Volume 46 Issue 1
May  2016
Turn off MathJax
Article Contents
YU Peng, YAO Xiaohu, ZHANG Xiaoqing, HAN Qiang. Mechanical behaviors and constitutive models of polycarbonate amorphous polymers[J]. Advances in Mechanics, 2016, 46(1): 201603. doi: 10.6052/1000-0992-15-016
Citation: YU Peng, YAO Xiaohu, ZHANG Xiaoqing, HAN Qiang. Mechanical behaviors and constitutive models of polycarbonate amorphous polymers[J]. Advances in Mechanics, 2016, 46(1): 201603. doi: 10.6052/1000-0992-15-016

Mechanical behaviors and constitutive models of polycarbonate amorphous polymers

doi: 10.6052/1000-0992-15-016
More Information
  • Corresponding author: YAO Xiaohu
  • Received Date: 2015-03-31
  • Rev Recd Date: 2015-08-21
  • Publish Date: 2016-05-20
  • Polycarbonate is a kind of glassy amorphous polymer materials.Due to the excellent performance in resisting heat and impact, it is widely used in defense, military and engineering fields.In this paper, we introduce experimental investigations on mechani-cal behaviours of polycarbonate amorphous polymer materials, and discover the mechanical behaviors of such materials from a phenomenological point of view.Then we discuss re-searches on constitutive models for these materials, including the developments, physical mechanisms, mechanical characteristics and application range.Finally, we sketch the ap-plications of various constitutive models in polycarbonate amorphous polymer materials, and further discuss their descriptions for mechanical behaviors from the engineering appli-cation aspect.Meanwhile, some open key scientific problems in experimental and theoretical studies are raised, and prospects for future research are provided.

     

  • loading
  • [1]
    曹侃, 汪洋, 王宇. 2010. 低温下聚碳酸酯冲击拉伸性能的实验研究. 兵工学报, S1:195-198(Cao K, Wang Y, Wang Y. 2010. Experimental study on impact tensile properties of polycarbonate at low temperature. Binggong Xuebao/Acta Armamentarii, S1:195-198).
    [2]
    冯震宙, 王新军, 王富生, 高行山, 岳珠峰. 2007. 朱-王-唐非线性黏弹性本构模型在有限元分析中的实现及其应用. 材料科学与工程学报, 25:269-272(Feng Z Z, Wang X J, Wang F S, Gao H S, Yue Z F. 2007. Implementation and its application in finite element analysis of constitutive model for zwt nonlinear viscoelastic material. Materials Science and Engineering Hangzhou, 25:269-272).
    [3]
    付顺强, 汪洋, 王宇. 2009. 聚碳酸酯的高应变率拉伸实验. 实验力学, 24:202-206(Fu S Q, Wang Y, Wang Y. High strain-rate tensile experiment on polycarbonate bar. Journal of Experimental Mechanics, 24:202-206).
    [4]
    韩强, 于鹏, 姚小虎, 臧曙光, 李志强. 2013. 聚碳酸脂本构方程及其在鸟撞风挡仿真中的应用. 华南理工大学学报(自然科学版), 41:99-102(Han Q, Yu, P, Yao, X H, Zang, S G, Li, Z Q. 2013. Constitutive equation of polycarbonate and its application to simulation of windshield under bird impact. Journal of South China University of Technology(Natural Science), 41:99-102).
    [5]
    胡文军, 符春渝, 王彤伟, 敬华. 2011. 聚碳酸酯拉伸应变局部化实验. 高分子材料科学与工程, 27:112-115(Hu W J, Fu, C Y, Wang, T W, Jing, H. 2011. Experiment of strain localization of polycarbonate.Polymeric Materials Science and Engineering, 27:112-115).
    [6]
    胡文军, 唐录成, 张方举, 田常津, 陈裕泽, 刘占方, 陈勇梅. 2006. 聚碳酸酯冲击压缩的实验研究.
    [7]
    高分子材料科学与工程, 22:165-168(Hu W J, Tang, L C, Zhang, F J, Tian, C J, Chen, Y Z, et al. 2006. Experimental study of polycarbonate's impact compression. Polymeric Materials Science and Engineering, 22:165-168).
    [8]
    胡文军, 张方举, 田常津, 刘占方, 陈勇梅, 孙敏. 2007a. 载荷作用下聚碳酸酯试件温升的实验研究. 高分子材料科学与工程, 23:199-202(Hu W J, Zhang, F J, Tian, C J, Liu, Z F, Chen, Y M, et al. 2007a.Experimental study of the temperature-rise of polycarbonate with loading. Polymeric Materials Science and Engineering, 23:199-202).
    [9]
    胡文军, 张方举, 田常津, 刘占芳. 2007b. 聚碳酸酯的动态应力应变响应和屈服行为. 材料研究学报, 21:439-443(Hu W, Zhang, F, Tian, C, Liu, Z. 2007b. Dynamic stress-strain response and yield behavior of polycarbonate. Journal of Materials Research, 21:439-443).
    [10]
    唐志平. 1984. 高应变率下环暇树脂的力学性能研究.[硕士论文]. 合肥:中国科技大学.
    [11]
    王礼立, 董新龙, 孙紫建. 2006. 高应变率下计及损伤演化的材料动态本构行为. 爆炸与冲击, 26:193-198(Wang L L, Dong, X L, Sun, Z J. 2006. Dynamic constitutive behavior of materials at high strain rate taking account of damage evolution. Explosion and Shock Waves, 26:193-198).
    [12]
    杨黎明, 朱兆祥, 王礼立. 1986. 短纤维增强对聚碳酸酯非线性黏弹性性能的影响. 爆炸与冲击, 6:1-9(Yang L M, Chu Z X, Wang L L. 1986. Effects of short-glass-fiber reinforcement on nonlinear viscoelastic behavior of polycarbonate. Explosion and Shock Waves, 6:1-9).
    [13]
    于鹏. 2014. 航空聚碳酸酯动态力学性能及本构关系研究.[硕士论文]. 广州:华南理工大学(Yu P. 2014. Investigation on the dynamic characteristics and constitutive model of Polycarbonate of aircraft.[Master Thesis]. Guangzhou:South China University of Technology).
    [14]
    于鹏, 姚小虎, 韩强, 臧曙光, 李志强. 2013. 有机玻璃PMMA 常温下的动态本构关系. 爆炸与冲击, S1:88-91(Yu P, Yao, X H, Han, Q, Zang, S G, Li, Z Q. 2013. Dynamic constitutive model of PMMA at room temperature. Explosion and Shock Waves, S1:88-91).
    [15]
    周风华, 王礼立, 胡时胜. 1992. 有机玻璃在高应变率下的损伤型非线性黏弹性本构关系及破坏准则.
    [16]
    爆炸与冲击, 12:333-342(Zhou F H, Wang, L L, Hu, S S. 1992. A damage-modified nonlinear visco-elastic constitutive relation and failure criterion of PMMA at high strain-rates. Explosion and Shock Waves, 12:333-342).
    [17]
    Al-Rub R K A, Tehrani A H, Darabi M K. 2014. Application of a large deformation nonlinear-viscoelastic viscoplastic viscodamage constitutive model to polymers and their composites. International Journal of Damage Mechanics, 24:198-244.
    [18]
    Antoine G O, Batra R C. 2014. Low speed impact of laminated polymethylmethacrylate/adhesive/polycarbonate plates. Composite Structures, 116:193-210.
    [19]
    Antoine G O, Batra R C. 2015a. Optimization of transparent laminates for specific energy dissipation under low velocity impact using genetic algorithm. Composite Structures, 124:29-34.
    [20]
    Antoine G O, Batra R C. 2015b. Sensitivity analysis of low-velocity impact response of laminated plates.International Journal of Impact Engineering, 78:64-80.
    [21]
    Arruda E M, Boyce M C. 1993. Evolution of plastic anisotropy in amorphous polymers during finite straining.International Journal of Plasticity, 9:697-720.
    [22]
    Arruda E M, Boyce M C, Jayachandran R. 1995. Effects of strain rate, temperature and thermomechanical coupling on the finite strain deformation of glassy polymers. Mechanics of Materials, 19:193-212.
    [23]
    Balieu R, Lauro F, Bennani B, Delille R, Matsumoto T, Mottola E. 2013. A fully coupled elastoviscoplas-tic damage model at finite strains for mineral filled semi-crystalline polymer. International Journal of Plasticity, 51:241-270.
    [24]
    Bauwens-Crowet C, Bauwens J C, Homès G. 1972. The temperature dependence of yield of polycarbonate in uniaxial compression and tensile tests. Journal of Materials Science, 7:176-183.
    [25]
    Belayachi N, Benseddiq N, Nait-Abdelaziz M. 2008. Behaviour of the heterogeneous glassy polymers:Com-putational modelling and experimental approach. Composite Science and Technology, 68:367-375.
    [26]
    Bilyk S R. 2014. Dynamic Experiments and Constitutive Model Performance for Polycarbonate. DTIC Document.
    [27]
    Bouaksa F, Ovalle Rodas C, Zaïri F, Stoclet G, Naït-Abdelaziz M, Gloaguen J M, Tamine T, Lefebvre J M. 2014. Molecular chain orientation in polycarbonate during equal channel angular extrusion:Experiments and simulations. Computational Materials Science, 85:244-252.
    [28]
    Boyce M C, Arruda E M. 1990. An experimental and anaiytical investigation of the large strain compressive and tensile response of glassy polymers. Polymer Engineering & Science, 30:1288-1298.
    [29]
    Boyce M C, Arruda E M, Jayachandran R. 1994. The large strain compression, tension, and simple shear of polycarbonate. Polymer Engineering & Science, 34:716-725.
    [30]
    Boyce M C, Parks D M, Argon A S. 1988. Large inelastic deformation of glassy polymers. part I:Rate dependent constitutive model.Mechanics of Materials, 7:15-33.
    [31]
    Cady C M, Blumenthal W R, Gray G T, Idar D J. 2003. Determining the constitutive response of polymeric materials as a function of temperature and strain rate. Journal de Physique IV, 110:27-32.
    [32]
    Cao K, Ma X, Zhang B, Wang Y, Wang Y. 2010. Tensile behavior of polycarbonate over a wide range of strain rates. Materials Science and Engineering:A, 527:4056-4061.
    [33]
    Cao K, Wang Y, Wang Y. 2014. Experimental investigation and modeling of the tension behavior of polycarbonate with temperature effects from low to high strain rates. International Journal of Solids and Structures, 51:2539-2548.
    [34]
    Chen W, Lu F, Zhou B. 2000. A quartz-crystal-embedded split Hopkinson pressure bar for soft materials.Experimental Mechanics, 40:1-6.
    [35]
    Chen W, Zhang B, Forrestal M J. 1999. A split Hopkinson bar technique for low-impedance materials.Experimental Mechanics, 39:81-85.
    [36]
    Dar U, Zhang W, Xu Y, Wang J. 2014. Thermal and strain rate sensitive compressive behavior of polycar-bonate polymer-experimental and constitutive analysis. Journal of Polymer Research, 21:1-10.
    [37]
    Davies R M. 1948. A critical study of the hopkinson pressure bar. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 240:375-457.
    [38]
    De Focatiis D S A, Embery J, Buckley C P. 2010. Large deformations in oriented polymer glasses:Exper-imental study and a new glass-melt constitutive model. Journal of Polymer Science Part B:Polymer Physics, 48:1449-1463.
    [39]
    Dorogoy A, Rittel D. 2015. Effect of confinement on thick polycarbonate plates impacted by long and AP projectiles. International Journal of Impact Engineering, 76:38-48.
    [40]
    Dreistadt C, Bonnet A-S, Chevrier P, Lipinski P. 2009. Experimental study of the polycarbonate behaviour during complex loadings and comparison with the Boyce, Parks and Argon model predictions. Materials & Design, 30:3126-3140.
    [41]
    Duan Y, Saigal A, Greif R. 2001. A uniform phenomenological constitutive model. Polymer Engineering And Science, 41:1322-1328.
    [42]
    Engels T A P, Govaert L E, Meijer H E H. 2009. The influence of molecular orientation on the yield and post-yield response of injection-molded polycarbonate. Macromolecular Materials and Engineering, 294:821-828.
    [43]
    Fu S, Wang Y, Wang Y. 2009. Tension testing of polycarbonate at high strain rates. Polymer Testing, 28:724-729.
    [44]
    Ghorbel E. 2008. A viscoplastic constitutive model for polymeric materials.International Journal of Plas-ticity, 24:2032-2058.
    [45]
    Ghorbel E, Hadriche I, Casalino G, Masmoudi N. 2014. Characterization of thermo-mechanical and fracture behaviors of thermoplastic polymers. Materials, 7:375-398.
    [46]
    Govaert L E, Tervoort T A. 2004. Strain hardening of polycarbonate in the glassy stateinfluence of temper-ature and molecular weight. Journal of Polymer Science:Part B:Polymer Physics, 42:2041-2049.
    [47]
    Govaert L E, Timmermans P H M, Brekelmans W A M. 2000. The influence of intrinsic strain softening on strain localization in polycarbonate modeling and experimental validation. Journal of Engineering Materials and Technology, 122:177-185.
    [48]
    Haward R N, Thackray G. 1968. The use of a mathematical model to describe isothemal stress-strain curves in glassy thermoplastics. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 302:453-472.
    [49]
    Hazell P J, Roberson C J, Moutinho M. 2008. The design of mosaic armour:The influence of tile size on ballistic performance. Materials & Design, 29:1497-1503.
    [50]
    Hossain M M, Minkwitz R, Charoensirisomboon P, Sue H-J. 2014. Quantitative modeling of scratch-induced deformation in amorphous polymers. Polymer, 55:6152-6166.
    [51]
    Jeridi M, Chouchene H, Keryvin V, Saï K. 2014. Multi-mechanism modeling of amorphous polymers.Mechanics Research Communications, 56:136-142.
    [52]
    Kattekola B, Desai C K, Parameswaran V, Basu S. 2014. Critical evaluation of a constitutive model for glassy polycarbonate. Experimental Mechanics, 54:357-368.
    [53]
    Kendall M J, Siviour C R, 2014. Experimentally simulating high-rate behaviour:Rate and temperature effects in polycarbonate and PMMA. Philosophical Transactions of the Royal Society of London A:Mathematical, Physical and Engineering Sciences, 372:2013-2020.
    [54]
    Klompen E T J, Engels T A P, Govaert L E, Meijer H E H. 2005. Modeling of the postyield response of glassy polymers influence of thermomechanical history. Macromolecules, 38:6997-7008.
    [55]
    Kolsky H. 1949. An investigation of the mechanical properties of materials at very high rates of loading.Proceedings of the Physical Society. Section B, 62:676.
    [56]
    Krempl E, Khan F. 2003. Rate(time)-dependent deformation behavior:An overview of some properties of metals and solid polymers. International Journal of Plasticity, 19:1069-1095.
    [57]
    Kumar V, VanderWel M, Weller J, Seeler K A. 1994. Experimental characterization of the tensile behavior of microcellular polycarbonate foams. Journal of Engineering Materials and Technology, 116:439-445.
    [58]
    Leonov A I. 1976. Nonequilibrium thermodynamics and rheology of viscoelastic polymer media. Rheologica Acta, 15:86-98.
    [59]
    Lu F C, Kang G Z, Jiang H, Zhang J W, Liu Y J. 2014. Experimental studies on the uniaxial ratchetting of polycarbonate polymer at different temperatures. Polymer Testing, 39:92-100.
    [60]
    Lu J, Ravi-Chandar K. 1999. Inelastic deformation and localization in polycarbonate under tension. Inter-national Journal of Solids and Structures, 36:391-425.
    [61]
    Mahieux C A, Reifsnider K L. 2001. Property modeling across transition temperatures in polymers:a robust stiffness{temperature model. Polymer, 42:3281-3291.
    [62]
    Moy P, Weerasooriya T, Hsieh A. 2003. Strain rate response polycarbonate under uniaxial compression. In:Proceedings of the SEM Conference on Experimental Mechanics.
    [63]
    Mulliken A D, Boyce M C. 2004. Low to high strain rate deformation of amorphous polymers. In:Proceed-ings of the 2004 SEM X International Congress and Exposition on Experimental and Applied Mechanics, Costa Mesa, 197.
    [64]
    Mulliken A D, Boyce M C. 2006. Mechanics of the rate-dependent elastic{plastic deformation of glassy polymers from low to high strain rates. International Journal of Solids and Structures, 43:1331-1356.
    [65]
    Parsons E, Boyce M C, Parks D M. 2004. An experimental investigation of the large-strain tensile behavior of neat and rubber-toughened polycarbonate. Polymer, 45:2665-2684.
    [66]
    Ree T, Eyring H. 1955. Theory for non-Newtonian flow I. Solid plastic system. Journal of Applied Physics, 26:793-800.
    [67]
    Richeton J, Ahzi S, Daridon L. 2007a. Thermodynamic investigation of yield-stress models for amorphous polymers. Philosophical Magazine, 87:3629-3643.
    [68]
    Richeton J, Ahzi S, Daridon L, Rémond Y. 2003. Modeling of strain rates and temperature effects on the yield behavior of amorphous polymers. Journal de Physique Archives, 110:39-44.
    [69]
    Richeton J, Ahzi S, Daridon L, Rémond Y. 2005a. A formulation of the cooperative model for the yield stress of amorphous polymers for a wide range of strain rates and temperatures. Polymer, 46:6035-6043.
    [70]
    Richeton J, Ahzi S, Vecchio K S, Jiang F C, Adharapurapu R R. 2006. Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers:Characterization and modeling of the compressive yield stress. International Journal of Solids and Structures, 43:2318-2335.
    [71]
    Richeton J, Ahzi S, Vecchio K S, Jiang F C, Makradi A. 2007b. Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates.International Journal of Solids and Structures, 44:7938-7954.
    [72]
    Richeton J, Schlatter G, Vecchio K S, Rémond Y, Ahzi S. 2005b. A unified model for stiffness modulus of amorphous polymers across transition temperatures and strain rates. Polymer, 46:8194-8201.
    [73]
    Rietsch F, Bouette B. 1990. The compression yield behaviour of polycarbonate over a wide range of strain rates and temperatures. European Polymer Journal, 26:1071-1075.
    [74]
    Safari K H, Zamani J, Ferreira F J, Guedes R M. 2012. Constitutive modeling of polycarbonate during high strain rate deformation. Polymer Engineering & Science, 53:752-761.
    [75]
    Sai K, Aubourg V, Cailletaud G, Strudel J-L. 2004. Physical basis for model with various inelastic mecha-nisms for nickel base superalloy. Materials Science and Technology, 20:747-755.
    [76]
    Sarva S, Boyce M. 2007. Mechanics of polycarbonate during high-rate tension. Journal of Mechanics of Materials and Structures, 2:1853-1880.
    [77]
    Schapery R. 1975. A theory of crack initiation and growth in viscoelastic media. International Journal of Fracture, 11:141-159.
    [78]
    Seidel G D, Allen D H, Helms K L E, Groves S E. 2005. A model for predicting the evolution of damage in viscoelastic particle-reinforced composites. Mechanics of Materials, 37:163-178.
    [79]
    Song B, Chen W. 2004. Dynamic stress equilibration in split Hopkinson pressure bar tests on soft materials.Experimental Mechanics, 44:300-312.
    [80]
    Srivastava V, Chester S A, Ames N M, Anand L. 2010. A thermo-mechanically-coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition. International Journal of Plasticity, 26:1138-1182.
    [81]
    Swallowe G M, Lee S F. 2003. A study of the mechanical properties of PMMA and PS at strain rates of 10-4 to 103 over the temperature range 293-363 K. Journal de Physique IV, 110:33-38.
    [82]
    Tehrani A H, Al-Rub R K A. 2011. Mesomechanical modeling of polymer/clay nanocomposites using a viscoelastic-viscoplastic-viscodamage constitutive model. Journal of Engineering Materials and Technol-ogy, 133:1-8.
    [83]
    Van Breemen L C A, Klompen E T J, Govaert L E, Meijer H E H. 2011. Extending the EGP constitutive model for polymer glasses to multiple relaxation times. Journal of the Mechanics and Physics of Solids, 59:2191-2207.
    [84]
    Varghese A G, Batra R C. 2009. Constitutive equations for thermomechanical deformations of glassy poly-mers. International Journal of Solids and Structures, 46:4079-4094.
    [85]
    Voyiadjis G Z, Shojaei A, Li G. 2012. A generalized coupled viscoplastic-viscodamage-viscohealing theory for glassy polymers. International Journal of Plasticity, 28:21-45.
    [86]
    Walley S, Field J. 1994. Strain rate sensitivity of polymers in compression from low to high rates. DYMAT Journal, 1:211{227.
    [87]
    Wang F S, Yue Z F. 2010. Numerical simulation of damage and failure in aircraft windshield structure against bird strike. Materials & Design, 31:687-695.
    [88]
    Wang J, Xu Y, Zhang W. 2014. Finite element simulation of PMMA aircraft windshield against bird strike by using a rate and temperature dependent nonlinear viscoelastic constitutive model. Composite Structures, 108:21-30.
    [89]
    Wang X, Feng Z, Wang F, Yue Z. 2007. Dynamic response analysis of bird strike on aircraft windshield based on damage-modified nonlinear viscoelastic constitutive relation. Chinese Journal of Aeronautics, 20:511-517.
    [90]
    Wu J J, Buckley C P. 2004. A unified model of yield and the role of chain length. Journal of Polymer Science Part B:Polymer Physics, 42:2027-2040.
    [91]
    Wu P D, Van Der Giessen E. 1993. On improved network models for rubber elasticity and their applications to orientation hardening in glassy polymers. Journal of the Mechanics and Physics of Solids, 41:427-456.
    [92]
    Xu Y J, Zhang Q W, Zhang W H, Zhang P. 2015. Optimization of injection molding process parameters to improve the mechanical performance of polymer product against impact. The International Journal of Advanced Manufacturing Technology, 76:2199-2208.
    [93]
    Yu P, Yao X, Han Q, Zang S, Gu Y. 2014. A visco-elastoplastic constitutive model for large deformation response of polycarbonate over a wide range of strain rates and temperatures. Polymer, 55:6577-6593.
    [94]
    Zaïri F, Naït-Abdelaziz M, Gloaguen J M, Lefebvre J M. 2008. Modelling of the elasto-viscoplastic damage behaviour of glassy polymers. International Journal of Plasticity, 24:945-965.
    [95]
    Zaïri F, Naït-Abdelaziz M, Gloaguen J M, Lefebvre J M. 2011. A physically-based constitutive model for anisotropic damage in rubber-toughened glassy polymers during finite deformation. International Journal of Plasticity, 27:25-51.
    [96]
    Zhang Y, Xia Z, Ellyin F. 2004. Evolution and influence of residual stresses/strains of fiber reinforced laminates. Composites Science and Technology, 64:1613-1621.
    [97]
    Zhu S, Tong M, Wang Y, 2009. Experiment and numerical simulation of a full-scale aircraft windshield subjected to bird impact. In:Proc. of 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2475) PDF downloads(1812) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    Baidu
    map