Citation: | Huang M C, Huo W D, Liu C, Yang D S, Huang J, Du Z L, Guo X. Substructuring multi-resolution topology optimization with template. Advances in Mechanics, 2021, 51(4): 901-909 doi: 10.6052/1000-0992-21-030 |
[1] |
Borrvall T, Petersson J. 2001. Large-scale topology optimization in 3D using parallel computing. Computer Methods in Applied Mechanics and Engineering, 190: 6201-6229. doi: 10.1016/S0045-7825(01)00216-X
|
[2] |
Bruns T E, Tortorelli D A. 2003. An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms. International Journal for Numerical Methods in Engineering, 57: 1413-1430. doi: 10.1002/nme.783
|
[3] |
de Sturler E, Paulino G H, Wang S. 2008. Topology optimization with adaptive mesh refinement// Proceedings of the 6th International Conference on Computation of Shell and Spatial Structures IASS-IACM (pp. 28-31).
|
[4] |
Groen J P, Langelaar M, Sigmund O, Ruess M. 2017. Higher‐order multi‐resolution topology optimization using the finite cell method. International Journal for Numerical Methods in Engineering, 110: 903-920. doi: 10.1002/nme.5432
|
[5] |
Guo X, Zhang W, Zhong W. 2014. Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. Journal of Applied Mechanics, 81: 081009. doi: 10.1115/1.4027609
|
[6] |
Gupta D K, Langelaar M, van Keulen F. 2018. QR-patterns: artefacts in multiresolution topology optimization. Structural and Multidisciplinary Optimization, 58: 1335-1350. doi: 10.1007/s00158-018-2048-6
|
[7] |
Guyan R J. 1965. Reduction of stiffness and mass matrices. AIAA Journal, 3: 380-380. doi: 10.2514/3.2874
|
[8] |
Liang Y, Cheng G. 2019. Topology optimization via sequential integer programming and canonical relaxation algorithm. Computer Methods in Applied Mechanics and Engineering, 348: 64-96. doi: 10.1016/j.cma.2018.10.050
|
[9] |
Liu C, Zhu Y, Sun Z, Li D, Du Z, Zhang W, Guo X. 2018. An efficient moving morphable component (MMC)-based approach for multi-resolution topology optimization. Structural and Multidisciplinary Optimization, 58: 2455-2479. doi: 10.1007/s00158-018-2114-0
|
[10] |
Nguyen T H, Le C H, Hajjar J F. 2017. Topology optimization using the p-version of the finite element method. Structural and Multidisciplinary Optimization, 56: 571-586. doi: 10.1007/s00158-017-1675-7
|
[11] |
Nguyen T H, Paulino G H, Song J, Le C H. 2010. A computational paradigm for multiresolution topology optimization (MTOP). Structural and Multidisciplinary Optimization, 41: 525-539. doi: 10.1007/s00158-009-0443-8
|
[12] |
Ortigosa R, Martínez-Frutos J. 2021. Multi-resolution methods for the topology optimization of nonlinear electro-active polymers at large strains. Computational Mechanics, 1-23.
|
[13] |
Park J, Zobaer T, Sutradhar A. 2021. A two-scale multi-resolution topologically optimized multi-material design of 3D printed craniofacial bone implants. Micromachines, 12: 101. doi: 10.3390/mi12020101
|
[14] |
Querin O M, Steven G P, Xie Y M. 1998. Evolutionary structural optimisation (ESO) using a bidirectional algorithm. Engineering Computations, 15: 1031-1048. doi: 10.1108/02644409810244129
|
[15] |
Sigmund O. 2001. A 99 line topology optimization code written in Matlab. Structural and Multidisciplinary Optimization, 21: 120-127. doi: 10.1007/s001580050176
|
[16] |
Svanberg K. 1987. The method of moving asymptotes—A new method for structural optimization. International Journal for Numerical Methods in Engineering, 24: 359-373. doi: 10.1002/nme.1620240207
|
[17] |
Wang H, Liu J, Wen G. 2020. An efficient multi-resolution topology optimization scheme for stiffness maximization and stress minimization. Engineering Optimization, 1-21.
|
[18] |
Wang M Y, Wang X, Guo D. 2003. A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering, 192: 227-246. doi: 10.1016/S0045-7825(02)00559-5
|
[19] |
Xie Y M, Steven G P. 1993. A simple evolutionary procedure for structural optimization. Computers & Structures, 49: 885-896.
|
[20] |
Yoo J, Jang I G, Lee I. 2021. Multi-resolution topology optimization using adaptive isosurface variable grouping (MTOP-aIVG) for enhanced computational efficiency. Structural and Multidisciplinary Optimization, 63: 1743-1766. doi: 10.1007/s00158-020-02774-2
|
[21] |
Zhang W, Yang W, Zhou J, Li D, Guo X. 2017. Structural topology optimization through explicit boundary evolution. Journal of Applied Mechanics, 84: 011011. doi: 10.1115/1.4034972
|