Citation: | WANG Zaihua, HU Haiyan. Stability and bifurcation of delayed dynamic systems: from theory to application[J]. Advances in Mechanics, 2013, 43(1): 3-20. doi: 10.6052/1000-0992-12-018 |
This paper surveys recent advances in the study on the stability and bifurcation of time-delay systems. The review focuses mainly on the achievements of authors' team in the fundamental studies of stability, Hopf bifurcation and utilization of time delays to improve the system stability, as well as the delay effects on the stability of some typical systems or structures, including an aircraft wing, an inverted double-pendulum and networks. Finally, the paper addresses some open problems for future investigations.
1 秦元勋, 王联, 刘永清, 等. 带有时滞的动力系统的稳定性. 北京: 科学出版社, 1989
|
2 Stepan G. Retarded Dynamical Systems: Stability and Characteristic Functions. Essex: Longman Scientific & Technical, 1989
|
3 Kuang Y. Delay Differential Equation with Application Dynamics. San Diego: Academic Press, 1993
|
4 Hu H Y, Wang Z H. Dynamics of Controlled Mechanical Systems with Delayed Feedback. Berlin: Springer, 2002
|
5 Niculescu S I. Delay Effects on Stability: A Robust Control Approach. London: Springer, 2001
|
6 Erneux T. Applied Delay Differential Equations. Berlin: Springer, 2009
|
7 胡海岩, 王在华. 非线性时滞动力系统的研究进展. 力学进 展, 1999, 29(4): 501-512
|
8 徐鉴, 裴利军. 时滞系统动力学近期研究进展与展望. 力学 进展, 2006, 36(1): 17-30
|
9 van Wiggeren G D, Roy R. Chaotic communication using time-delayed optical systems. International Journal of Bifurcation and Chaos, 1999, 9(11): 2129-2156
|
10 Lu H T, He Z Y. Chaotic behavior in first-order autonomous continuous-time systems with delay. IEEE Transactions on Circuits and Systems I : Fundamental Theory and Applications, 1996, 43(8): 700-702
|
11 Wang X. Period-doublings to chaos in a simple neural network: an analytical proof. Complex Systems, 1991, 5(4):425-441
|
12 Xu X. Complicated dynamics of a ring neural network with time delays. Journal of Physics A: Mathematical and Theoretical, 2008, 41(3): 035102
|
13 Haraguchi M, Hu H Y. Stability analysis of a noise control system in a duct by using delay differential equation. Acta Mechanica Sinica, 2009, 25(1): 131-137
|
14 Wang Q Y, Chen G R, Perc M. Synchronous bursts on scale-free neuronal networks with attractive and repulsive coupling. PLoS ONE, 2011, 6(1): e15851, doi: 10.1371/journal.pone.0015851
|
15 Wang Q Y, Perc M, Duan Z S, et al. Delay-induced multiple stochastic resonances on scale-free neuronal networks. Chaos, 2009, 19(2): 023112/7
|
16 Hale J K, Verduyn Lunel S M. Introduction to Functional Differential Equations. New York: Springer, 1993
|
17 Insperger T, St é p á n G. Semi-Discretization for TimeDelay Systems: Stability and Engineering Applications. New York: Springer, 2011
|
18 王在华, 李俊余. 时滞状态正反馈在振动控制中的新特征. 力学学报, 2010, 42(5): 933-942
|
19 Wang Z H, Xu Q. Vibration control via positive delayed feedback. In: Naprstek J, Horacek J, Okrouhlik M, et al. eds. Vibration Problems ICoVP 2011-The 10th International Conference on Vibration Problems. Dordrecht: Springer, 2011. 385-391
|
20 胡海岩, 王在华. 论迟滞与时滞. 力学学报, 2010, 42(4):740-746
|
21 Nayfeh A H, Masoud Z N, Nayfeh N A. A smart sway controller for cranes from theory to laboratory to industry. In: Segla S, Tuma J, Petrikova I, et al. eds. Vibration Problems ICoVP 2011 SupplementThe 10th International Conference on Vibration Problems. Technical University of Liberec, 2011. 14-29
|
22 Liu Z H, Zhu W Q. Asymptotic Lyapunov stability with probability one of quasi-integrable Hamiltonian systems with delayed feedback control. Automatica, 2008, 44(7):1923-1928
|
23 Zhu W Q, Liu Z H. Response of quasi-integrable Hamiltonian systems with delayed feedback bang-bang control. Nonlinear Dynamics, 2007, 49(1-2): 31-47
|
24 Liu X P, Liu Z H, Huan R H, et al. Asymptotic Lyapunov stability with probability one of quasi linear systems subject to multi-time-delayed feedback control and wide-band parameter random excitation. Archive of Applied Mechanics, 2009, 79(11): 1051-1061
|
25 Zhang H Q, Xu W, Xu Y, et al. Delay induced transitions in an asymmetry bistable system and stochastic resonance. Science China: Physics, Mechanics & Astronomy,2010, 53(4): 745-750
|
26 Sun Z K, Xu W, Yang X L. Influence of time delay and noise on the chaotic motion of a bistable system. Physics Letters A, 2006, 353(1-2): 21-25
|
27 Li D X, Xu W, Guo Y F, et al. Transient properties of a bistable system with delay time driven by non-Gaussian and Gaussian noises: mean first-passage time. Communications in Theoretical Physics, 2008, 50(3): 669-673
|
28 Wang Q Y, Lu Q S. Time delay-enhanced synchronization and regularization in two coupled chaotic neurons. Chinese Physics Letters, 2005, 22(3): 543-546
|
29 Wang Q Y, Lu Q S, Duan Z S. Adaptive lag synchronization in coupled chaotic systems with unidirectional delay feedback. International Journal of Non-Linear Mechanics,2010, 45(6): 640-646
|
30 Duan L X, Lu Q S, Wang Q Y. Two-parameter bifurcation analysis of firing activity in the Chay neural model. Neurocomputing, 2008, 72(1-3): 341-351
|
31 Zhen B, Xu J. Bautin bifurcation analysis for synchronous solution of a coupled FHN neural system with delay. Communications in Nonlinear Science and Numerical Simulation,2010, 15(2): 442-458
|
32 Ge J H, Xu J. Computation of synchronized periodic solution in a BAM network with two delays. IEEE Transactions on Neural Networks, 2010, 21(3): 439-450
|
33 Ge J H, Xu J. Synchronization and synchronized periodic solution in a simplified five-neuron BAM neural network with delays. Neurocomputing, 2011, 74(6): 993-999
|
34 Zhou J, Chen T P. Synchronization in general complex delayed dynamical networks. IEEE Transactions on Circuits and Systems I, 2006, 53(3): 733-744
|
35 Zhou J, Xiang L, Liu Z R. Synchronization in complex delayed dynamical systems with impulsive effects. Physcica A: Statistical Mechanics and Its Applications,2007, 384(2): 684-692
|
36 Cai S M, Zhou J, Xiang L, et al. Robust impulsive synchronization of complex delayed dynamical networks. Physics Letters A, 2008, 372(12): 4990-4995
|
37 Li C P, Sun W G, Kurths J. Synchronization between two coupled complex networks. Physical Review E, 2007,76(3):046204
|
38 Li C P, Xu C X, Sun W G, et al. Outer synchronization of coupled discrete-time networks. Chaos, 2009, 19(1):013106
|
39 Cai G P, Huang J Z. Optimal control method for seismically excited building structures with time-delay in control. ASCE Journal of Engineering Mechanics, 2002,128(6): 602-612
|
40 Cai G P, Lim C W. Optimal tracking control of a flexible hub-beam system with time delay. Multibody System Dynamics, 2006, 16(4): 331-350
|
41 Liu K, Chen L X, Cai G P. Experimental study of delayed positive feedback control for a flexible beam. Theoretical and Applied Mechanics Letters, 2011, 1: 063003
|
42 Wang Z H, Hu H Y. Robust stability test for dynamic systems with short delays by using Pad′e approximation. Nonlinear Dynamics, 1999, 18(3): 275-287
|
43 Hu H Y, Dowell E H, Virgin L N. Stability estimation of high dimensional vibrating systems under state delay feedback control. Journal of Sound and Vibration, 1998,214(3): 497-511
|
44 Kolmanovskii V, Myshkis A. Introduction to the Theory and Applications of Functional Differential Equations. Dordrecht: Kluwer, 1999
|
45 Fu M Y, Olbrot A W, Polis M P. Robust stability for time-delay systems: the edge theorem and graphical tests. IEEE Transactions on Automatic Control, 1989, 34(8):813-820
|
46 Hassard B D. Counting roots of the characteristic equation for linear delay differential equations. Journal of Differential Equations, 1997, 136(2): 222-235
|
47 Buslowicz M. Stability of linear continuous-time fractional order systems with delays of the retarded type. Bulletin of the Polish Academy of Sciences: Technical Sciences,2008, 56(4): 319-324
|
48 Wang Z H, Du M L, Shi M. Stability test of fractionaldelay systems via integration. Science China: Physics, Mechanics & Astronomy, 2011, 54(10): 1839-1846
|
49 Yu Y J, Wang Z H. A graphical test for the interval stability of fractional-delay systems. Computers & Mathematics with Applications, 2011, 62(3): 1501-1509
|
50 Shi M, Wang Z H. An effective analytical criterion for stability testing of fractional-delay systems. Automatica,2011, 47(9): 2001-2005
|
51 Breda D, Maset S, Vermiglio R. Computing the characteristic roots for delay differential equations. IMA Journal of Numerical Analysis, 2004, 24(1): 1-19
|
52 Wang Z H, Hu H Y. Calculation of the rightmost characteristic root of retarded time-delay systems via Lambert Wfunction. Journal of Sound and Vibration, 2008, 318(4-5): 757-767
|
53 Verheyden K, Luzyanina T, Rose D. Efficient computation of characteristic roots of delay differential equations using LMS methods. Journal of Computational and Applied Mathematics, 2008, 214(1): 29-226
|
54 Wu Z, Michiels W. Reliably computing all characteristic roots of delay differential equations in a given right half plane using a spectral method. Journal of Computational and Applied Mathematics, 2011, 236(9): 2499-2514
|
55 李俊余, 王在华. 一类时滞系统Hurwitz 稳定性的简单判据. 动力学与控制学报, 2009, 7(2): 136-142
|
56 Wang Z H. Numerical stability test of neutral delay differential equations. Mathematical Problems in Engineering, Volume 2008, Article ID 698043, 10 pages, doi: 10.1155/2008/698043
|
57 Marshall J E, Gorecki H, Korytowski A, et al. Time-delay Systems: Stability and Performance Criteria with Applications. New York: Prentice Hall, 1992
|
58 Li J Y, Zhang L, Wang Z H. Two effective stability criteria for linear time-delay systems with complex coefficients. Journal of System Science and Complexity, 2011, 24(5):835-849
|
59 Xu X, Hu H Y, Wang H L. Stability switches, Hopf bifurcation and chaos of a neuron model with delay-dependent parameters. Physics Letters A, 2006, 354(1-2): 126-136
|
60 Li J, Wang Z H. Hopf bifurcation of a nonlinear LasotaWazewska-type population model with maturation delay. Dynamics of Continuous Discrete and Impulsive Systems: Series B-Applications and Algorithms, 2007, 14(5): 611-623
|
61 Li J Y. Hopf bifurcation of the sunflower equation. Nonlinear Analysis: Real World Applications, 2009, 10(4):2574-2580
|
62 Zheng Y G, Wang Z H. Stability and Hopf bifurcation of a class of TCP/AQM networks. Nonlinear Analysis: Real World Applications, 2010, 11(3): 1552-1559
|
63 Bretta E, Kuang Y. Geometric stability switch criteria in delay differential equations with delay-dependent parameters. SIAM Journal on Mathematical Analysis, 2002,33(5): 1144-1165
|
64 Wang Z H. A very simple criterion for characterizing the crossing direction of time-delay systems with delaydependent parameters. International Journal of Bifurcation and Chaos, 2012, 22(3): 1250048 (7p)
|
65 Xu X, Hu H Y, Wang H L. Stability, bifurcation and chaos of a delayed oscillator with negative damping and delayed feedback control. Nonlinear Dynamics, 2007, 49(1-2):117-129
|
66 Xu X, Hu H Y, Wang H L. Dynamics of a two dimensional delayed small-world network under delayed feedback control. International Journal of Bifurcation and Chaos, 2006, 16(11): 3257-3273
|
67 Xu X, Wang Z H. Effects of small world connection on the dynamics of a delayed ring network. Nonlinear Dynamics,2009, 56(1-2): 127-144
|
68 Xu X. Local and global Hopf bifurcation in a two-neuron network with multiple delays. International Journal of Bifurcation and Chaos, 2008, 18(4): 1015-1028
|
69 Mao X C, Hu H Y. Stability and bifurcation analysis of a network of four neurons with time delays. ASME Journal of Computational and Nonlinear Dynamics, 2010, 5(4):041001
|
70 茅晓晨, 胡海岩. 四神经元时滞网络的稳定性与分岔. 力学 季刊, 2009, 30(1): 1-7
|
71 Zhang L, Wang H L, Hu H Y. Symbolic computation of normal form for Hopf bifurcation in a retarded functional differential equation with unknown parameters. Communications in Nonlinear Science and Numerical Simulation,2012, 17(8): 3328-3344
|
72 Nayfeh A H. Order reduction of retarded nonlinear systems: the method of multiple scales versus centermanifold reduction. Nonlinear Dynamics, 2008, 51(4):483-500
|
73 Das S L, Chatterjee A. Multiple scales without center manifold reductions for delay differential equations near Hopf bifurcations. Nonlinear Dynamics, 2002, 30(4): 323-335
|
74 Rand R, Verdugo A. Hopf bifurcation formula for first order differential equations. Communications in Nonlinear Science and Numerical Simulation, 2007, 12(6): 859-864
|
75 Zheng Y G, Wang Z H. Stability and Hopf bifurcations of an optoelectronic time-delay feedback system. Nonlinear Dynamics, 2009, 57(1-2): 125-134
|
76 Hu H Y, Wang Z H. Singular perturbation methods for nonlinear dynamic systems with time delay. Chaos, Solitons and Fractals, 2009, 40(1): 13-27
|
77 Jin Y F, Hu H Y. Principal resonance of a Duffing oscillator with delayed state feedback under narrow-band random parametric excitation. Nonlinear Dynamics, 2007,50(1-2): 213-227
|
78 Li J Y, Zhang L,Wang Z H. A simple algorithm for testing the stability of periodic solutions of some nonlinear oscillators with large time delay. Science China: Technological Sciences, 2011, 54(8): 2033-2043
|
79 Wang Z H, Hu H Y. A modified averaging scheme with application to secondary Hopf bifurcation of a delayed van der Pol oscillator. Acta Mechanica Sinica, 2008, 24(4):449-454
|
80 Wang Z H, Hu H Y. An energy analysis of the local dynamics of a delayed oscillator near a Hopf bifurcation. Nonlinear Dynamics, 2006, 46(1-2): 149-159
|
81 Wang Z H, Hu H Y. Pseudo-oscillator analysis of scalar nonlinear time-delay systems near a Hopf bifurcation. International Journal of Bifurcation and Chaos, 2007,17(8): 2805-2814
|
82 Gao F,Wang H L,Wang Z H. Hopf bifurcation of a nonlinear delayed system of machine tool vibration via pseudooscillator analysis. Nonlinear Analysis, Series B: Real World Applications, 2007, 8(5): 1561-1568
|
83 Zhang L L, Huang L H, Zhang Z Z. Hopf bifurcation of the maglev time-delay feedback system via pseudo-oscillator analysis. Mathematical and Computer Modeling, 2010,52(5-6): 667-673
|
84 Li J Y, Wang Z H. Local Hopf bifurcation of complex nonlinear systems with time-delay. International Journal of Bifurcation and Chaos, 2009, 19(3): 1069-1079
|
85 俞亚娟, 王在华. 伪振子分析法的证明及其在高阶Hopf 分 岔中的应用. 动力学与控制学报, 2012, 10(3): 202-208
|
86 Wang Z H. An iteration method for calculating the periodic solution of time-delay systems after a Hopf bifurcation. Nonlinear Dynamics, 2008, 53(1-2): 1-11
|
87 郑远广, 黄承代, 王在华. 反馈时滞对van der Pol 振子张弛 振荡的影响. 力学学报, 2012, 44(1): 148-157
|
88 Zheng Y G, Wang Z H. Delayed Hopf bifurcation in timedelayed slow-fast systems. Science China: Technological Sciences, 2010, 53(3): 656-663
|
89 Zheng Y G, Wang Z H. The impact of delayed feedback on the dynamics of class-B lasers. International Journal of Non-Linear Mechanics, 2010, 45(7): 727-733
|
90 郑远广, 王在华. 含时滞的快慢耦合系统的动力学研究进展. 力学进展, 2011, 41(4): 415-424
|
91 Wang H L, Hu H Y,Wang Z H. Global dynamics of a Duffing oscillator with delayed displacement feedback. International Journal of Bifurcation and Chaos, 2004, 14(8):2753-2775
|
92 Zhang L, Wang H L, Hu H Y. Global view of Hopf bifurcations of a van der Pol oscillator with delayed state feedback. Science China: Technological Sciences, 2010,53(3): 595-607
|
93 Xu J, Chung K W, Chan C L. An efficient method for studying weak resonant double Hopf bifurcation in nonlinear systems with delayed feedback. SIAM Journal on Applied Dynamical Systems, 2007, 6(1): 29-60
|
94 Xu J, Chung K W. A perturbation-incremental scheme for studying Hopf bifurcation in delayed differential systems. Science China: Technological Sciences, 2009, 52(3): 698-708
|
95 Xu J, Chung K W. Double Hopf bifurcation with strong resonances in delayed systems with nonlinearities. Mathematical Problems in Engineering, Volume 2009, Article ID 759363, 16 pages, doi: 10.1155/2009/759363
|
96 Ma S Q, Lu Q S, Feng Z S. Double Hopf bifurcation for van der Pol-Duffing oscillator with parametric delay feedback control. Journal of Mathematical Analysis and Applications,2008, 338 (2): 993-1007
|
97 Ma S Q, Feng Z S, Lu Q S. Dynamics and double-Hopf bifurcations of the Rose-Hindmarsh model with time delay. International Journal of Bifurcation and Chaos, 2009,19(11): 3733-3751
|
98 王在华, 胡海岩, 王怀磊. 一个时滞反馈受控机电系统中的 暂态混沌. 动力学与控制学报, 2004, 2(4): 24-28
|
99 Hu H Y. Using delayed state feedback to stabilize periodic motions of an oscillator. Journal of Sound and Vibration,2004, 275(3-5): 1009-1025
|
100 Wang Z H, Hu H Y. Stabilization of vibration systems via delayed state difference feedback. Journal of Sound and Vibration, 2006, 296(1-2): 117-129
|
101 Liu B, Hu H Y. Stabilization of linear un-damped systems via position and delayed position feedbacks. Journal of Sound and Vibration, 2008, 312(3): 509-525
|
102 Olgac N, Holm-Hansen B T. A novel active vibration absorption technique: delayed resonator. Journal of Sound and Vibration, 1994, 176(1): 93-104
|
103 Olgac N, Elmali H, Hosek M, et al. Active vibration control of distributed systems using delayed resonator with acceleration feedback. ASME Journal of Dynamical Systems, Measurement and Control, 1997, 119(3): 380-389
|
104 Librescu L, Marzocca P. Advances in the linear/nonlinear control of aeroelastic structural systems. Acta Mechanica,2005, 178(3-4): 147-186
|
105 Yu M L, Hu H Y. Flutter control based on ultrasonic motor for a two-dimensional airfoil section. Journal of Fluids and Structures, 2012, 28(1): 89-102
|
106 Hu H Y, Yu M L. Robust flutter control of an airfoil section through an ultrasonic motor. In: Hu H Y, Kreuzer E. eds.Proceedings of the IUTAM Symposium on Dynamics and Control of Nonlinear Systems with Uncertainty, Dodrecht: Springer, 2007. 307-316
|
107 Zhao Y H. Stability of a two-dimensional airfoil with timedelayed feedback control. Journal of Fluids and Structures,2009, 25(1): 1-25
|
108 Zhao Y H. Stability of a time-delayed aeroelastic system with a control force. Aerospace Science and Technology,2011, 15(1): 72-77
|
109 Zhao Y H. Flutter suppression of a high aspect-ratio wing with multiple control surfaces. Journal of Sound and Vibration,2009, 324(3-5): 490-513
|
110 Cai G P, Huang J Z, Yang S X. An optimal control method for linear systems with time delay. Computers & Structures,2003, 81(15): 1539-1546
|
111 Haraguchi M, Hu H Y. Using a new discretization approach to design delayed LQG controller. Journal of Sound and Vibration, 2008, 314(3-5): 558-570
|
112 Huang R, Hu H Y, Zhao Y H. Designing active flutter suppression for high-dimensional aeroelastic systems involving a control delay. Journal of Fluids and Structures,2012, 34: 35-50
|
113 Liu B, Haraguchi M, Hu H Y. A new reduction-based LQ control for dynamic systems with a slowly time-varying delay. Acta Mechanica Sinica, 2009, 25(4): 529-537
|
114 Awrejcewicz J, Supel B, Kudra G, et al. Numerical and experimental study of regular and chaotic motion of triple physical pendulum. International Journal of Bifurcation and Chaos, 2008, 18(10): 2883-2915
|
115 Liu B, Hu H Y. Group delay induced instabilities and Hopf bifurcations of a controlled double pendulum. International Journal of Non-Linear Mechanics, 2010, 45(4):442-452
|
116 刘博, 胡海岩. 群时延引起的受控小车二级摆失稳及其抑制. 振动工程学报, 2009, 22(5): 443-448
|
117 Watts D J, Strogatz S H. Collective dynamics of ’small world’ networks. Nature, 1998, 393(6684): 440-442
|
118 Barab à si A L, Albert R. Emergence of scaling in random networks. Science, 1999, 286(5439): 509-512
|
119 汪小帆, 李翔, 陈关荣. 复杂网络理论及其应用. 北京: 清华 大学出版社, 2006
|
120 Xu X, Luo J W,Gu Y T. Collective dynamics and control of a 3-D small world network with time delays. International Journal of Bifurcation and Chaos, 2012, 22(11):1250281 (17p)
|
121 Mao X C. Stability switches, bifurcation, and multistability of coupled networks with time delays. Applied Mathematics and Computation, 2012, 218(11): 6263-6274
|
122 Mao X C. Stability and Hopf bifurcation analysis of a pair of three-neuron loops with time delays. Nonlinear Dynamics, 2012, 68(1-2): 151-159
|
123 Mao X C, Hu H Y. Hopf bifurcation analysis of a fourneuron network with multiple time delays. Nonlinear Dynamics,2009, 55(1-2): 95-112
|
124 Mao X C, Hu H Y. Stability and Hopf bifurcation of a delayed network of four neurons with a short-cut connection. International Journal of Bifurcation and Chaos,2008, 18(10): 3053-3072
|
125 Sipahi R, Niculescu S I, Abdallah C T, et al. Stability and stabilization of systems with time delays: limitation and opportunities. IEEE Control Systems Magazine, 2011,31(1): 38-65
|
126 赵艳影, 徐鉴. 时滞非线性动力吸振器的减振机理, 力学学 报, 2008, 40(1): 98-106
|
127 Zheng Y G, Wang Z H. Stability analysis of nonlinear dynamic systems with slowly and periodically varying delay. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(10): 3999-4009
|
128 Zhao H Y, Xie W. Hopf bifurcation for a small-world network model with parameters delay feedback control. Nonlinear Dynamics, 2011, 63(3): 345-357
|
129 Demir A, Hasanov A, Namachchivaya N S. Delay equations with fluctuating delay related to the regenerative chatter. International Journal of Non-Linear Mechanics,2006, 41(3): 464-474
|
130 Michiels W. Stabilization of time-delay systems with a controlled time-varying delay and applications. IEEE Transactions on Automatic Control, 2005, 50(4): 493-504
|
131 Inamura T, Sata T. Stability analysis of cutting under varying spindle speed. Journal of the Faculty of Engineering. The University of Tokyo-B, 1975, 23(1): 13-29
|
132 Sexton J S, Stone B J. The stability of machining with continuously varying spindle speed. CIRP Annals, 1978,27(1): 321-326
|
133 王在华, 胡海岩. 含分数阶导数阻尼的线性振动系统的稳定 性. 中国科学G 辑, 2009, 39(10): 1495-1502
|
134 Coronado A, Trindade M A, Sampaio R. Frequencydependent viscoelastic models for passive vibration isolation systems. Shock and Vibration, 2002, 9(1): 253-264
|
135 Eldred L B, Baker W P, Palazotto A N. Kelvin-Voigt vs fractional derivative model as constitutive relations for viscoelastic materials. AIAA Journal, 1995, 33(3): 547-550
|
136 Du M L,Wang Z H. Initialized fractional differential equations with Riemann-Liouville fractional-order derivative. European Physics Journal: Special Topics, 2011, 193(1):49-60
|
137 Wang Z H, Du M L. Asymptotical behavior of the solution of a SDOF linear fractionally damped vibration system.Shock and Vibration, 2011, 18(1-2): 257-268
|
138 Deng W. Short memory principle and a predictorcorrector approach for fractional differential equations. Journal of Computational and Applied Mathematics,2007, 206(1):174-188
|
139 Monje C A, Chen Y Q, Vinagre B M, et al. Fractionalorder Systems and Controls: Fundamentals and Applications. London: Springer, 2010
|
140 Tavazoei M S, Haeri M. Limitations of frequency domain approximation for detecting chaos in fractional order systems. Nonlinear Analysis: Theory, Method & Applications,2008, 69(4): 1299-1320
|