Volume 52 Issue 3
Sep.  2022
Turn off MathJax
Article Contents
Wang Z. Interfacial electrohydrodynamic waves under horizontal electric fields: Hamilton’s principle and multi-scale modeling. Advances in Mechanics, 2022, 52(3): 719-729 doi: 10.6052/1000-0992-22-035
Citation: Wang Z. Interfacial electrohydrodynamic waves under horizontal electric fields: Hamilton’s principle and multi-scale modeling. Advances in Mechanics, 2022, 52(3): 719-729 doi: 10.6052/1000-0992-22-035

Interfacial electrohydrodynamic waves under horizontal electric fields: Hamilton’s principle and multi-scale modeling

doi: 10.6052/1000-0992-22-035
More Information
  • Corresponding author: zwang@imech.ac.cn
  • Received Date: 2022-06-27
  • Accepted Date: 2022-08-02
  • Available Online: 2022-08-05
  • Publish Date: 2022-09-25
  • This paper is concerned with the multi-scale modeling of interfacial waves between two dielectric fluids under a horizontal electric field. First, we give a detailed proof of the Hamilton principle for this system. Next, based on the Hamiltonian structure and the analytical property of the Dirichlet-Neumann operator, the kinetic energy and electric potential energy in the Hamiltonian are expanded into the form of convergent series, and the order of truncation is determined. Finally, the reduced model is obtained by calculating the variational derivatives of the approximate total energy after truncation. The above process provides a systematic method for establishing nonlinear multi-scale models. Taking the case of “deep upper layer and shallow lower layer” as an example, we describe the whole modeling process in detail. Furthermore, the nonlinear coherent structure in the newly proposed model is computed using the modified Petviashvili iterative method. The asymptotic technique developed in this paper differs from previous work. Its advantage is that the derived reduced models naturally retain the energy conservation property; at the same time, this paper also extends the previous results to the three-dimensional situation.

     

  • loading
  • 张宝善, 卢东强, 戴世强, 程友良. 1998. 非线性水波Hamilton系统理论与应用研究进展. 力学进展, 28: 521-531 doi: 10.3321/j.issn:1000-0992.1998.04.010
    Zakharov V E. 2021. 深水表面有限振幅周期波的稳定性. 王展译, 卢东强校. 力学进展, 51(4): 920–930.

    Zakharov V E. 2021. Stability of periodic waves of finite amplitude on the surface of a deep fluid. Wang Z trans, Lu D Q proof. Advances in Mechanics, 51(4): 920–930.
    Barannyk L L, Papageorgiou D T, Petropoulos P G, Vanden-Broeck J-M. 2015. Nonlinear dynamics and wall touch-up in unstably stratified multilayer flows in horizontal channels under the action of electric fields. SIAM Journal of Applied Mathematics, 75: 92-113. doi: 10.1137/140968070
    Benjamin T B. 1992. A new kind of solitary wave. Journal of Fluid Mechanics, 245: 401-411. doi: 10.1017/S002211209200051X
    Benjamin T B, Bridges T J. 1997. Reappraisal of the Kelvin-Helmholtz problem. Part 1. Hamiltonian structure. Journal of Fluid Mechanics, 333: 301-325. doi: 10.1017/S0022112096004272
    Craig W, Sulem C. 1993. Numerical simulation of gravity waves. Journal of Computational Physics, 108: 73-83. doi: 10.1006/jcph.1993.1164
    Guan X, Wang Z. 2022. Interfacial electrohydrodynamic solitary waves under horizontal electric fields. Journal of Fluid Mechanics, 940: A15. doi: 10.1017/jfm.2022.244
    Kuznetsov E A, Spector M D, Zakharov V E. 1993. Surface singularities of ideal fluid. Physics Letters A, 182: 387-393. doi: 10.1016/0375-9601(93)90413-T
    Melcher J R. 1963. Field-coupled Surface Waves. MIT Press.
    Melcher J R, Schwarz W J. 1968. Interfacial relaxation overstability in a tangential electric field. Physics of Fluids, 11: 2604. doi: 10.1063/1.1691866
    Mohamed A A, El Shehawey E F. 1983. Nonlinear electrohydrodynamic Rayleigh-Taylor instability. part 1. A perpendicular field in the absence of surface charges. Journal of Fluid Mechanics, 129: 473-494. doi: 10.1017/S0022112083000877
    Papageorgiou D T. 2019. Film flows in the presence of electric fields. Annual Review of Fluid Mechanics, 51: 155-187. doi: 10.1146/annurev-fluid-122316-044531
    Taylor G I. 1964. Disintegration of water droplets in an electric field. Proceedings of the Royal Society A, 280: 383-397.
    Wang Z, Wang Z, Yuan C X. 2022. Oceanic internal solitary waves in three-layer fluids of great depth. Acta Mechanica Sinica, 38: 321473. doi: 10.1007/s10409-021-09012-x
    Zubarev N M, Kochurin E A. 2013. Three-dimensional nonlinear waves at the interface between dielectric fluid in an external horizontal electric field. Journal of Applied Mechanics and Technical Physics, 54: 212-217. doi: 10.1134/S0021894413020053
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (1205) PDF downloads(168) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    Baidu
    map