Citation: | SUN Chengwei, ZHAO Jianhengy, WANG Guiji, ZHANG Hongping, TAN Fuli, WANG Ganghua. Progress in magnetic loading techniques for isentropic compression experiments and ultra-high velocity flyer launching[J]. Advances in Mechanics, 2012, 42(2): 206-219. doi: 10.6052/1000-0992-2012-2-20120208 |
It is a new loading technique characterized as ramp wave loading developted to explore the rapid response of material at pressures, temperatures and stress or strain rate not attainable in conventional shock experiments, which was firstly developed on Sandia Z accelerator in 1999. In this paper, its principle; and progress in loading apparatus and methodology for the analysis of experimental data are presented, and its applications in the study of EOS data and dynamic response of material characterization are reviewed.
1 Hall C A, Asay J R, Knudson M D, et al. Experimental configuration for isentropic compression of solids using pulsed magnetic loading. Rev. Sci. Instrum., 2001, 72(9):3587-3595
|
2 Cauble R, Reisamn D B, Asay J R, et al. Isentropic compression experiments to 1mbar using magnetic pressure. J. Phys.: Condens. Matter, 2002, 14: 10821-10824
|
3 Pollington M, Thompson P, Maw J. Equations of state. Discovery: The Science and Technology Journal of AWE,2002, 5: 16-25
|
4 Asay J, Hall C A, Knudson M. Recent advances in highpressure equation-of-state capabilities. SAND2000-0849C
|
5 High-energy-density physics study report. A Comprehensive Study of the Role of High-EnergyDensity Physics in the Stockpile Stewardship Program, National Nuclear Security Administration, U.S.Department of Energy, April 2001. http://www.dp.doe.gov/dp web/doc/HEDP Study Report April 2001.pdf
|
6 Savage M. The Z pulsed power driver since refurbishment. In: The 13th International Conference on Megagauss Magnetic Field Generation and Related Topics Suzhou, China, July 8-10, 2010
|
7 赵剑衡, 孙承纬, 谭福利, 等. 一维平面磁驱动等熵加载发射 飞片技术. 爆炸与冲击, 2005, 25(4): 303-308
|
8 Knoepfel H. Pulsed High Magnetic Fields. Amsterdam: North-Holland Pub. Co., 1970. 104-129
|
9 经福谦, 陈俊祥. 动高压原理与技术. 北京: 国防工业出版 社, 2006. 220-292
|
10 Aidun J B, Gupta Y M. Analysis of Lagrangian gauge measurements of simple and nonsimple plane waves. J. Appl. Phys., 1991, 69(10): 6998-7014
|
11 Hayes D. Backward integration of the equations of motion to correct for free surface perturbaritz. SAND2001-1440, Sandia National Laboratories, 2001
|
12 Hayes D, Vorthman J, Fritz J. Backward integration of a spall VISAR record to the spall plane. LA-13830-MS, Los Alamos National Laboratory, 2001
|
13 Rothman S D. Characteristics analysis of isentropic compression experiments (ICE). PPN05/05, Atomic Weapons Establishment (AWE) Report 151/05, Feb. 2005
|
14 Maw J R. A characteristics code for analysis of isentropic compression experiments. Shock Compression of Condensed Matter–2003, 2004. 1217-1220
|
15 Rothman S D, Maw J R. Characteristics analysis of isentropic compression experiments (ICE). J. of Physics IV (Proceedings), 2006, 134:745-750
|
16 Cowperthwaite M, Williams R F. Determination of constitutive relationships with multiple gauges in nondivergent waves. J. Appl. Phys., 1971 42(1): 456-462
|
17 Davison L. Traditional analysis of nonlinear wave propagation in solids. In: Horie Y, Moshsen S, Davison L, et al., High-Pressure Shock Compression of Solids vol.IV, Old Paradigms & New Challenges, Springer, N.Y., 2003
|
18 Vogler T J, Ao T, Asay J R. High-pressure strength of aluminum under quasi-isentropic loading. International J. of Plasticity, 2009, 25: 671-694
|
19 Grady D, Young E. Evaluating constitutive properties from velocity interferometer data. Sandia National Laboratories,1975, SAND75-0650
|
20 Tasker D G, Fowler C M, Goforth J H, et al. Isentropic compression experiments using high explosive pulsed power, MEGAGAUSS-9. In: Proc. 9th Int. Conf. Megagauss Magnetic Field Generation and Related Topics, 765-771, Moscow-St.-Petersburg, Russia, July 2002
|
21 Tasker D G, Goforth J H, Oona H, et al. Advances in isentropic compression experiments (ICE) using high explosive pulsed power. Shock Compression of Condensed Matter–2003, 2004. 1239-1242
|
22 Goforth J H, Atchison W L, Fowler C M, et al. Design of high explosive pulsed power systems for 20MB isentropic compression experiments, MEGAGAUSS-9. In: Proc. 9th Int. Conf. Megagauss Magnetic Field Generation and Related Topics, 137-147, Moscow-St.-Petersburg, Russia, July 2002
|
23 Hereil P L, Lassalle F, Avrilland G, et al. GEPI: An ICE generator for dynamic material characterization and hypervelocity impact, Shock Compression of Condensed Matter–2003, 2004. 1209-1212
|
24 Avrillaud G, Courtois L, Guerre J, et al. GEPI: a compact pulsed power driver for isentropic compression experiments and for non shocked high velocity flyer plates. In: 14th IEEE International Pulsed Power Conf., 2003.913-916
|
25 Ao T, Asay J R, Chantrenne S, et al. A compact strip-line pulsed power generator for isentropic compression experimemnts. Rev. Sci. Instrum., 2008 79: 013903
|
26 孙承纬. 磁驱动等熵压缩和高速飞片的实验技术. 高能量密 度物理, 2006, 1: 1-7
|
27 Glover S F, Davis J P, Puissant J G, et al. Genesis: a 5-ma programmable pulsed-power driver for isentropic compression experiments. IEEE Transactions on Plasma Science,2010, 38(10): 2620-2626
|
28 赵剑衡, 孙承纬, 唐小松, 等. 高效能电炮实验装置的研制. 实验力学, 2006, 21(3): 369-375
|
29 Sun C W, Wang G J, Zhao J H, et al. Magnetically driven isentropic compression and flyer plate experiments using a compact capacitor bank. Shock Compression of Condensed Matter–2007, 2007. 1196-1199
|
30 Wang G J, Sun C W, Zhao J H, et al. The compact capacitor bank CQ-1.5 employed in magnetically driven isentropic compression and high velocity flyer plate experiments. Rev. Sci. Instrum., 2008, 79(5): 053904
|
31 Trainor R J, Parsons W M, Ballard E O, et al. Overview of the Atlas project. In: Proc. 11th IEEE Int’l Pulsed Power Conf., 37-46, Baltimore, MD USA, June 1997
|
32 Davis J P, Deeney C, Knudson M D, et al. Magnetically driven isentropic compression to multimegabar pressures using shaped current pulses on the Z accelerator. Physics of Plasma, 2005, 12: 056310
|
33 Davis J P. Experimental measurement of the principal isentrope for aluminum 6061-T6 to 240 GPa. J. Appl. Phys., 2006, 99: 103512
|
34 Hall C A, Asay J R, Knudson M D, et al. Recent advances in quasi-isentropic compression experiments (ICE) on the Sandia Z accelerator, Shock Compression of Condensed Matter–2001, 2002. 1163-1168
|
35 Hayes D B, Hall C A, Asay J R, et al. Measurement of the compression isentrope for 6061-T6 aluminum to 185 GPa and 46% volumetric strain using pulsed magnetic loading. J. Appl. Phys., 2004, 96(10): 5520-5527
|
36 Davis Jean-Paul, Deeney C, Knudson M D, et al. Magnetically driven isentropic compression to multimegabar pressures using shaped current pulses on the Z accelerator. Phys. Plasmas, 2005, 12: 056310
|
37 Reisman D B, Torr A, Cauble R C. Magnetically driven isentropic compression experiments on the Z accelerator. J. Appl. Phys., 2001, 89(3): 1625-1633
|
38 Hall C A. Isentropic compression experiments on the Sandia Z accelerator. Phys. Plasmas, 2000, 7(5): 2069-2075
|
39 Hereil P L, Avrillaud G. J. IV France, 2006, 134: 535-540
|
40 Rothman S D, Evans A M, Graham P, et al. Measurements of the equation of state of lead under varying conditions by multiple methods. Shock Compression of Condensed Matter–2001, 2002. 79-82
|
41 Rothman S D, Parker K W, Davis J P, et al. Isentropic compression of lead and lead alloy using the Z machine. Shock Compression of Condensed Matter–2003,2004. 1235-1238
|
42 Eggert J, Bastea M, Reisman D B, et al. Ramp wave stress-density measurements of Ta and W. Shock Compression of Condensed Matter–2007, 2007. 1177-1180
|
43 Asay J R, Lipkin J. A self-consistent technique for estimating the dynamic yield strength of a shock-loaded material. J. Appl. Phys., 1978, 49(7): 4242-4247
|
44 Asay J R, Ao T, Davis J P, et al. Effect of initial properties on the flow strength of aluminum during quasi-isentropic compression. J. Appl. Phys., 2008, 103: 083514
|
45 Ding J L, Asay J R. Material characterization with ramp wave experiments. J. Appl. Phys., 2007, 101: 073517
|
46 Huang H, Asay J R. Compressive strength measurements in aluminum dor shock compression over the stress range of 4-22 GPa. J. Appl. Phys., 2005, 98: 033524
|
47 Ao T, Asay J R, Davis J P, et al. High-pressure quasiisentropic compression loading and unloading of interferometer windows on the Veloce pulsed power generator. In: Proc. of the Conference on Shock Compression of Condensed Matter-2007, Waikoloa, Hawaii, U.S.A, June 24-29,2007. 1157-1160
|
48 Ao T, Knudson M D, Asay J R, et al. Strength of lithium fluoride under shockless compression to 114 GPa. Jour. Appl. Phys., 2009, 106: 103507
|
49 Asay J R, Ao T, Vogler T J, et al. Yield strength of tantalum for shockless compression to 18GPa. Jour. Appl. Phys., 2009, 106: 073515
|
50 Wise J L, Jones S C, Hall C A, et al. Dynamic response of Kovar to shock and ramp wave compression. In: Proc. of the Conference on Shock Compression of Condensed Matter-2007, Waikoloa, Hawaii, U.S.A, June 24-29, 2007.1024-1027
|
51 Lawrence R J, Grady D E, Hall C A. The response of ceramic powders to high-level quasi-isentropic dynamic loads. In: 13th APS Topical conference on Shock Compression of Condensed Matter, 2003. 1213-1216
|
52 Baer M R, Hall C A, Gustavsen R L, et al. Isentropic loading experiments of a plastic bonded explosive and constituents. J. Appl. Phys., 2007, 101: 034906
|
53 Baer M R, Hall C A, Gustavsen R L, et al., Isentropic Compression Experiments for Mesoscale Studies of Energetic Composites. AIP Conference Proceedings, 2006,845: 1307-1310
|
54 Hare D E, Reisman D B, Garcia F, et al. The Isentrope of Unreacted LX-04 to 170 kbar, Michael D F, Yogendra M G, Jerry W F, Eds. AIP, 2004. 145-148
|
55 Hare D E, Forbes J W, Reisman D B, et al. Isentropic compression loading of octahydro-1,3,5,7tetranitro-1,3,5,7-tetrazocine (HMX) and the pressureinduced phase transition at 27 GPa. Applied Physics Letters, 2004, 85: 949-951
|
56 Reisman D B, Forbes J W, Tarver C M, et al. Isentropic Compression of LX-04 on the Z Accelerator. In: Michael D F, Naresh N T, Yasuyuki H, eds. AIP, 2002. 849-852
|
57 Hooks D E, Hayes D B, Hare D E, et al. Isentropic compression of cyclotetramethylene tetranitramine (HMX) single crystals to 50 GPa. Journal of Applied Physics,2006, 99: 124901
|
58 Asay J R, Hall C A, Holland K G, et al. Isentropic compression on iron with the Z accelerator, Shock Compression of Condensed Matter–1999, 2000. 1151-1154
|
59 Hereil P L, Lassalle F, Avrillaud G. GEPI: a nice generator for dynamic material characterisation and hypervelocity impact. In: Furnish M D, Gupta Y M Forbes J W, eds. Shock Compression of Condensed Matter-2003, 2004.1209-1212
|
60 Hall C A, Knudson M D, Asay J R, et al. High velocity flyer plate launch capability on the sandia z accelerator. Int,l J. Impact Eng'g, 2001, 26: 275-287
|
61 Matzen M K, Sweeney M A, Adams R G, et al. Pulsedpowerdriven high energy density physics and inertial confinement fusion research. Phys. Plasmas, 2005, 12:055503
|
62 Knudson M D, Lemke R W, Hayes D B, et al. Nearabsolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique. J. Appl. Phys., 2003, 94(7): 4420-4431
|
63 Bergstresser T, Becker S. Temperature measurement of isentropically accelerated flyer plates. Shock Compression of Condensed Matter–2001, 2002. 1169-1172
|
64 Knudson M D, Asay J R, Deeney C. Adiabatic release measurements in aluminum from 240to 500-GPa states on the principal Hugoniot. J. Appl. Phys., 2005, 97:073514
|