differential systems and eigenvalue problem. Lecture notes in mathematics. Berlin-Heidelberg-New York: Springer, 1965
    8 Fichera G. Existense theorems in elasticity. Encyclopedia of Physics. In: Flügge S, ed. a/2, New York: Springer-Verlog,1972
    9 Kupradze V D. Potential Methods in the Theory of Elasticity. Colomiba: Jerusalem, 1965. 32
    10 Kupradze V D, Gegelia F G, Basheleishvili M O, et al. Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. California: North-Holland Publishing Company, 1979
    11 Shoikhet B A. On existence theorems in linear shell theory. PMM, 1974, 38: 567-571
    12 Gordegiani D G. On the solveability of some boundary value problems for a variant of the theory of thin shells. Dokl. Akad. Nauk SSSR, 215
    13 Bernadou M, Ciarlet P G. Sur L’ Ellipticite du Models linéaire de Cogues de W. T. Koiter. Lecture Notes in Economics and Mathemetics Systems 134. Computing Methods in Applied Sciences and Engineering, Second Inter. Symp. Dec. 1975, 15-19. New York: Springer-Verlog,1976. 89-136
    14 武际可. 薄壳方程组椭圆形条件的证明. 固体力学学报,1981, 4: 435-444
    15 Bernadou M, Lalanne B. Sur l’approximation des coques minces, par des méthods B-splines et éléments finis. In: Grellier J P, Campel G M. eds. Tendances Actuelles en Calcul des structures. Paris: Editions Pluralis, 1985. 939-958
    16 Ciarlet P G, Miara B. Justification of the two-dimensional equations of a linearly elastic shallow shell. Comm. Pare Apple. Math., 1926, 45: 327-360
    17 Bernadou M, Ciarlet P G, Miara B. Existence theorems for two-dimensional linear shell theories. Journal of Elas-ticity, 1994, 34: 111-138  
    18 王大钧, 胡海昌. 弹性结构理论中两类算子的正定性和紧致性的统一证明. 力学学报, 1982, 18(2): 111-121
    19 王大钧, 胡海昌. 弹性结构理论中线性振动普遍性质的统一论证. 振动与冲击, 1982, 1: 6-16
    20 Wang D J, Hu H C. Positive definiteness and compactness of two kind of operator in theories of elastic structures.Scientia. Sinica, (Series A), 1985, XXVIII(7): 727-739
    21 胡海昌. 广义变分原理在近似解中的合理利用. 力学学报,1982, 18(2): 1-7
    22 Wang D J, Wang W Q. The reasonableness problems of theories of structures carrying concentrated masses, springs and supports in vibration Problems. Acta Me-chanica Solida Sinca, 1989, 2: 247-251
    23 Wang Q, Wang D J. Singularity under a concentrated force in elasticity. Applied Mathematics And Mechanics,1993, 14(8):707-711  
    24 Leung A Y T, Wang D J, Wang Q. On concentrated masses and stiffnesses in structural theories. Int. J. of Structural Stability and Dynamics, 2004, 4(2): 171-179  
    25 冯康. 组合流形上的椭圆方程与组合弹性结构. 计算数学,1979, 1(3): 199-208
    26 冯康, 石钟慈. 弹性结构的数学理论. 北京: 科学出版社,1984
    27 孙博华. 组合弹性结构的分析理论及应用: [博士论文]. 兰州: 兰州大学, 1988. 12
    28 孙博华, 叶志明. 组合弹性结构的力学分析. 中国科学, 2009,39(3): 394-413
    29 Sun B H, Ye Z M. Formulation of elastic multi-structures. Science in China Series G: Physics, Mechanics and As-tronomy, 2009, 52(6): 935-953  
    30 Valid R. The Nonlinear Theory of Shells Through Variational Principles. From Algebra to Differential Geometry. New Jersey: John Wiley & Sons, 1995
    31 邱吉宝, 向树红, 张正平. 计算结构动力学. 合肥: 中国科学技术大学出版社, 2009
    32 武际可. 近代力学在中国的传播与发展. 北京: 高等教育出版社, 2005
    33 黄建国, 石钟慈, 徐一峰. 一般组合弹性结构的数学模型. 中国科学A辑: 数学, 2005, 35(6): 664-684
    34 黄建国, 石钟慈, 徐一峰. 一般组合弹性结构的有限元分析. 中国科学A辑: 数学, 2005, 35(10): 1100-1119
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1835) PDF downloads(1453) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    Baidu
    map