Volume 53 Issue 2
Jun.  2023
Turn off MathJax
Article Contents
Wu Z, Fan D W, Zhou Y. Advances in control of turbulence by artificial intelligence: Systems, algorithms, achievements and data analysis methods. Advances in Mechanics, 2023, 53(2): 273-307 doi: 10.6052/1000-0992-22-045
Citation: Wu Z, Fan D W, Zhou Y. Advances in control of turbulence by artificial intelligence: Systems, algorithms, achievements and data analysis methods. Advances in Mechanics, 2023, 53(2): 273-307 doi: 10.6052/1000-0992-22-045

Advances in control of turbulence by artificial intelligence: Systems, algorithms, achievements and data analysis methods

doi: 10.6052/1000-0992-22-045
More Information
  • Corresponding author: yuzhou@hit.edu.cn
  • Received Date: 2022-10-24
  • Accepted Date: 2023-01-28
  • Available Online: 2023-02-06
  • Publish Date: 2023-06-25
  • Turbulence control involves fluid dynamics and control theory, and is of great importance to many fields such as aeronautics and astronautics, vehicle, wind power generation, etc. Due to the complexity of turbulence, traditional control methods face many bottlenecks in the field of turbulence control. The development of artificial intelligence (AI) technology provides a tool to break through these bottlenecks. This paper briefly summarizes the applications of AI in turbulence control reported in the literature, focusing on AI control systems, algorithms, and the outstanding achievements achieved in different turbulence control applications, as well as the first attempt by the author's team to analyze the big data generated by the AI control system to discover important information and even the control scaling law. The challenges and future prospects are also analyzed.

     

  • loading
  • [1]
    刘加利, 李明高, 张继业, 张卫华, 李明. 2013. 高速列车流线型头部多目标气动优化设计. 中国科学:技术科学, 43: 689-698 (Liu J, Li MG, Zhang J, Zhang W, Li M. 2013. Multi-objective aerodynamic optimization design for streamlined head shape of high-speed trains. SCIENTIA SINICA Technologica, 43: 689-698). doi: 10.1360/092012-1475

    Liu J, Li MG, Zhang J, Zhang W, Li M. 2013. Multi-objective aerodynamic optimization design for streamlined head shape of high-speed trains. SCIENTIA SINICA Technologica, 43(06): 689-698 doi: 10.1360/092012-1475
    [2]
    刘晓冬, 张沛良, 何光洪, 王永恩, 杨旭东. 2021. 基于伴随方法的飞翼布局多目标气动优化设计. 西北工业大学学报, 39: 753-760 (Liu X, Zhang P, He G, Wang Y, Yang X. 2021. Multi-objective aerodynamic optimization of flying-wing configuration based on adjoint method. Journal of Northwestern Polytechnical University, 39: 753-760). doi: 10.1051/jnwpu/20213940753

    Liu X, Zhang P, He G, Wang Y, Yang X. 2021. Multi-objective aerodynamic optimization of flying-wing configuration based on adjoint method. Journal of Northwestern Polytechnical University, 39: 753-760 doi: 10.1051/jnwpu/20213940753
    [3]
    亓昌, 韩元吉, 杨姝, 吕振华. 2020. 考虑气动阻力和横风稳定的汽车车身多目标优化设计. 汽车安全与节能学报, 11: 53-60 (Qi C, Han Y, Yang S, Lu Z. 2020. Multi-objective optimization design of auto body considering aerodynamic resistance and crosswind stability. Journal of Automotive Safety and Energy, 11: 53-60).

    Qi C, Han Y, Yang S, Lu Z. 2020. Multi-objective optimization design of auto body considering aerodynamic resistance and crosswind stability. Journal of Automotive Safety and Energy, 11(01): 53-60
    [4]
    任峰, 高传强, 唐辉. 2021. 机器学习在流动控制领域的应用及发展趋势. 航空学报, 42: 152-166 (Ren F, Gao C, Tang H. 2021. Machine learning for flow control: Applications and development trends. Acta Aeronautica et Astronautica Sinica, 42: 152-166).

    Ren F, Gao C, Tang H. 2021. Machine learning for flow control: Applications and development trends. Acta Aeronautica et Astronautica Sinica, 42: 152-166
    [5]
    沈子凡 2021 基于人工智能与组合激励的变角度Ahmed模型气动减阻研究 [硕士论文], 哈尔滨: 哈尔滨工业大学

    Shen Z. 2021. Aerodynamic drag reduciton of Ahmed model using variable angle combined actuators and artificial inteligence [Master Thesis], Harbin: Harbin Institute of Technology
    [6]
    张伟伟, 朱林阳, 刘溢浪, 寇家庆. 2019. 机器学习在湍流模型构建中的应用进展. 空气动力学学报, 37: 444-454 (Zhang W, Zhu L, Liu Y, Kou J. 2019. Progresses in the application of machine learning in turbulence modeling. Acta Aerodynamica Sinica, 37: 444-454).

    Zhang W, Zhu L, Liu Y, Kou J. 2019. Progresses in the application of machine learning in turbulence modeling. Acta Aerodynamica Sinica, 37: 444-454
    [7]
    Asadi E, Silva M G D, Antunes C H, Dias L, Glicksman L. 2014. Multi-objective optimization for building retrofit: A model using genetic algorithm and artificial neural network and an application. Energy and Buildings, 81: 444-456. doi: 10.1016/j.enbuild.2014.06.009
    [8]
    Benard N, Pons-Prats J, Periaux J, Bugeda G, Braud P, Bonnet J P, Moreau E. 2016. Turbulent separated shear flow control by surface plasma actuator: experimental optimization by genetic algorithm approach. Experiments in Fluids, 57: 22. doi: 10.1007/s00348-015-2107-3
    [9]
    Bieker K, Peitz S, Brunton S L, Kutz J N, Dellnitz M. 2020. Deep model predictive flow control with limited sensor data and online learning. Theoretical and Computational Fluid Dynamics, 34: 577-591. doi: 10.1007/s00162-020-00520-4
    [10]
    Blanchard A B, Cornejo Maceda G Y, Fan D, Li Y, Zhou Y, Noack B R, Sapsis T P. 2022. Bayesian optimization for active flow control. Acta Mechanica Sinica, 37: 1786-1798.
    [11]
    Cai S, Mao Z, Wang Z, Yin M, Karniadakis G E. Physics-informed neural networks (PINNs) for fluid mechanics: a review. Acta Mechanica Sinica. 2022. 37(12). 1727-1738
    [12]
    Cai S, Zhou S, Xu C, Gao Q. 2019. Dense motion estimation of particle images via a convolutional neural network. Experiments in Fluids, 60: 73. doi: 10.1007/s00348-019-2717-2
    [13]
    Chen X, Agarwal R K. 2013. Optimization of Wind Turbine Blade Airfoils Using a Multi-Objective Genetic Algorithm. Journal of Aircraft, 50: 519-527. doi: 10.2514/1.C031910
    [14]
    Choi H, Moin P, Kim J. 1994. Active Turbulence Control for Drag Reduction in Wall-Bounded Flows. Journal of Fluid Mechanics, 262: 75-110. doi: 10.1017/S0022112094000431
    [15]
    Chovet C, Keirsbulck L, Noack B R, Lippert M, Foucaut J-M. 2017. Machine learning control for experimental shear flows targeting the reduction of a recirculation bubble. IFAC-PapersOnLine, 50: 12307-12311. doi: 10.1016/j.ifacol.2017.08.2157
    [16]
    Coello C C A, Lechuga M S. 2002. MOPSO: a proposal for multiple objective particle swarm optimization//Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No. 02TH8600). 2: 1051-1056
    [17]
    Corre C, Renaud T, Lerat A. 2003. Transonic flow control using a Navier-Stokes solver and a multi-objective genetic algorithm//In IUTAM Symposium Transsonicum IV: Proceedings of the IUTAM Symposium held in Göttingen, Germany, 2–6 September 2002 (pp. 297-302). Springer Netherlands.
    [18]
    Debien A, von Krbek K A F F, Mazellier N, Duriez T, Cordier L, Noack B R, Abel M W, Kourta A. 2016. Closed-loop separation control over a sharp edge ramp using genetic programming. Experiments in Fluids, 57: 40. doi: 10.1007/s00348-016-2126-8
    [19]
    Deng G, Fan D, Zhang B, Liu K, Zhou Y. 2022. Sensitivity analysis of large body of control parameters in machine learning control of a square-back Ahmed body. Proceedings of the Royal Society A. Submitted
    [20]
    Dorigo M, Maniezzo V, Colorni A. 1999. Positive feedback as a search strategy. Technical Report. 91-016.
    [21]
    Duraisamy K, Iaccarino G, Xiao H. 2019. Turbulence Modeling in the Age of Data. Annual Review of Fluid Mechanics, 51: 357-377. doi: 10.1146/annurev-fluid-010518-040547
    [22]
    Fan D, Yang L, Wang Z, Triantafyllou M S, Karniadakis G E. 2020a. Reinforcement learning for bluff body active flow control in experiments and simulations. Proceedings of the National Academy of Sciences of The United States of America, 117: 26091-26098. doi: 10.1073/pnas.2004939117
    [23]
    Fan D, Zhang B, Zhou Y, Noack B R. 2020b. Optimization and sensitivity analysis of active drag reduction of a square-back Ahmed body using machine learning control. Physics of Fluids, 32: 125117. doi: 10.1063/5.0033156
    [24]
    Fan D W, Zhou Y, Noack B R. 2020c. Fast triple-parameter extremum seeking exemplified for jet control. Experiments in Fluids, 61: 152. doi: 10.1007/s00348-020-02953-3
    [25]
    Gautier N, Aider J L, Duriez T, Noack B R, Segond M, Abel M. 2015. Closed-loop separation control using machine learning. Journal of Fluid Mechanics, 770: 442-457. doi: 10.1017/jfm.2015.95
    [26]
    Ghraieb H, Viquerat J, Larcher A, Meliga P, Hachem E. 2021. Single-step deep reinforcement learning for open-loop control of laminar and turbulent flows. Physical Review Fluids, 6: 053902. doi: 10.1103/PhysRevFluids.6.053902
    [27]
    Han B-Z, Huang W-X. 2020. Active control for drag reduction of turbulent channel flow based on convolutional neural networks. Physics of Fluids, 32: 095108.
    [28]
    Hilgers A, Boersma B J. 2001. Optimization of turbulent jet mixing. Fluid Dynamics Research, 29: 345-368. doi: 10.1016/S0169-5983(01)00035-1
    [29]
    Huang L, Huang G, LeBeau R, Hauser T. 2007. Optimization of aifoil flow control using a genetic algorithm with diversity control. Journal of Aircraft, 44: 1337-1349. doi: 10.2514/1.27020
    [30]
    Jahanmiri M, Abbaspour M. 2011. Experimental investigation of drag reduction on Ahmed car model using a combination of active flow control methods. International Journal of Engineering, 24: .403-410. doi: 10.5829/idosi.ije.2011.24.04a.09
    [31]
    Jovanović M R. 2021. From bypass transition to flow control and data-driven turbulence modeling: An input–output viewpoint. Annual Review of Fluid Mechanics, 53: 311-345. doi: 10.1146/annurev-fluid-010719-060244
    [32]
    Kaiser E, Noack B R, Spohn A, Cattafesta L N, Morzynski M. 2017. Cluster-based control of a separating flow over a smoothly contoured ramp. Theoretical and Computational Fluid Dynamics, 31: 579-593. doi: 10.1007/s00162-016-0419-4
    [33]
    Karniadakis G E, Kevrekidis I G, Lu L, Perdikaris P, Wang S, Yang L. 2021. Physics-informed machine learning. Nature Reviews Physics, 3: 422-440. doi: 10.1038/s42254-021-00314-5
    [34]
    Kim J, Bewley T R. 2007. A linear systems approach to flow control. Annual Review of Fluid Mechanics, 39: 383-417. doi: 10.1146/annurev.fluid.39.050905.110153
    [35]
    Koumoutsakos P, Freund J, Parekh D. 2001. Evolution strategies for automatic optimization of jet mixing. AIAA Journal, 39: 967-969. doi: 10.2514/2.1404
    [36]
    Lai P, Wang R, Zhang W, Xu H. 2021. Parameter optimization of open-loop control of a circular cylinder by simplified reinforcement learning. Physics of Fluids, 33: 107110. doi: 10.1063/5.0068454
    [37]
    Laumanns M, Thiele L, Deb K, Zitzler E. 2002. Combining convergence and diversity in evolutionary multiobjective optimization. Evolutionary Computation, 10: 263-282. doi: 10.1162/106365602760234108
    [38]
    Lee C, Kim J, Babcock D, Goodman R. 1997. Application of neural networks to turbulence control for drag reduction. Physics of Fluids, 9: 1740-1747. doi: 10.1063/1.869290
    [39]
    Li H, Tan J G, Gao Z W, Noack B R. 2020. Machine learning open-loop control of a mixing layer. Physics of Fluids, 32: 111701. doi: 10.1063/5.0030071
    [40]
    Li J, Du X, Martins J R R A. 2022. Machine learning in aerodynamic shape optimization. Progress in Aerospace Sciences, 134: 100849. doi: 10.1016/j.paerosci.2022.100849
    [41]
    Li R, Noack B R, Cordier L, Borée J, Harambat F. 2017. Drag reduction of a car model by linear genetic programming control. Experiments in Fluids, 58: 103. doi: 10.1007/s00348-017-2382-2
    [42]
    Li R, Xu P, Peng Y, Ji P. 2016. Multi-objective optimization of a high-speed train head based on the FFD method. Journal of Wind Engineering and Industrial Aerodynamics, 152: 41-49. doi: 10.1016/j.jweia.2016.03.003
    [43]
    Li Y, Cui W, Jia Q, Li Q, Yang Z, Morzyński M, Noack B R. 2021. Explorative gradient method for active drag reduction of the fluidic pinball and slanted Ahmed body. Journal of Fluid Mechanics, 932: A7.
    [44]
    Lorang L V, Podvin B, Le Quéré P. 2008. Application of compact neural network for drag reduction in a turbulent channel flow at low Reynolds numbers. Physics of Fluids, 20: 045104. doi: 10.1063/1.2904993
    [45]
    Maceda G Y C, Li Y, Lusseyran F, Morzyński M, Noack B R. 2021. Stabilization of the fluidic pinball with gradient-enriched machine learning control. Journal of Fluid Mechanics, 917.
    [46]
    Mei Y-F, Zheng C, Aubry N, Li M-G, Wu W-T, Liu X. 2021. Active control for enhancing vortex induced vibration of a circular cylinder based on deep reinforcement learning. Physics of Fluids, 33: 103604. doi: 10.1063/5.0063988
    [47]
    Mei Y-F, Zheng C, Hua Y, Zhao Q, Wu P, Wu W-T. 2022. Active control for the flow around various geometries through deep reinforcement learning. Fluid Dynamics Research, 54: 015510. doi: 10.1088/1873-7005/ac4f2d
    [48]
    Milano M, Koumoutsakos P. 2002. A clustering genetic algorithm for cylinder drag optimization. Journal of Computational Physics, 175: 79-107. doi: 10.1006/jcph.2001.6882
    [49]
    Minelli G, Dong T, Noack B R, Krajnović S. 2020. Upstream actuation for bluff-body wake control driven by a genetically inspired optimization. Journal of Fluid Mechanics, 893: A1. doi: 10.1017/jfm.2020.220
    [50]
    Nair A G, Yeh C A, Kaiser E, Noack B R, Brunton S L, Taira K. 2019. Cluster-based feedback control of turbulent post-stall separated flows. Journal of Fluid Mechanics, 875: 345-375. doi: 10.1017/jfm.2019.469
    [51]
    Niknam T, Kavousifard A, Tabatabaei S, Aghaei J. 2011. Optimal operation management of fuel cell/wind/photovoltaic power sources connected to distribution networks. Journal of Power Sources, 196: 8881-8896. doi: 10.1016/j.jpowsour.2011.05.081
    [52]
    Noack B R, Morzynski M, Tadmor G. Reduced-order Modelling for Flow Control. Springer Science & Business Media. 2011.
    [53]
    Parezanović V, Cordier L, Spohn A, Duriez T, Noack B R, Bonnet J P, Segond M, Abel M, Brunton S L. 2016. Frequency selection by feedback control in a turbulent shear flow. Journal of Fluid Mechanics, 797: 247-283. doi: 10.1017/jfm.2016.261
    [54]
    Parezanović V, Laurentie J C, Fourment C, Delville J, Bonnet J P, Spohn A, Duriez T, Cordier L, Noack B R, Abel M, et al. 2015. Mixing layer manipulation experiment: From open-loop forcing to closed-loop machine learning control. Flow, Turbulence and Combustion, 94: 155-173. doi: 10.1007/s10494-014-9581-1
    [55]
    Paris R, Beneddine S, Dandois J. 2021. Robust flow control and optimal sensor placement using deep reinforcement learning. Journal of Fluid Mechanics, 913: A25. doi: 10.1017/jfm.2020.1170
    [56]
    Park J, Choi H. 2020. Machine-learning-based feedback control for drag reduction in a turbulent channel flow. Journal of Fluid Mechanics, 904: A24. doi: 10.1017/jfm.2020.690
    [57]
    Perumal A K, Wu Z, Fan D W, Zhou Y. 2022. A hybrid artificial intelligence control of a turbulent jet: Reynolds number effect and scaling. Journal of Fluid Mechanics, 942: A47. doi: 10.1017/jfm.2022.341
    [58]
    Qiao Z X, Minelli G, Noack B R, Krajnović S, Chernoray V. 2021. Multi-frequency aerodynamic control of a yawed bluff body optimized with a genetic algorithm. Journal of Wind Engineering and Industrial Aerodynamics, 212: 104600. doi: 10.1016/j.jweia.2021.104600
    [59]
    Rabault J, Kuchta M, Jensen A, Réglade U, Cerardi N. 2019. Artificial neural networks trained through deep reinforcement learning discover control strategies for active flow control. Journal of Fluid Mechanics, 865: 281-302. doi: 10.1017/jfm.2019.62
    [60]
    Rabault J, Kuhnle A. 2019. Accelerating deep reinforcement learning strategies of flow control through a multi-environment approach. Physics of Fluids, 31: 094105. doi: 10.1063/1.5116415
    [61]
    Rabault J, Ren F, Zhang W, Tang H, Xu H. 2020. Deep reinforcement learning in fluid mechanics: A promising method for both active flow control and shape optimization. Journal of Hydrodynamics, 32: 234-246. doi: 10.1007/s42241-020-0028-y
    [62]
    Raibaudo C, Martinuzzi R J. 2021. Unsteady actuation and feedback control of the experimental fluidic pinball using genetic programming. Experiments in Fluids, 62: 219. doi: 10.1007/s00348-021-03309-1
    [63]
    Raibaudo C, Zhong P, Noack B R, Martinuzzi R J. 2020. Machine learning strategies applied to the control of a fluidic pinball. Physics of Fluids, 32: 015108. doi: 10.1063/1.5127202
    [64]
    Ren F, Hu H-B, Tang H. 2020. Active flow control using machine learning: A brief review. Journal of Hydrodynamics, 32: 247-253. doi: 10.1007/s42241-020-0026-0
    [65]
    Ren F, Rabault J, Tang H. 2021a. Applying deep reinforcement learning to active flow control in weakly turbulent conditions. Physics of Fluids, 33: 037121. doi: 10.1063/5.0037371
    [66]
    Ren F, Wang C, Tang H. 2019. Active control of vortex-induced vibration of a circular cylinder using machine learning. Physics of Fluids, 31: 093601. doi: 10.1063/1.5115258
    [67]
    Ren F, Wang C, Tang H. 2021b. Bluff body uses deep-reinforcement-learning trained active flow control to achieve hydrodynamic stealth. Physics of Fluids, 33: 093602. doi: 10.1063/5.0060690
    [68]
    Ren K, Chen Y, Gao C, Zhang W. 2020. Adaptive control of transonic buffet flows over an airfoil. Physics of Fluids, 32: 096106. doi: 10.1063/5.0020496
    [69]
    Rosenberg R S. 1970. Stimulation of genetic populations with biochemical properties: I. The model. Mathematical Biosciences, 7: 223-257. doi: 10.1016/0025-5564(70)90126-4
    [70]
    Samad A, Kim K Y. 2008. Shape optimization of an axial compressor blade by multi-objective genetic algorithm. Journal of Power and Energy, 222: 599-611. doi: 10.1243/09576509JPE596
    [71]
    Sengupta T K, Deb K, Talla S B. 2007. Control of flow using genetic algorithm for a circular cylinder executing rotary oscillation. Computers & Fluids, 36: 578-600.
    [72]
    Shimomura S, Sekimoto S, Oyama A, Fujii K, Nishida H. 2020. Closed-loop flow separation control using the deep Q network over airfoil. AIAA Journal, 58: 4260-4270. doi: 10.2514/1.J059447
    [73]
    Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A, Hubert T, Baker L, Lai M, Bolton A, et al. 2017. Mastering the game of Go without human knowledge. Nature, 550: 354-359. doi: 10.1038/nature24270
    [74]
    Tang H, Rabault J, Kuhnle A, Wang Y, Wang T. 2020. Robust active flow control over a range of Reynolds numbers using an artificial neural network trained through deep reinforcement learning. Physics of Fluids, 32: 053605. doi: 10.1063/5.0006492
    [75]
    Tokarev M, Palkin E, Mullyadzhanov R. 2020. Deep reinforcement learning control of cylinder flow using rotary oscillations at low Reynolds number. Energies, 13: 5920. doi: 10.3390/en13225920
    [76]
    Wang J-X, Wu J-L, Xiao H. 2017. Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data. Physical Review Fluids, 2: 034603. doi: 10.1103/PhysRevFluids.2.034603
    [77]
    Wang Y-Z, Mei Y-F, Aubry N, Chen Z, Wu P, Wu W-T. 2022. Deep reinforcement learning based synthetic jet control on disturbed flow over airfoil. Physics of Fluids, 34: 033606. doi: 10.1063/5.0080922
    [78]
    Wen X, Li Z, Liu J, Zhou W, Liu Y. 2019. Machine learning approach to construct global phase-averaged flow field based on local flow features. Flow Measurement and Instrumentation, 67: 41-54. doi: 10.1016/j.flowmeasinst.2019.04.006
    [79]
    Wu J-L, Xiao H, Paterson E. 2018. Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework. Physical Review Fluids, 3: 074602. doi: 10.1103/PhysRevFluids.3.074602
    [80]
    Wu Z, Fan D, Zhou Y, Li R, Noack B R. 2018. Jet mixing optimization using machine learning control. Experiments in Fluids, 59: 131. doi: 10.1007/s00348-018-2582-4
    [81]
    Wu Z, Wong C W, Zhou Y. 2018. Dual-input/single-output extremum-seeking system for jet control. AIAA Journal, 56: 1463-1471. doi: 10.2514/1.J056675
    [82]
    Yu J N, Fan D W, Noack B R, Zhou Y. 2021. Genetic-algorithm-based artificial intelligence control of a turbulent boundary layer. Acta Mechanica Sinica, 37: 1739-1747. doi: 10.1007/s10409-021-01145-4
    [83]
    Yu J N, Fan D W, Zhou Y. Artificial intelligence control of turbulent boundary layer//23rd Australasian Fluid Mechanics Conference – 23AFMC, 4-8th, December, 2022. Sydney, Australia
    [84]
    Zeng K, Graham M D. 2021. Symmetry reduction for deep reinforcement learning active control of chaotic spatiotemporal dynamics. Phys Rev E, 104: 014210. doi: 10.1103/PhysRevE.104.014210
    [85]
    Zhang B F, Fan D W, Zhou Y. 2022. Artificial intelligence control of a low-drag Ahmed body using distributed jet arrays. Journal of Fluid Mechanics. (in press)
    [86]
    Zhang W W, Noack B R. 2021. Artificial intelligence in fluid mechanics. Acta Mechanica Sinica, 37: 1715-1717. doi: 10.1007/s10409-021-01154-3
    [87]
    Zheng C, Ji T, Xie F, Zhang X, Zheng H, Zheng Y. 2021. From active learning to deep reinforcement learning: Intelligent active flow control in suppressing vortex-induced vibration. Physics of Fluids, 33: 063607. doi: 10.1063/5.0052524
    [88]
    Zhou Y, Fan D, Zhang B, Li R, Noack B R. 2020. Artificial intelligence control of a turbulent jet. Journal of Fluid Mechanics, 897: A27. doi: 10.1017/jfm.2020.392
    [89]
    Zhu L, Zhang W, Kou J, Liu Y. 2019. Machine learning methods for turbulence modeling in subsonic flows around airfoils. Physics of Fluids, 31: 015105. doi: 10.1063/1.5061693
    [90]
    Zigunov F, Sellappan P, Alvi F. 2021. Beyond actuator line arrays in active flow control studies: Lessons from a genetic algorithm approach. Physical Review Fluids, 6: 083903. doi: 10.1103/PhysRevFluids.6.083903
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(22)  / Tables(4)

    Article Metrics

    Article views (4787) PDF downloads(1547) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    Baidu
    map