Citation: | YANG Yang, JIANG Zonglin, HU Zongmin. ADVANCES IN SHOCK WAVE REFLECTION PHENOMENA[J]. Advances in Mechanics, 2012, 42(2): 141-161. doi: 10.6052/1000-0992-2012-2-20120203 |
1 Mach E. Uber den Verlauf von Funkenwellen in der Ebene und im Raume. Sitzugsbr Akad Wiss Wien, 1878, 78:819-838
|
2 von Neumann J. Oblique reflection of shocks. Explos Res Rep 12, Navy Dept Bureau of ordinance, Washington DC, USA, 1943
|
3 von Neumann J. Refraction, intersection and reflection of shock waves. NAVORD Rep 203-45, Navy Dept Bureau of ordinance, Washington DC, USA, 1943
|
4 Ben-Dor G. Shock Wave Reflection Phenomena. 2nd Edition. Berlin: Springer-Verlag Press, 2007
|
5 Goonko Y P, Latypov A F, Mazhul I I, et al. Structure of flow over a hypersonic inlet with side compression wedges. AIAA Journal, 2003, 41(3): 436-447
|
6 Kleine H, Settles G S. The art of shock waves and their flowfields. Shock Waves, 2008, 17: 291-307
|
7 滕宏辉, 张德良, 李辉煌, 等. 用环形激波聚焦实现爆轰波直 接起爆的数值模拟. 爆炸与冲击, 2005, 25(6): 512-518
|
8 Ben-Dor G, Takayama K. The phenomena of shock wave reflection-a review of unsolved problems and future research needs. Shock Waves, 1992, 2: 211-223
|
9 White D R. An experimental survey of the Mach reflection of shock waves: [PhD Thesis]. New Jersey: Princeton University, 1951
|
10 Zaslavsky B I, Safarov P A. Mach reflection of weak shock waves from a rigid wall. J. Appl. Mech. Tech. Phys.,1973, 14(5): 624-629
|
11 Henderson L F, Siegenthaler A. Experiments on the diffraction of weak blast waves: the von Neumann paradox. Proc. R. Soc. London, Ser. A, 1980, 369: 537-555
|
12 Sasoh A, Takayama K. Characterization of disturbance propagation in weak shock wave reflections. J. Fluid Mech., 1994, 277: 331-345
|
13 Colella P, Henderson L F. The von Neumann paradox for the diffraction of weak shock waves. J. Fluid Mech., 1990,213: 71-94
|
14 Smith L G. Photographic investigation of the reflection of plane shocks in air. OSRD Rep 6271, Off Sci Res Dev, Washington DC, USA, 1945
|
15 White D R. An experimental survey of the Mach reflection of shock waves. Department of Physics, Princeton University Technical Report No.II-10, 1951
|
16 Courant R, Friedrichs K O. Supersonic flow and shock waves. New York: Wiley Interscience, 1948
|
17 Ben-Dor G, Takayama K. The dynamics of the transition from Mach to regular reflection over concave cylinders. Israel J. Tech., 1986/7, 23: 71-74
|
18 Lee J H, Glass I I. Pseudo-stationary oblique-shock wave reflection in frozen and equilibrium air. Prog. Aerospace Sci., 1984, 21: 33-80
|
19 Kawamura R, Saito H. Reflection of shock waves-1.Pseudo-stationary case. J. Phys. Soc. Japan, 1956,11: 584-592
|
20 Sternberg J. Triple-shock-wave intersections. Phys. Fluids, 1959, 2: 179-207
|
21 Birkhoff G. Hydrodynamics: A Study in Logic, Fact, and Similitude, 2nd. New Jersey: Princeton University Press,1960
|
22 Olim M, Dewey J M. A revised three-shock solution for the Mach reflection of weak shocks. Shock Waves, 1992,2: 167-176
|
23 Skews B W. The flow in the vicinity of the three shock intersection. CASI Trans., 1972, 4: 99-107
|
24 Dulov V G. Motion of triple configuration of shock waves with formation of wake behind branching point. J. Appl. Mech. Tech. Phys., 1973, 14: 791-797
|
25 Shindyapin G P. Mach reflection and interaction of weak shock waves under the von Neumann paradox. Fluid Dyn.,1996, 31: 318-324
|
26 Guderley K G. Considerations on the structure of mixed subsonic-supersonic flow patterns. Air Materiel Command Technical Report No. F-TR-2168-ND, ATI No. 22780, GS-AAF-Wright Field No. 39, US Wright-Patterson Air Force Base, Dayton, OH, 1947
|
27 Guderley K G. The Theory of Transonic Flow. New York: Pergamon Press, 1962
|
28 Vasilev E, Kraiko A. Numerical simulation of weak shock diffraction over a wedge under the von Neumann paradox conditions. Comput. Math. Math. Phys., 1999, 39:1335-1345
|
29 Hunter J K, Brio M. Weak shock reflection. J. Fluid Mech., 2000, 410: 235-261
|
30 Zakharian A R, Brio M, Hunter J K, et al. The von Neumann paradox in weak shock reflection. J. Fluid Mech.,2000, 422: 193-205
|
31 Skews B W, Ashworth J T. The physical nature of weak shock wave reflection. J. Fluid Mech., 2005, 542: 105-114
|
32 Tesdall A M, Hunter J K. Self-similar solutions for weak shock reflection. Siam. J. Appl. Maths., 2002, 63: 42-61
|
33 Vasilev E I, Elperin T, Ben-Dor G. Analytical reconsideration of the von Neumann paradox in the reflection of a shock wave over a wedge. Phys. Fluids, 2008, 20: 046101
|
34 Skews B W, Li G, Paton R. Experiments on Guderley Mach reflection. Shock Waves, 2009, 19: 95-102
|
35 Li H, Ben-Dor G. Reconsideration of pseudo-steady shock wave reflections and the transition criteria between them. Shock Waves, 1995, 5: 59-73
|
36 Li H, Ben-Dor G. A shock dynamics theory based analytical solution of double Mach reflections. Shock Waves,1995, 5: 259-264
|
37 Li H, Ben-Dor G. Analysis of double-Mach-reflection wave configuration with convexly curved Mach stems. Shock Waves, 1999, 9: 319-326
|
38 Henderson L F, Vasilev E I, Ben-Dor G, et al. The walljetting effect in Mach reflection: theoretical consideration and numerical investigation. J. Fluid Mech., 2003, 479:259-286
|
39 Ben-Dor G, Vasilev E I, Henderson L F, et al. The walljetting effect in Mach reflection: a numerical investigation. In: Proceedings of the 24th International Symposium on Shock Waves, Beijing, China, 2004. 461-466
|
40 Vasilev E I, Ben-Dor G, Elperin T, et al. The wall-jetting effect in Mach reflection: Navier-Stokes simulations. J. Fluid Mech., 2004, 511: 363-379
|
41 Morioka T, Suzuki Y, Honma H. Radiation observation of strong shock wave reflection in air. In: Proceedings of the 22th International Symposium on Shock Waves, Southampton, UK, 2000. 1201-1206
|
42 高云亮. 超高速流动实验模拟方法及基础气动问题研究: [博 士论文]. 北京: 中国科学院力学研究所, 2008
|
43 高云亮, 姜宗林. 准定常强激波反射马赫杆突出变形准则的 探讨. 爆炸与冲击, 2009, 29: 143-148
|
44 Semenov A N, Betezkina M K, Krasovskaya I V. Classification of shock wave reflection from a wedge. Part 1: boundaries and domains of existence for different types of reflection. Technical Physics, 2009, 54(4): 491-496
|
45 Semenov A N, Betezkina M K, Krasovskaya I V. Classification of shock wave reflection from a wedge. Part 2: experimental and numerical simulations of different types of Mach reflections. Technical Physics, 2009, 54(4): 497-503
|
46 Ben-Dor G. Regions and transitions of nonstationary oblique shock wave diffractions in perfect and imperfect gases. UTIAS Pept., 1978. 232
|
47 Bryson A E, Gross R W F. Diffraction of strong shocks by cones, cylinders and spheres. J. Fluid Mech., 1961, 10:1-16
|
48 Takayama K, Sekiguchi H. Shock wave reflection by cones. Rept. Inst. High Speed Mech. Japan: Tohoku University,1976
|
49 Han Z Y, Milton B E, Takayama K. The Mach reflection triple-point locus for internal and external conical diffraction of a moving shock wave. Shock Waves, 1992, 2: 5-12
|
50 Milton B E, Archer R D. Conical Mach reflection of moving shock waves, Part 1: analytical considerations. Shock Waves, 1996, 6: 29-39
|
51 Yang J, Sasoh A, Takayama K. The reflection of a shock wave over a cone. Shock Waves, 1996, 6: 267-273
|
52 Milton B E, Takayama K. Conical Mach reflection of moving shock waves, Part 2: physical and CFD experimentation. Shock Waves, 1998, 8: 93-103
|
53 Azevedo D J. Analytic prediction of shock patterns in a high-speed , wedge-bounded duct. [Ph.D. Thesis]. State University of New York, Buffalo, NY, 1989
|
54 Azevedo D J, Liu C S. Engineering approach to the prediction of shock patterns in bounded high-speed flows. AIAA Journal, 1993, 31(1): 83-90
|
55 Schotz M, Levy A, Ben-Dor G, et al. Analytical prediction of the wave configuration size in steady flow Mach reflections. Shock Waves, 1997, 7(6): 363-372
|
56 Li H, Ben-Dor G. A parametric study of Mach reflection in steady flows. J. Fluid Mech., 1997, 341(1): 101-125
|
57 Mouton C A, Hornung H G. Mach stem height and growth rate predictions. AIAA Journal, 2007, 45(8): 1977-1987
|
58 高波. 二维定常超音速流中激波马赫反射的波系结构与转捩 研究: [博士论文]. 北京: 清华大学, 2010
|
59 Gao B, Wu Z N. A study of the flow structure for Mach reflection in steady supersonic flow. J. Fluid Mech., 2010,656: 29-50
|
60 Tan L H, Ren Y X, Wu Z N. Analytical and numerical study of the near flow field and shape of the Mach stem in steady flows. J. Fluid Mech., 2006, 546: 341-362
|
61 Chpoun A, Leclerc E. Experimental investigation of the influence of down stream flow conditions on Mach stem height. Shock Waves, 1999, 9: 269-271
|
62 Ben-Dor G, Elperin T, Li H, et al. The influence of the downstream pressure on the shock wave reflection phenomenon in steady flows. J. Fluid Mech., 1999, 386: 213-232
|
63 Burtschell Y, Zeitoun D E, Ben-Dor G. Steady shock wave reflections in thermochemical nonequilibrium flows. Shock Waves, 2001, 11: 15-21
|
64 Li H, Chpoun A, Ben-Dor G. Analytical and experimental investigations of the reflection of asymmetric shock waves in steady flows. J. Fluid Mech., 1999, 390: 25-43
|
65 Hu Z M, Wang C, Zhang Y, et al. Computational confirmation of an abnormal Mach reflection configuration. Physics of Fluids, 2009, 21: 011702
|
66 谭廉华. 平面与轴对称定常激波马赫反射中的激波形状研 究: [博士论文]. 北京: 清华大学, 2007
|
67 Ben-Dor G. A state-of-the-knowledge review on pseudosteady shock-wave reflections and their transition criteria. Shock Waves, 2006, 15: 277-294
|
68 Hornung H G, Oetel H, Sandemann R J. Transition to Mach reflection of shock waves in steady and pseudosteady flow with and without relaxation. J. Fluid Mech., 1979,90: 541-560
|
69 Hornung H G, Robinson M L. Transition from regular to Mach reflection of shock waves. Part 2: the steady-flow criterion. J. Fluid Mech., 1982, 123: 155-164
|
70 Ivanov M S, Gimelshein S F, Beylich A E. Hysteresis effect in stationary reflection of shock waves. Phys. Fluids,1995, 7(4): 685-687
|
71 Chpoun A, Passerel D, Li H, et al. Reconsideration of oblique shock wave reflections in steady flows. Part 1: experimental investigation. J. Fluid Mech., 1995, 301: 19-35
|
72 Chpoun A, Ben-Dor G. Numerical confirmation of the hysteresis phenomena in the regular to the Mach reflection transition in steady flows. Shock Waves, 1995, 5(4): 199-204
|
73 Ivanov M S, Zeitoun D, Vuilon J, et al. Investigation of the hysteresis phenomena in steady shock reflection using kinetic and continuum methods. Shock Waves, 1996, 5(6):341-346
|
74 Hadjadj A, Kudryavtsev A N, Ivanov M S, et al. Numerical investigation of hysteresis effects and slip surface instability in the steady Mach reflection. In: Proc. of 21st Int. Symp. on Shock Waves, 1998, 2: 841-847, Panther Publishing, Great Keppel, Australia
|
75 Ivanov M S, Markelov G N, Kudryavtev A N, et al. Numerical analysis of shock wave reflection transition in steady flows. AIAA J., 1998, 36(11): 2079-2086
|
76 Fomin V M, Ivanov M S, Kharitonov A M, et al. The study of transition between regular and Mach reflection of shock waves in different wind tunnel. In: Proc. of 12th Int. Mach Reflection Symp., 1996, 137-151, Pilananesberg, South Africa
|
77 Ivanov M S, Klemenkov G P, Kudryavtsev A N, et al. Experimental and numerical study of the transition between regular and Mach reflections of shock waves in steady flows. In: Proc. of 21st Int. Symp. on ShockWaves, 1998,2: 819-824, Panther Publishing, Great Keppel, Australia
|
78 Sudani N, Sato M, Watanabe M, et al. Three-dimensional effects on shock wave reflections in steady flows. AIAA paper 1999-0148, 1999
|
79 Ivanov M S, Gimenlshein S F, Markelov G N, et al. Numerical investigation of shock-wave reflection problems in steady flows. In: Proc. of 20st Int. Symp. on Shock Waves, 1996. 471-476, World Scientific
|
80 Li H, Ben-Dor G. Application of the principle of minimum entropy production to shock wave reflection. I: steady flows. J. Appl. Phys., 1996, 80(4): 2027-2037
|
81 Hornung H G. On the stability of steady-flow regular and Mach reflection. Shock Waves, 1997, 7: 123-125
|
82 Sudani N, Hornung H G. Stability and analogy of shock wave reflection in steady flow. Shock Waves, 1998, 8: 367-374
|
83 Ivanov M S, Kudryavtsev A N, Nikiforov S B, et al. Experiments on shock wave reflection transition and hysteresis in low-noise wind tunnel. Phys. Fluids, 2003, 15(6):1807-1810
|
84 Kudryyavtsev A N, Khotyanovsky D V, Ivanov M S, et al. Numerical investigations of transition between regular and Mach reflections caused by free-stream disturbances. Shock Waves, 2002, 12: 157-165
|
85 Sudani N, Sato M, Karasawa T, et al. Irregular effects on the transition from regular to Mach reflection of shock waves in wind tunnel flow. J. Fluid Mech., 2002, 459:167-185
|
86 Yan H, Adelgren R, Elliott G, et al. Laser energy deposition in intersecting shocks. AIAA paper 2002-2729, 2002
|
87 Khotyanovsky D V, Kudryavtsev A N, Ivanov M S. Effects of a single-pulse energy deposition on steady shock wave reflection. Shock Waves, 2006, 15: 353-362
|
88 Skews B W. Aspect ratio effects in wind tunnel studies of shock wave reflection transition. Shock Waves, 1997, 7:373-383
|
89 Skews B W. Three-dimensional effects in wind tunnel studies of shock wave reflection. J. Fluid Mech., 2000,407: 85-104
|
90 Ivanov M S, Vandromme D, Fomin V M, et al. Transition between regular and Mach reflection of shock waves: new numerical and experimental results. Shock Waves, 2001,11: 199-207
|
91 Brown Y A, Skews B W. Three-dimensional effects on regular reflection in steady supersonic flows. Shock Waves,2004, 13: 339-349
|
92 Ivanov M S, Ben-Dor G, Elperin T, et al. The reflection of asymmetric shock waves in steady flows: a numerical investigation. J. Fluid Mech., 2002, 469: 71-87
|
93 Hu Z M, Myong R S, Kim M S, et al. Downtream flow condition effects on the RR!MR transition of asymmetric shock waves in steady flows. J. Fluid Mech., 2009, 620:43-62
|
94 Ivanov M S, Ben-Dor G, Elperin T, et al. Mach-numbervariationinduced hysteresis in steady flow shock wave reflections. AIAA J., 2001, 39(5): 972-974
|
95 Durand A, Chanetz B, Benay R, et al. Investigation of shock waves interference and associated hysteresis effect at variable-Mach-number upstream flow. Shock Waves,2003, 12: 469-477
|
96 Ben-Dor G, Vasiliev E I, Elperin T, et al. Hysteresis phenomena in the interaction process of conical shock waves: experimental and numerical investigations. J. Fluid Mech., 2001, 448: 147-174
|
97 Ben-Dor G, Elperin T, Vasiliev I. Floe-Mach-numberinduced hysteresis phenomena in the interaction of conical shock waves-a numerical investigation. J. Fluid Mech.,2003, 496: 335-354
|
98 Ben-Dor G, Elperin T, Li H, et al. Downstream pressure induced hysteresis in the regular-Mach reflection transition in steady flows. Phys. Fluids, 1997, 9: 3036
|
99 Numata D, Ohtani K, Takayama K. Diffuse holographic interferometric observation of shock wave reflection from a skewed wedge. Shock Waves, 2009, 19: 103-112
|
100 Meguro T, Takayama K, Onodera O. Three-dimensional shock wave reflection over a corner of two intersecting wedges. Shock Waves, 1997, 7: 107-121
|
101 Goonko Y P, Kudryavtsev A N, Chpoun A. 3D interaction of shock waves in corner flow. In: Proc. of 24st Int. Symp. on Shock Waves, 2004. 437-442, Springer, Beijing, China
|
102 Goonko Y P, Kudryavtsev A N, Rakhimov R D. Supersonic inviscid corner flows with regular and irregular shock interaction. Fluid dynamics, 2004, 39(2): 304-318
|
103 Zambelli J, Skews B W. Shock wave propagation into a surface depression. Shock Waves, 2008, 18: 79-87
|
104 Jiang Z,Wang C, Miura Y, et al. Three-dimensional propagation of the transmitted shock wave in a square crosssectional chamber. Shock Waves, 2003, 13: 103-111
|
105 Yang Y, Teng H, Jiang Z, et al. Numerical investigation on three-dimensional shock wave reflection over two perpendicularly intersecting wedges. Shock Waves, 2012, DOI 10.1007/s00193-011-0350-y
|
106 杨旸, 滕宏辉, 姜宗林. 三维双楔面定常超声速流动研究. 空气动力学学报, 2012
|