Citation: | Sun X T, Qian J W, Qi Z F, Xu J. Review on research progress of nonlinear vibration isolation and time-delayed suppression method. Advances in Mechanics, 2023, 53(2): 308-356 doi: 10.6052/1000-0992-22-048 |
[1] |
蔡国平, 陈龙祥. 2013. 时滞反馈控制的若干问题. 力学进展, 43: 21-28 (Cai G P, Chen L X. 2013. Some problems of delayed feedback control. Advances in Mechanics, 43: 21-28). doi: 10.6052/1000-0992-12-014
Cai G P, Chen L X. 2013. Some problems of delayed feedback control. Advances in Mechanics, 43: 21-28). doi: 10.6052/1000-0992-12-014
|
[2] |
柴凯, 朱石坚, 杨庆超, 等. 2018. 三磁体型隔振器的性能分析和实验研究. 振动与冲击, 37: 6 (Chai K, Zhu S J, Yang Q C, et al. 2018. Analysis and test for the performances of a tri-magnet vibration isolator. Journal of Vibration and Shock, 37: 6). doi: 10.13465/j.cnki.jvs.2018.06.006
Chai K, Zhu S J, Yang Q C, et al. 2018. Analysis and test for the performances of a tri-magnet vibration isolator. Journal of Vibration and Shock, 37: 6). doi: 10.13465/j.cnki.jvs.2018.06.006
|
[3] |
陈关荣, 汪小帆. 2006. 动力系统的混沌化: 理论方法与应用. 上海: 上海交通大学出版社(Chen G R, Wang X F. 2006. Chaos of dynamical systems: Theoretical methods and applications. Shanghai: Shanghai Jiao Tong University Press).
|
[4] |
陈然. 2019. 一种正交菱形准零刚度隔振器的设计与分析. 山东农业大学学报(自然科学版), 50: 837-841 (Chen R. 2019. The design and analysis of a vibration isolator with orthogonal diamond quasi zero stiffness. Journal of Shandong Agricultural University (Natural Science Edition)
Chen R. 2019. The design and analysis of a vibration isolator with orthogonal diamond quasi zero stiffness. Journal of Shandong Agricultural University (Natural Science Edition), 50: 837-841).
|
[5] |
城市区域环境振动标准. 1989. GB10070-1988. 中国标准出版社(Environmental vibration standards for urban areas. 1989. GB10070-1988. Standards Press of China).
|
[6] |
韩俊淑, 孙景工, 孟令帅. 2019. 一种曲面−弹簧−滚子机构的非线性隔振器特性分析. 振动与冲击, 38: 9 (Han J S, Sun J G, Meng L S. 2019. Design and characteristics analysis of a nonlinear vibration isolator using a curved surface-spring-roller mechanism as negative stiffness element. Journal of Vibration and Shock, 38: 9).
Han J S, Sun J G, Meng L S. 2019. Design and characteristics analysis of a nonlinear vibration isolator using a curved surface-spring-roller mechanism as negative stiffness element. Journal of Vibration and Shock, 38: 9).
|
[7] |
胡海岩, 王在华. 2010. 论迟滞与时滞. 力学学报, 42: 740-746 (Hu H Y, Wang Z H. 2010. On hysteresis and retardation. Chinese Journal of Theoretical and Applied Mechanics, 42: 740-746). doi: 10.6052/0459-1879-2010-4-lxxb2009-414
Hu H Y, Wang Z H. 2010. On hysteresis and retardation. Chinese Journal of Theoretical and Applied Mechanics, 42: 740-746). doi: 10.6052/0459-1879-2010-4-lxxb2009-414
|
[8] |
刘永强. 2011. 基于磁流变阻尼器的高速动车组半主动控制与时滞分析. 北京交通大学(Liu Y Q. 2011. Semi-active control of high-speed EMUs and time delay analysis based on magnetorheological damper. Beijing Jiaotong University).
|
[9] |
陆泽琦, 陈立群. 2017. 非线性被动隔振的若干进展. 力学学报, 49: 550-564 (Lu Z Q, Chen L Q. 2017. Some recent progresses in nonlinear passive isolations of vibrations. Chinese Journal of Theoretical and Applied Mechanics, 49: 550-564). doi: 10.6052/0459-1879-17-064
(Lu Z Q, Chen L Q. 2017. Some recent progresses in nonlinear passive isolations of vibrations. Chinese Journal of Theoretical and Applied Mechanics, 49: 550-564). doi: 10.6052/0459-1879-17-064
|
[10] |
孟光, 董瑶海, 周徐斌, 等. 2019. 风云四号卫星微振动抑制和试验技术研究. 中国科学: 物理学力学天文学, 49: 024508 (Meng G, Dong Y H, Zhou X B, et al. 2019. Research on micro-vibration control and testing of FY-4 meteorological satellite. Scientia Sinica(Physica, Mechanica and Astronomica)
Meng G, Dong Y H, Zhou X B, et al. 2019. Research on micro-vibration control and testing of FY-4 meteorological satellite. Scientia Sinica(Physica, Mechanica and Astronomica), 49: 024508). doi: 10.1360/SSPMA2018-00108
|
[11] |
彭献, 黎大志, 陈树年. 1997. 准零刚度隔振器及其弹性特性设计. 振动, 17: 3 (Peng X, Li D Z, Chen S N. 1997. Quasi-zero stiffness vibration isolators and design for their elastic characteristics. Journal of Vibration, Measurement & Diagnosis, 17: 3).
Peng X, Li D Z, Chen S N. 1997. Quasi-zero stiffness vibration isolators and design for their elastic characteristics. Journal of Vibration, Measurement & Diagnosis, 17: 3).
|
[12] |
任晨辉, 杨德庆. 2018. 船用新型多层负刚度冲击隔振器性能分析. 振动与冲击, 37: 81-87 (Ren C H, Yang D Q. 2018. Characteristics of a novel multilayer negative stiffness shock isolation system for a marine structure. Journal of Vibration and Shock, 37: 81-87).
Ren C H, Yang D Q. 2018. Characteristics of a novel multilayer negative stiffness shock isolation system for a marine structure. Journal of Vibration and Shock, 37: 81-87).
|
[13] |
邵栋, 陆泽琦, 陈立群. 2017. 非线性刚度非线性阻尼隔振系统功率流研究. 振动工程学报, 30: 764-773(Shao D, Lu Z Q, Chen L Q. 2017. Power flow characteristics of a two-stage nonlinear vibration isolation system. Journal of Vibration Engineering, 30: 764-772).
|
[14] |
束立红, 胡宗成, 吕志强. 2006. 国外舰船隔振器研究进展. 舰船科学技术, 28: 109-112 (Shu L H, Hu Z C, Lv Z Q. 2006. Overseas research progress on vibration isolator. Ship Science and Technology, 28: 109-112).
Shu L H, Hu Z C, Lv Z Q. 2006. Overseas research progress on vibration isolator. Ship Science and Technology, 28: 109-112).
|
[15] |
孙秀婷, 富展展. 2018. 一类新型多方向准零刚度隔振平台. 力学季刊, 39: 9 (Sun X T, Fu Z Z. 2018. A novel multi-direction quasi-zero-stiffness vibration isolation platform. Chinese Quarterly of Mechanics, 39: 9). doi: 10.15959/j.cnki.0254-0053.2018.02.003
Sun X T, Fu Z Z. 2018. A novel multi-direction quasi-zero-stiffness vibration isolation platform. Chinese Quarterly of Mechanics, 39: 9). doi: 10.15959/j.cnki.0254-0053.2018.02.003
|
[16] |
王毅, 徐道临, 周加喜. 2015. 滚球型准零刚度隔振器的特性分析. 振动与冲击, 34: 6 (Wang Y, Xu D L, Zhou J X. 2015. Characteristic analysis of a ball-type vibration isolator with quasi-zero-stiffness. Journal of Vibration and Shock, 34: 6). doi: 10.13465/j.cnki.jvs.2015.04.024
Wang Y, Xu D L, Zhou J X. 2015. Characteristic analysis of a ball-type vibration isolator with quasi-zero-stiffness, Journal of Vibration and Shock, 34: 6). doi: 10.13465/j.cnki.jvs.2015.04.024
|
[17] |
王哲, 杜嘉峰, 张传伟, 等. 2016. 车辆电动静液压作动器的半主动悬架时滞补偿控制. 中国机械工程, 27: 2111-2117 (Wang Z, Du J F, Zhang C W, et al. 2016. Time delay compensation control of semi-active suspension with vehicle electro-hydrostatic actuator. China Mechanical Engineering, 27: 2111-2117). doi: 10.3969/j.issn.1004-132X.2016.15.022
Wang Z, Du J F, Zhang C W, et al. 2016. Time delay compensation control of semi-active suspension with vehicle electro-hydrostatic actuator. China Mechanical Engineering, 27: 2111-2117). doi: 10.3969/j.issn.1004-132X.2016.15.022
|
[18] |
徐道临, 张月英, 周加喜, 等. 2014. 一种准零刚度隔振器的特性分析与实验研究. 振动与冲击, 33: 208-213 (Xu D L, Zhang Y Y, Zhou J X, et al. 2014. Characteristic analysis and experimental investigation for a vibration isolator with quasi-zero stiffness. Journal of Vibration and Shock, 33: 208-213). doi: 10.13465/j.cnki.jvs.2014.11.036
Xu D L, Zhang Y Y, Zhou J X, et al. 2014. Characteristic analysis and experimental investigation for a vibration isolator with quasi-zero stiffness. Journal of Vibration and Shock, 33: 208-213). doi: 10.13465/j.cnki.jvs.2014.11.036
|
[19] |
徐鉴, 裴利军. 2006. 时滞系统动力学近期研究进展与展望. 力学进展, 36: 17-30 (Xu J. Pei L J. 2006. Advances in dynamics for delayed systems. Advances in Mechanics, 36: 17-30). doi: 10.6052/1000-0992-2006-1-J2005-095
Xu J. Pei L J. 2006. Advances in dynamics for delayed systems. Advances in Mechanics, 36: 17-30). doi: 10.6052/1000-0992-2006-1-J2005-095
|
[20] |
徐鉴. 2015. 振动控制研究进展综述. 力学季刊, 36: 547-565 (Xu J. 2015. Advances of research on vibration control. Chinese Quarterly of Mechanics, 36: 547-565). doi: 10.15959/j.cnki.0254-0053.2015.04.001
Xu J. 2015. Advances of research on vibration control. Chinese Quarterly of Mechanics, 36: 547-565). doi: 10.15959/j.cnki.0254-0053.2015.04.001
|
[21] |
徐龙河, 周云, 等. 2001. MRFD半主动控制系统的时滞与补偿. 地震工程与工程振动, 3: 127-131 (Xu L H, Zhou Y, et al. 2001. Time-delay and compensation for MRFD semi-active control system. Earthquake Engineering and Engineering Dynamics, 3: 127-131). doi: 10.3969/j.issn.1000-1301.2001.03.023
Xu L H, Zhou Y, et al. 2001. Time-delay and compensation for MRFD semi-active control system. Earthquake Engineering and Engineering Dynamics, 3: 127-131). doi: 10.3969/j.issn.1000-1301.2001.03.023
|
[22] |
徐平. 2014. 蜂窝状空腔屏障隔振效果分析. 振动与冲击, 33: 5 (Xu P. 2014. Analysis of vibration isolation effects of honeycomb-cell barriers. Journal of Vibration and Shock, 33: 5). doi: 10.3969/j.issn.1000-3835.2014.03.003
Xu P. 2014. Analysis of vibration isolation effects of honeycomb-cell barriers. Journal of Vibration and Shock, 33: 5). doi: 10.3969/j.issn.1000-3835.2014.03.003
|
[23] |
姚国, 于永恒, 张义民, 等. 2020. X型准零刚度隔振器的隔振特性分析. 东北大学学报: 自然科学版, 41: 5 (Yao G, Yu Y H, Zhang Y M, et al. 2020. Vibration isolation characteristics analysis of x-shaped quasi-zero stiffness vibration isolator. Journal of Northeastern University(Natural Science)
Yao G, Yu Y H, Zhang Y M, et al. 2020. Vibration isolation characteristics analysis of x-shaped quasi-zero stiffness vibration isolator. Journal of Northeastern University(Natural Science), 41: 5).
|
[24] |
张也, 薛松领, 常军. 2018. 基于负刚度的减振设备参数优化及其应用. 地震工程与工程振动, 38: 201-209 (Zhang Y, Xue S L, Chang J. 2018. Parameter optimization and application of vibration damping device based on negative stiffness. Earthquake Engineering and Engineering Dynamics, 38: 201-209). doi: 10.13197/j.eeev.2018.02.201.zhangy.023
Zhang Y, Xue S L, Chang J. 2018. Parameter optimization and application of vibration damping device based on negative stiffness. Earthquake Engineering and Engineering Dynamics, 38: 201-209). doi: 10.13197/j.eeev.2018.02.201.zhangy.023
|
[25] |
中国工程院全球工程前沿项目组. 2021. 全球工程前沿2021. 高等教育出版社(Chinese Academy of Engineering Global Engineering Frontier Project Team. 2021. Global Engineering Frontiers 2021. Higher Education Press).
|
[26] |
周加喜, 王心龙, 徐道临, 等. 2015. 含凸轮−滚轮机构的准零刚度系统隔振特性实验研究. 振动工程学报, 28: 7 (Zhou J X, Wang X L, Xu D L, et al. 2015. Experimental study on vibration isolation characteristics of the quasi-zero stiffness isolator with cam-roller mechanism. Journal of Vibration Engineering, 28: 7).
Zhou J X, Wang X L, Xu D L, et al. 2015. Experimental study on vibration isolation characteristics of the quasi-zero stiffness isolator with cam-roller mechanism. Journal of Vibration Engineering, 28: 7).
|
[27] |
Abbasi A, Khadem S E, Bab S. 2021. Applications of adaptive stiffness suspensions to vibration control of a high-speed stiff rotor with tilting pad bearings. Archive of Applied Mechanics, 91: 1819-1835. doi: 10.1007/s00419-020-01856-3
|
[28] |
Abbasi A, Khadem S E, Bab S. 2018. Vibration control of a continuous rotating shaft employing high-static low-dynamic stiffness isolators. Journal of vibration and control, 24: 760-783. doi: 10.1177/1077546316651559
|
[29] |
Alhazza K A, Majeed M A. 2012. Free vibrations control of a cantilever beam using combined time delay feedback. Journal of Vibration and Control, 18: 609-621. doi: 10.1177/1077546311405700
|
[30] |
Bouna H S, Nbendjo B R N, Woafo P. 2020. Isolation performance of a quasi-zero stiffness isolator in vibration isolation of a multi-span continuous beam bridge under pier base vibrating excitation. Nonlinear Dynamics, 100: 1125-1141. doi: 10.1007/s11071-020-05580-z
|
[31] |
Cai G P, Chen L X. 2010. Delayed feedback control experiments on some flexible structures. Acta Mechanica Sinica, 6: 951-965.
|
[32] |
Carrella A, Brennan M J, Waters T P, et al. 2008. On the design of a high-static-low-dynamic stiffness isolator using linear mechanical springs and magnets. Journal of Sound and Vibration, 315: 712-720. doi: 10.1016/j.jsv.2008.01.046
|
[33] |
Carrella A, Brennan M J, Waters T P. 2007. Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic. Journal of Sound and Vibration, 301: 678-689. doi: 10.1016/j.jsv.2006.10.011
|
[34] |
Chang P H, Han D K, Shin Y H, et al. 2010. Effective suppression of pneumatic vibration isolators by using input-output linearization and time delay control. Journal of Sound and Vibration, 329: 1636-1652. doi: 10.1016/j.jsv.2009.12.003
|
[35] |
Chatterjee S. 2008. Vibration control by recursive time-delayed acceleration feedback. Journal of Sound and Vibration, 317: 67-90. doi: 10.1016/j.jsv.2008.03.020
|
[36] |
Chen T F, Zheng Y X, Song L H, et al. 2022. Design of a new quasi-zero-stiffness isolator system with nonlinear positive stiffness configuration and its novel features. Nonlinear Dynamics, Online.
|
[37] |
Chen Y, Wen H, Jin D. 2021. Design of a Quasi-Zero Stiffness System Based on Electromagnetic Vibration Isolation. In: Oberst, S. , Halkon, B. , Ji, J. , Brown, T. (eds) Vibration Engineering for a Sustainable Future. Springer.
|
[38] |
Cheng C, Li S M, Wang Y, et al. 2016. On the analysis of a high-static-low-dynamic stiffness vibration isolator with time-delayed cubic displacement feedback. Journal of Sound and Vibration, 378: 76-91. doi: 10.1016/j.jsv.2016.05.029
|
[39] |
Cheng C, Li S M, Wang Y, et al. 2017. Performance analysis of high-static-low-dynamic stiffness vibration isolator with time-delayed displacement feedback. Journal of Central South University, 24: 2294-2305. doi: 10.1007/s11771-017-3641-3
|
[40] |
Chong X Q, Wu Z J, Li F M. 2022. Vibration isolation properties of the nonlinear X-combined structure with a high-static and low-dynamic stiffness: Theory and experiment. Mechanical Systems & Signal Processing, 179: 109352.
|
[41] |
Coppola G, Liu K F. 2012. Time‐delayed position feedback control for a unique active vibration isolator. Structural Control and Health Monitoring, 19: 646-666. doi: 10.1002/stc.460
|
[42] |
Dai H H, Cao X Y, Jing X J, et al. 2020. Bio-inspired anti-impact manipulator for capturing non-cooperative spacecraft: theory and experiment. Mechanical Systems and Signal Processing, 142: 106785. doi: 10.1016/j.ymssp.2020.106785
|
[43] |
Dai H H, Jing X J, Wang Y, et al. 2018. Post-capture vibration suppression of spacecraft via a bio-inspired isolation system. Mechanical Systems and Signal Processing, 105: 214-240. doi: 10.1016/j.ymssp.2017.12.015
|
[44] |
Dalela S, Balaji P S, Jena D P. 2022. Design of a metastructure for vibration isolation with quasi-zero-stiffness characteristics using bistable curved beam. Nonlinear Dynamics, 108: 1931-1971. doi: 10.1007/s11071-022-07301-0
|
[45] |
Dan P, Vyhlídal T, Michiels W. 2018. Optimized design of robust resonator with distributed time-delay. Journal of Sound and Vibration, 443: 576-590.
|
[46] |
Dan P, Vyhlídal T, Olgac N. 2015. Delayed resonator with distributed delay in acceleration feedback-design and experimental verification. IEEE/ASME Transactions on Mechatronics, 21: 2120-2131.
|
[47] |
Demir M U, Yilmaz C. 2022. Analysis and design of an adjustable stiffness three-axis horizontal vibration isolator using elastic columns and a string in tension. Journal of Sound and Vibration, 523: 22.
|
[48] |
Deng T C, Wen G L, Ding H, et al. 2020. A bio-inspired isolator based on characteristics of quasi-zero stiffness and bird multi-layer neck. Mechanical Systems and Signal Processing, 145: 106967. doi: 10.1016/j.ymssp.2020.106967
|
[49] |
Dong X M, Yu M, Li Z S, et al. 2009. Neural network compensation of semi-active control for magneto-rheological suspension with time delay uncertainty. Smart Materials and Structures, 18: 015014. doi: 10.1088/0964-1726/18/1/015014
|
[50] |
Donmez A, Cigeroglu E, Ozgen G O. 2020. Correction to: an improved quasi-zero stiffness vibration isolation system utilizing dry friction damping. Nonlinear Dynamics, 101: 107-121. doi: 10.1007/s11071-020-05685-5
|
[51] |
Eskandary-Malayery F, Ilanko S, Mace B, et al. 2022. Experimental and numerical investigation of a vertical vibration isolator for seismic applications. Nonlinear Dynamics, 109: 303-322. doi: 10.1007/s11071-022-07613-1
|
[52] |
Fulcher B A, Shahan D W, Haberman M R, et al. 2014. Analytical and experimental investigation of buckled beams as negative stiffness elements for passive vibration and shock isolation systems. Journal of Vibration and Acoustics, 136: 031009. doi: 10.1115/1.4026888
|
[53] |
Gao X, Chen Q. 2014. Nonlinear analysis, design and vibration isolation for a bilinear system with time-delayed cubic velocity feedback. Journal of Sound and Vibration, 333: 1562-1576. doi: 10.1016/j.jsv.2013.11.009
|
[54] |
Gatti G, Brennan M J, Tang B. 2019. Some diverse examples of exploiting the beneficial effects of geometric stiffness nonlinearity. Mechanical Systems and Signal Processing, 125: 4-20. doi: 10.1016/j.ymssp.2018.08.024
|
[55] |
Gatti G, Kovacic I, Brennan M J. 2010. On the response of a harmonically excited two degree-of-freedom system consisting of a linear and a nonlinear quasi-zero stiffness oscillator. Journal of Sound and Vibration, 329: 1823-1835. doi: 10.1016/j.jsv.2009.11.019
|
[56] |
Gatti G, Shaw A D, Gonçalves P J P, et al. 2022. On the detailed design of a quasi-zero stiffness device to assist in the realisation of a translational Lanchester damper. Mechanical Systems and Signal Processing, 164: 108258. doi: 10.1016/j.ymssp.2021.108258
|
[57] |
Gatti G. 2020. Statics and dynamics of a nonlinear oscillator with quasi-zero stiffness behaviour for large deflections. Communications in Nonlinear Science and Numerical Simulation, 83: 105143. doi: 10.1016/j.cnsns.2019.105143
|
[58] |
Gatti G. 2021. Optimizing elastic potential energy via geometric nonlinear stiffness. Communications in Nonlinear Science and Numerical Simulation, 103: 1-18.
|
[59] |
Gatti G. 2022b. An adjustable device to adaptively realise diverse nonlinear force-displacement characteristics. Mechanical Systems and Signal Processing, 180: 1-21.
|
[60] |
Ghasabi S A, Arbabtafti M, Shahgholi M. 2022. Time-delayed control of a nonlinear asymmetrical rotor near the major critical speed with flexible supports. Mechanics Based Design of Structures and Machines, 50: 242-267. doi: 10.1080/15397734.2020.1715230
|
[61] |
Gu K, Niculescu S L. 2003. Survey on recent results in the stability and control of time-delay systems. Journal of Dynamic Systems, 125: 158-165.
|
[62] |
Hamdi M, Belhaq M. 2009. Self-excited vibration control for axially fast excited beam by a time delay state feedback. Chaos Solitons and Fractals, 41: 521-532. doi: 10.1016/j.chaos.2008.02.023
|
[63] |
Han H S, Sorokin V, Tang L H, et al. 2021. A nonlinear vibration isolator with quasi-zero-stiffness inspired by Miura-origami tube. Nonlinear Dynamics, 105: 1313-1325. doi: 10.1007/s11071-021-06650-6
|
[64] |
Han Y W, Cao Q J, Chen Y S, et al. 2012. A novel smooth and discontinuous oscillator with strong irrational nonlinearities. Science China Physics. Mechanics and Astronomy, 55: 1832-1843. doi: 10.1007/s11433-012-4880-9
|
[65] |
Hao Z F, Cao Q J. 2015. The isolation characteristics of an archetypal dynamical model with stable-quasi-zero-stiffness. Journal of Sound and Vibration, 340: 61-79. doi: 10.1016/j.jsv.2014.11.038
|
[66] |
Heiden U A D, Walther H O. 1983. Existence of chaos in control system with delayed feedback. Journal of Differential Equations, 47: 273-295. doi: 10.1016/0022-0396(83)90037-2
|
[67] |
Huang D M, Xu W, Xie W X, et al. 2015. Dynamical properties of a forced vibration isolation system with real-power nonlinearities in restoring and damping forces. Nonlinear Dynamics, 81: 641-658. doi: 10.1007/s11071-015-2016-2
|
[68] |
Huang D M, Xu W. 2017. Performance characteristics of a real-power viscoelastic isolation system under delayed PPF control and base excitation. Nonlinear Dynamics, 88: 2035-2050. doi: 10.1007/s11071-017-3360-1
|
[69] |
Huang D M, Zhou S X, Li R H, et al. 2022. On the analysis of the tristable vibration isolation system with delayed feedback control under parametric excitation. Mechanical Systems and Signal Processing, 164: 108207. doi: 10.1016/j.ymssp.2021.108207
|
[70] |
Huang X C, Liu X T, Hua H X. 2014. Effects of stiffness and load imperfection on the isolation performance of a high-static-low-dynamic-stiffness non-linear isolator under base displacement excitation. International Journal of Non-Linear Mechanics, 65: 32-43. doi: 10.1016/j.ijnonlinmec.2014.04.011
|
[71] |
Ibrahim R A. 2008. Recent advances in nonlinear passive vibration isolators. Journal of Sound and Vibration, 314: 371-452. doi: 10.1016/j.jsv.2008.01.014
|
[72] |
Ishida S, Suzuki K, Shimosaka H. 2016. Design and experimental analysis of Origami-Inspired vibration isolators with quasi-zero-stiffness characteristic//Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 5B: V05BT07A015.
|
[73] |
Ishida S, Suzuki K, Shimosaka H. 2017b. Design and experimental analysis of Origami-Inspired vibration isolator with quasi-zero-stiffness characteristic. Journal of Vibration and Acoustics-Transactions of the ASME, 139: 051004. doi: 10.1115/1.4036465
|
[74] |
Ishida S, Uchida H, Shimosaka H, et al. 2017a. Design and numerical analysis of vibration isolators with quasi-zero-stiffness characteristics using bistable foldable structures. Journal of Vibration and Acoustics-Transactions of the ASME, 139: 031015. doi: 10.1115/1.4036096
|
[75] |
Jazar G N, Golnaraghi M F. 2002. Nonlinear modeling, experimental verification, and theoretical analysis of a hydraulic engine mount. Journal of Vibration and Control, 8: 87-116. doi: 10.1177/1077546302008001519
|
[76] |
Jenkins R, Olgac N. 2019. Real-time tuning of delayed resonator-based absorbers for spectral and spatial variations. Journal of Vibration and Acoustics, 141: 021011. doi: 10.1115/1.4041592
|
[77] |
Jiang Y, Song C, Ding C, et al. 2020. Design of magnetic-air hybrid quasi-zero stiffness vibration isolation system. Journal of Sound and Vibration, 477: 115346. doi: 10.1016/j.jsv.2020.115346
|
[78] |
Jin G X, Wang Z H, Yang T Z. 2022. Cascaded quasi-zero stiffness nonlinear low-frequency vibration isolator inspired by human spine. Applied Mathematics and Mechanics (English Edition)
|
[79] |
Johnson M, Chen Y, Hovet S, et al. 2017. Fabricating biomedical origami: a state-of-the-art review. International Journal of Computer Assisted Radiology and Surgery, 12: 2023-2032. doi: 10.1007/s11548-017-1545-1
|
[80] |
Kamaruzaman N A , Robertson W , Ghayesh MH , et al. 2018. Improving passive stability of a planar quasi-zero stiffness magnetic levitation system via lever arm// 2018 IEEE International Magnetics Conference (INTERMAG).
|
[81] |
Kamaruzaman N A, Robertson W S P, Ghayesh M H, et al. 2021. Six degree of freedom quasi-zero stiffness magnetic spring with active control: Theoretical analysis of passive versus active stability for vibration isolation. Journal of Sound and Vibration, 502: 116086. doi: 10.1016/j.jsv.2021.116086
|
[82] |
Kim J H, Jeon Y J, Um S W, et al. 2019. A Novel Passive Quasi-Zero Stiffness Isolator for Ultra-Precision Measurement Systems. International Journal of Precision Engineering and Manufacturing, 20: 1573-1580. doi: 10.1007/s12541-019-00149-2
|
[83] |
Korytov M S, Shcherbakov V S, Titenko V V, et al. 2021. Study of the antivibration suspended seat oscillations with quasi-zero stiffness effect under sinusoidal excitation. Journal of Physics:Conference Series, 1901: 012120. doi: 10.1088/1742-6596/1901/1/012120
|
[84] |
Kovacic I, Brennan M J, Waters T P. 2008. A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic. Journal of Sound and Vibration, 315: 700-711. doi: 10.1016/j.jsv.2007.12.019
|
[85] |
Kucera V, Pilbauer D, Vyhlídal T. 2017. Extended delayed resonators-Design and experimental verification. Mechatronics, 41: 29-44.
|
[86] |
Lan C C, Yang S A, Wu Y S. 2014. Design and experiment of a compact quasi-zero-stiffness isolator capable of a wide range of loads. Journal of Sound and Vibration, 333: 4843-4858. doi: 10.1016/j.jsv.2014.05.009
|
[87] |
Le T D, Ahn K K. 2013. Experimental investigation of a vibration isolation system using negative stiffness structure. International Journal of Mechanical Sciences, 70: 99-112. doi: 10.1016/j.ijmecsci.2013.02.009
|
[88] |
Ledezma-Ramirez D F, Tapia-Gonzalez P E, Ferguson N, et al. 2019. Recent Advances in Shock Vibration Isolation: An Overview and Future Possibilities. Applied Mechanics Reviews, 71: 060802. doi: 10.1115/1.4044190
|
[89] |
Lee C M, Goverdovskiy V N. 2012. A multi-stage high-speed railroad vibration isolation system with “negative” stiffness. Journal of Sound and Vibration, 331: 914-921. doi: 10.1016/j.jsv.2011.09.014
|
[90] |
Li H, Li H Y, Chen Z B, et al. 2016. Experiments on active precision isolation with a smart conical adapter. Journal of Sound and Vibration, 374: 17-28. doi: 10.1016/j.jsv.2016.03.039
|
[91] |
Li M, Cheng W, Xie R L. 2020. A quasi-zero-stiffness vibration isolator using a cam mechanism with user-defined profile. International Journal of Mechanical Sciences, 189: 105938.
|
[92] |
Li S Y, Fang H B, Sadeghi S, et al. 2019. Architected origami materials: how folding creates sophisticated mechanical properties. Advanced materials, 31: e1805282. doi: 10.1002/adma.201805282
|
[93] |
Li Y L, Xu D L, Fu Y M, et al. 2011. Stability and chaotification of vibration isolation floating raft systems with time-delayed feedback control. Chaos, 21: 033115. doi: 10.1063/1.3615710
|
[94] |
Li Y L, Xu D L, Fu Y M, et al. 2013. Chaotification of a nonlinear vibration isolation system by dual time delayed feedback control. International Journal of Bifurcation and Chaos, 23: 1350096. doi: 10.1142/S021812741350096X
|
[95] |
Li Y L, Xu D L, Fu Y M, et al. 2014. Dynamic effects of delayed feedback control on nonlinear vibration isolation floating raft systems. Journal of Sound and Vibration, 333: 2665-2676. doi: 10.1016/j.jsv.2014.02.012
|
[96] |
Li Y L, Xu D L. 2016. Chaotification of quasi-zero-stiffness system with time delay control. Nonlinear Dynamics, 86: 353-368. doi: 10.1007/s11071-016-2893-z
|
[97] |
Li Y L, Xu D L. 2017. Vibration attenuation of high dimensional quasi-zero stiffness floating raft system. International Journal of Mechanical Sciences, 126: 186-195. doi: 10.1016/j.ijmecsci.2017.03.029
|
[98] |
Li Z, Kidambi N, Wang L M, et al. 2020. Uncovering rotational multifunctionalities of coupled Kresling modular structures. Extreme Mechanics Letters, 39: 100795. doi: 10.1016/j.eml.2020.100795
|
[99] |
Ling P, Miao L L, Zhang W M, et al. 2022. Cockroach-inspired structure for low-frequency vibration isolation. Mechanical Systems and Signal Processing, 171: 108955. doi: 10.1016/j.ymssp.2022.108955
|
[100] |
Liu B Y, Gu L, Dong M M. 2022. Design and characteristic analysis of an X-shaped negative stiffness structure. Acta Mechanica, 233: 4549-4587. doi: 10.1007/s00707-022-03343-y
|
[101] |
Liu C C, Jing X J, Daley S, et al. 2015. Recent advances in micro-vibration isolation. Mechanical Systems and Signal Processing, 56: 55-80.
|
[102] |
Liu C R, Tang J, Yu K P, et al. 2020a. On the characteristics of a quasi-zero-stiffness vibration isolator with viscoelastic damper. Applied Mathematical Modelling, 88: 367-381. doi: 10.1016/j.apm.2020.06.068
|
[103] |
Liu C R, Yu K P, Liao B P, et al. 2021a. Enhanced vibration isolation performance of quasi-zero-stiffness isolator by introducing tunable nonlinear inerter. Communications in Nonlinear Science and Numerical Simulation, 95: 105654. doi: 10.1016/j.cnsns.2020.105654
|
[104] |
Liu C R, Yu K P, Tang J. 2020b. New insights into the damping characteristics of a typical quasi-zero-stiffness vibration isolator. International Journal of Non-Linear Mechanics, 124: 103511. doi: 10.1016/j.ijnonlinmec.2020.103511
|
[105] |
Liu C R, Zhao R, Yu K P, et al. 2021b. In-plane quasi-zero-stiffness vibration isolator using magnetic interaction and cables: Theoretical and experimental study. Applied Mathematical Modelling, 96: 497-522. doi: 10.1016/j.apm.2021.03.035
|
[106] |
Liu S W, Peng G L, Jin K. 2021. Design and characteristics of a novel QZS vibration isolation system with origami-inspired corrector. Nonlinear Dynamics, 106: 255-277. doi: 10.1007/s11071-021-06821-5
|
[107] |
Liu S W, Peng G L, Jin K. 2022. Towards accurate modeling of the Tachi-Miura origami in vibration isolation platform with geometric nonlinear stiffness and damping. Applied Mathematical Modelling, 103: 674-695. doi: 10.1016/j.apm.2021.11.012
|
[108] |
Liu X T, Huang X C, Hua H X. 2013. On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector. Journal of Sound and Vibration, 332: 3359-3376. doi: 10.1016/j.jsv.2012.10.037
|
[109] |
Liu Y Q, Xu L L, Song C F, et al. 2019. Dynamic characteristics of a quasi-zero stiffness vibration isolator with nonlinear stiffness and damping. Archive of Applied Mechanics, 89: 1743-1759. doi: 10.1007/s00419-019-01541-0
|
[110] |
Liu Z L, Xu J, Fang H B. 2022. Extracting inherent model structures and identifying parameters of time-varying systems using local linear neuro-fuzzy networks. IEEE Transactions on Fuzzy Systems:A Publication of the IEEE Neural Networks Council, 30: 233-247.
|
[111] |
Lu J J, Yan G, Qi W H, et al. 2022. Sliding-boundary-constrained cantilever structure for vibration isolation via nonlinear stiffness modulation. International Journal of Mechanical Sciences, 235: 107733. doi: 10.1016/j.ijmecsci.2022.107733
|
[112] |
Lu Z Q, Yang T J, Brennan M J, et al. 2017. Experimental investigation of a two-stage nonlinear vibration isolation system with high-static-low-dynamic stiffness. Journal of Applied Mechanics, 84: 021001. doi: 10.1115/1.4034989
|
[113] |
Ma Z Z, Zhou R P, Yang Q C. 2022. Recent advances in quasi-zero stiffness vibration isolation systems: an overview and future possibilities. Machines, 10: 813. doi: 10.3390/machines10090813
|
[114] |
Maccari A. 2008. Vibration amplitude control for a van der Pol-Duffing oscillator with time delay. Journal of Sound and Vibration, 317: 20-29. doi: 10.1016/j.jsv.2008.03.029
|
[115] |
Mao X Y, Yin M M, Ding H, et al. 2022. Modeling, analysis, and simulation of X-shape quasi-zero-stiffness-roller vibration isolators. Applied Mathematics and Mechanics (English Edition)
|
[116] |
Meng H, Sun X T, Xu J, et al. 2020. The generalization of equal-peak method for delay-coupled nonlinear system. Physica D Nonlinear Phenomena, 403: 132340. doi: 10.1016/j.physd.2020.132340
|
[117] |
Meng H, Sun X T, Xu J, et al. 2021a. Establishment of the equal-peak principle for a multiple-DOF nonlinear system with multiple time-delayed vibration absorbers. Nonlinear Dynamics, 104: 241-266. doi: 10.1007/s11071-021-06301-w
|
[118] |
Meng H, Sun X T, Xu J, et al. 2021b. Multimodal vibration suppression of nonlinear Euler-Bernoulli beam by multiple time-delayed vibration absorbers. Meccanica, 56: 2429-2449. doi: 10.1007/s11012-021-01384-6
|
[119] |
Meng L S, Sun J G, Wu W J. 2015. Theoretical design and characteristics analysis of a quasi-zero stiffness isolator using a disk spring as negative stiffness element. Shock and Vibration, 2015: 1-19.
|
[120] |
Miyasato H H, Simionatto V G S, Dias M. 2021. Study of a torsional link with radial springs: Periodic responses under base excitation. European Journal of Mechanics-A/Solids, 89: 104267. doi: 10.1016/j.euromechsol.2021.104267
|
[121] |
Mokni L, Belhaq M. 2012. Using delayed damping to minimize transmitted vibrations. Communications in Nonlinear Science and Numerical Simulation, 17: 1980-1985. doi: 10.1016/j.cnsns.2011.08.034
|
[122] |
Nakamura Y, Goto S, Horie T, et al. 2013. Implementation of a smith predictor for pneumatic vibration isolators with dead time//39th Annual Conference of the IEEE Industrial Electronics Society, IEEE Industrial Electronics Society: 3574-3579.
|
[123] |
Nakamura Y, Kawakami H, Wakui S. 2015. Suppression of anti-resonance and resonance in pneumatic system of vibration isolator considering time delay//IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, IEEE Industrial Electronics Society: 2509-2514.
|
[124] |
Nia P M, Sipahi R. 2013. Controller design for delay-independent stability of linear time-invariant vibration systems with multiple delays. Journal of Sound and Vibration, 332: 3589-3604. doi: 10.1016/j.jsv.2013.01.016
|
[125] |
Olgac N, Holm-Hansen B T. 1994. A novel active vibration absorption technique: delayed resonator. Journal of Sound and Vibration, 176: 93-104. doi: 10.1006/jsvi.1994.1360
|
[126] |
Phanisri P P, Phanish S, Glaucio H P, 2018, Bloch wave framework for structures with nonlocal interactions: Application to the design of origami acoustic metamaterials, Journal of the Mechanics and Physics of Solids, 118: 115–132
|
[127] |
Pratapa P P, Suryanarayana P, Paulino G H. 2018. Bloch wave framework for structures with nonlocal interactions: Application to the design of origami acoustic metamaterials. Journal of the Mechanics and Physics and Solids, 118: 115-132. doi: 10.1016/j.jmps.2018.05.012
|
[128] |
Qi W H, Yan G, Lu J J, et al. 2022. Magnetically modulated sliding structure for low frequency vibration isolation. Journal of Sound and Vibration, 526: 116819. doi: 10.1016/j.jsv.2022.116819
|
[129] |
Qiao P, Wang J. 2005. Transverse shear stiffness of composite honeycomb cores and efficiency of material. Mechanics of Advanced Materials and Structures, 12: 159-172. doi: 10.1080/15376490590913576
|
[130] |
Ravindra B, Mallik A K. 1994. Performance of non-linear vibration isolators under harmonic excitation. Journal of Sound and Vibration, 170: 325-337. doi: 10.1006/jsvi.1994.1066
|
[131] |
Robertson WS, Kidner MRF, Cazzolato BS, et al. 2009. Theoretical design parameters for a quasi-zero stiffness magnetic spring for vibration isolation. Journal of Sound and Vibration, 326: 88-103. doi: 10.1016/j.jsv.2009.04.015
|
[132] |
Sadeghi S, Li S Y. 2017. Harnessing the quasi-zero stiffness from fluidic Origami for low frequency vibration isolation// Proceedings of the ASME Conference on Smart Materials, Adaptive Structures and Intelligent Systems, 2: UNSP V002T03A008.
|
[133] |
Sadeghi S, Li S Y. 2019. Fluidic origami cellular structure with asymmetric quasi-zero stiffness for low-frequency vibration isolation. Smart Materials and Structures, 28: 065006. doi: 10.1088/1361-665X/ab143c
|
[134] |
Salvatore A, Carboni B, Lacarbonara W. 2022. Nonlinear dynamic response of an isolation system with superelastic hysteresis and negative stiffness. Nonlinear dynamics, 107: 1765-1790. doi: 10.1007/s11071-021-06666-y
|
[135] |
Shahraeeni M, Sorokin V, Mace B, et al. 2022. Effect of damping nonlinearity on the dynamics and performance of a quasi-zero-stiffness vibration isolator. Journal of Sound and Vibration, 526: 116822. doi: 10.1016/j.jsv.2022.116822
|
[136] |
Shaw A D, Gatti G, Goncalves P, et al. 2021. Design and test of an adjustable quasi-zero stiffness device and its use to suspend masses on a multi-modal structure. Mechanical Systems and Signal Processing, 152: 107354. doi: 10.1016/j.ymssp.2020.107354
|
[137] |
Shaw A D, Neild S A, Wagg D J, et al. 2013. Experimental investigation into a passive vibration isolator incorporating a bistable composite plate// 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.
|
[138] |
Shin Y H, Kim K J, Chang P H, et al. 2010. Control of pneumatic vibration isolation table by pneumatic and time delay control technique. Journal of Vibration and Acoustics, 132: 051013-1. doi: 10.1115/1.4001509
|
[139] |
Shin Y H, Kim K J. 2009. Performance enhancement of pneumatic vibration isolation tables in low frequency range by time delay control. Journal of Sound and Vibration, 321: 537-553. doi: 10.1016/j.jsv.2008.10.030
|
[140] |
Sika Z, Vyhlidal T, Neusser Z. 2021. Two-dimensional delayed resonator for entire vibration absorption. Journal of Sound and Vibration, 500: 116010. doi: 10.1016/j.jsv.2021.116010
|
[141] |
Singh K V, Ouyang H J. 2013. Pole assignment using state feedback with time delay in friction-induced vibration problems. Acta Mechanica, 224: 645-656. doi: 10.1007/s00707-012-0778-x
|
[142] |
Suman S, Balaji P S, Selvakumar K, et al. 2021. Nonlinear vibration control device for a vehicle suspension using negative stiffness mechanism. Journal of Vibration Engineering and Technologies, 9: 957-966. doi: 10.1007/s42417-020-00275-6
|
[143] |
Sun J O, Kim K J. 2012. Six-degree of freedom active pneumatic table based on time delay control technique. Proceedings of the Institution of Mechanical Engineers, Part I. Journal of Systems and Control Engineering, 226: 622-637.
|
[144] |
Sun J O, Kim KJ. 2013. Control of transient vibrations due to stage movements in 6-dof active pneumatic table by inertial force compensation. Journal of Sound and Vibration, 332: 5241-5254. doi: 10.1016/j.jsv.2013.05.013
|
[145] |
Sun X T, Jing X J, Xu J, et al. 2014a. Vibration isolation via a scissor-like structured platform. Journal of Sound and Vibration, 333: 2404-2420.
|
[146] |
Sun X T, Jing X J. 2015. Multi-direction vibration isolation with quasi-zero stiffness by employing geometrical nonlinearity. Mechanical Systems and Signal Processing, 62: 149-163.
|
[147] |
Sun X T, Qi Z F, Xu J. 2022. A novel multi-layer isolation structure for transverse stabilization inspired by neck structure. Acta Mechanica Sinica, 38: 521543. doi: 10.1007/s10409-022-09039-x
|
[148] |
Sun X T, Wang F, Xu J. 2019a. Analysis, design and experiment of continuous isolation structure with Local Quasi-Zero-Stiffness property by magnetic interaction. International Journal of Non-Linear Mechanics, 116: 289-301. doi: 10.1016/j.ijnonlinmec.2019.07.008
|
[149] |
Sun X T, Wang F, Xu J. 2019b. Dynamics and realization of a feedback-controlled nonlinear isolator with variable time delay. Journal of Vibration and Acoustics, 141: 021005. doi: 10.1115/1.4041369
|
[150] |
Sun X T, Wang F, Xu J. 2021. A novel dynamic stabilization and vibration isolation structure inspired by the role of avian neck. International Journal of Mechanical Sciences, 193: 106166. doi: 10.1016/j.ijmecsci.2020.106166
|
[151] |
Sun X T, Xu J, Fu J S. 2017. The effect and design of time delay in feedback control for a nonlinear isolation system. Mechanical Systems and Signal Processing, 87: 206-217. doi: 10.1016/j.ymssp.2016.10.022
|
[152] |
Sun X T, Xu J, Jing X J, et al. 2014b. Beneficial performance of a quasi-zero- stiffness vibration isolator with time-delayed active control. International Journal of Mechanical Sciences, 82: 32-40. doi: 10.1016/j.ijmecsci.2014.03.002
|
[153] |
Sun X T, Xu J, Wang F. 2018a. A Novel isolation structure with flexible joints for impact and ultralow-frequency excitations. International Journal of Mechanical Sciences, 146-147: 366-376. doi: 10.1016/j.ijmecsci.2018.08.009
|
[154] |
Sun X T, Zhang S, Xu J, et al. 2018b. Dynamical analysis and realization of an adaptive Isolator. ASME Trans Journal of Applied Mechanics, 85: 011002. doi: 10.1115/1.4038285
|
[155] |
Sun X T, Zhang S, Xu J. 2018c. Parameter design of a multi-delayed isolator with asymmetrical nonlinearity. International Journal of Mechanical Sciences, 138-139: 398-408. doi: 10.1016/j.ijmecsci.2018.02.026
|
[156] |
Sun Y X, Xu J. 2015. Experiments and analysis for a controlled mechanical absorber considering delay effect. Journal of Sound and Vibration, 339: 25-37. doi: 10.1016/j.jsv.2014.11.005
|
[157] |
Valeev A R, Zotov A N, Kharisov S A. 2015. Application of disk springs for manufacturing vibration isolators with quasi-zero stiffness. Chemical and Petroleum Engineering, 51: 194-200. doi: 10.1007/s10556-015-0023-2
|
[158] |
Vo N Y P, Le T D. 2022. Dynamic Analysis of Quasi-Zero Stiffness Pneumatic Vibration Isolator. Applied sciences, 12: 2378. doi: 10.3390/app12052378
|
[159] |
Vo N Y P, Nguyen M K, Le T D. 2021. Analytical study of a pneumatic vibration isolation platform featuring adjustable stiffness. Communications in Nonlinear Science and Numerical Simulation, 98: 105775. doi: 10.1016/j.cnsns.2021.105775
|
[160] |
Vyhlídal T, Dan P, Alikoc B, et al. 2019. Analysis and design aspects of delayed resonator absorber with position, velocity or acceleration feedback. Journal of Sound and Vibration, 459: 114831. doi: 10.1016/j.jsv.2019.06.038
|
[161] |
Wang F, Sun X T, Meng H, et al. 2021. Time-delayed feedback control design and its application for vibration absorption. IEEE Transactions on Industrial Electronics, 68: 8593-8602. doi: 10.1109/TIE.2020.3009612
|
[162] |
Wang F, Sun X T, Meng H, et al. 2022. Tunable broadband low-frequency band gap of multiple-layer metastructure induced by time-delayed vibration absorbers. Nonlinear Dynamics, 107: 1903-1918. doi: 10.1007/s11071-021-07065-z
|
[163] |
Wang F, Xu J. 2019. Parameter design for a vibration absorber with time-delayed feedback control. Acta Mechanica Sinica, 35: 624-640. doi: 10.1007/s10409-018-0822-8
|
[164] |
Wang K, Zhou J X, Chang Y P, et al. 2020. A nonlinear ultra-low-frequency vibration isolator with dual quasi-zero-stiffness mechanism. Nonlinear Dynamics, 101: 755-773. doi: 10.1007/s11071-020-05806-0
|
[165] |
Wang Q, Zhou J X, Xu D L, et al. 2020. Design and experimental investigation of ultra-low frequency vibration isolation during neonatal transport. Mechanical Systems and Signal Processing, 139: 19.
|
[166] |
Wang Q B, Wu H, Yang Y J. 2022. The effect of fractional damping and time-delayed feedback on the stochastic resonance of asymmetric SD oscillator. Nonlinear Dynamics, 107: 2099-2114. doi: 10.1007/s11071-021-07105-8
|
[167] |
Wang S L, Wang Z C. 2022. Curved surface-based vibration isolation mechanism with designable stiffness: Modeling, simulation, and applications. Mechanical Systems and Signal Processing, 181: 109489. doi: 10.1016/j.ymssp.2022.109489
|
[168] |
Wang X, Yue X K, Dai H H, et al. 2020. Vibration suppression for post-capture spacecraft via a novel bio-inspired Stewart isolation system. Acta Astronautica, 168: 1-22. doi: 10.1016/j.actaastro.2019.11.033
|
[169] |
Wang Y, Li H X, Jiang W A, et al. 2021. A base excited mixed-connected inerter-based quasi-zero stiffness vibration isolator with mistuned load. Mechanics of Advanced Materials and Structures, 29: 4224-4242.
|
[170] |
Weng X T, Yan Z T, Zeng Q H. 2011. Research on time delay of control in hybrid vibration isolation system. Procedia Engineering, 15: 1224-1228. doi: 10.1016/j.proeng.2011.08.226
|
[171] |
Wu J L, Che J X, Chen X D, et al. 2022a. Design of a combined magnetic negative stiffness mechanism with high linearity in a wide working region. Science China Technological Sciences, 65: 2127-2142. doi: 10.1007/s11431-022-2121-7
|
[172] |
Wu J L, Zeng L Z, Han B, et al. 2022b. Analysis and design of a novel arrayed magnetic spring with high negative stiffness for low-frequency vibration isolation. International Journal of Mechanical Sciences, 216: 106980. doi: 10.1016/j.ijmecsci.2021.106980
|
[173] |
Wu W, Chen X, Shan Y. 2014. Analysis and experiment of a vibration isolator using a novel magnetic spring with negative stiffness. Journal of Sound and Vibration, 333: 2958-2970. doi: 10.1016/j.jsv.2014.02.009
|
[174] |
Wu Y, Yu K P, Jiao J, et al. 2015. Dynamic modeling and robust nonlinear control of a six-DOF active micro-vibration isolation manipulator with parameter uncertainties. Mechanism and Machine Theory, 92: 407-435. doi: 10.1016/j.mechmachtheory.2015.06.008
|
[175] |
Xie Y, Niu F, Sun J, et al. 2022. Design and analysis of a novel quasi-zero stiffness isolator under variable loads. Mathematical Problems in Engineering, 602: 657-663.
|
[176] |
Xu D L, Yu Q P, Zhou J X, et al. 2013. Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic. Journal of Sound and Vibration, 332: 3377-3389. doi: 10.1016/j.jsv.2013.01.034
|
[177] |
Xu J, Sun X T. 2015a. A multi-directional vibration isolator based on Quasi-Zero-Stiffness structure and time-delayed active control. International Journal of Mechanical Sciences, 100: 126-135. doi: 10.1016/j.ijmecsci.2015.06.015
|
[178] |
Xu J, Sun Y X. 2015b. Experimental studies on active control of a dynamic system via a time-delayed absorber. Acta Mechanica Sinica, 31: 229-247. doi: 10.1007/s10409-015-0411-z
|
[179] |
Xu Z L, Wang Y Q, Zhu R, et al. 2021. Torsional bandgap switching in metamaterials with compression-torsion interacted origami resonators. Journal of Applied Physics, 130: 045105. doi: 10.1063/5.0056179
|
[180] |
Yan B, Ling P, Zhou Y, et al. 2022a. Shock isolation characteristics of a bistable vibration isolator with tunable magnetic controlled stiffness. Journal of Vibration and Acoustics, 144: 021008. doi: 10.1115/1.4051850
|
[181] |
Yan B, Ma H, Zhang L, et al. 2020. Electromagnetic shunt damping for shock isolation of nonlinear vibration isolators. Journal of Sound and Vibration, 479: 115370. doi: 10.1016/j.jsv.2020.115370
|
[182] |
Yan B, Pan X G, Su R, et al. 2022b. Nonlinear dynamics characteristics of a tumbler on an arc. Journal of Sound and Vibration, 525: 116810. doi: 10.1016/j.jsv.2022.116810
|
[183] |
Yan B, Yu N, Wu C Y. 2022c. A state-of-the-art review on low-frequency nonlinear vibration isolation with electromagnetic mechanisms. Applied Mathematics and Mechanics (English Edition)
|
[184] |
Yan G, Qi W H, Shi J W, et al. 2022a. Bionic paw-inspired structure for vibration isolation with novel nonlinear compensation mechanism. Journal of Sound and Vibration, 525: 116799. doi: 10.1016/j.jsv.2022.116799
|
[185] |
Yan G, Wang S, Zou H X, et al. 2020a. Bio-inspired polygonal skeleton structure for vibration isolation: Design, modelling, and experiment. Science China Technological Sciences, 63: 14. doi: 10.1007/s11431-019-9542-5
|
[186] |
Yan G, Wu Z Y, Wei X S, et al. 2022b. Nonlinear compensation method for quasi-zero stiffness vibration isolation. Journal of Sound and Vibration, 523: 116743. doi: 10.1016/j.jsv.2021.116743
|
[187] |
Yan G, Zou H X, Wang S, et al. 2021. Bio-inspired vibration isolation: Methodology and design. Applied Mechanics Reviews, 73: 020801. doi: 10.1115/1.4049946
|
[188] |
Yan G, Zou H X, Wang S, et al. 2022a. Bio-inspired toe-like structure for low-frequency vibration isolation. Mechanical Systems and Signal Processing, 162: 108010. doi: 10.1016/j.ymssp.2021.108010
|
[189] |
Yan G, Zou H X, Yan H, et al. 2020b. Multi-direction vibration isolator for momentum wheel assemblies. Journal of Vibration and Acoustics- Transactions of the ASME, 142: 041007. doi: 10.1115/1.4046680
|
[190] |
Yang T, Cao Q J, Hao Z F. 2021a. A novel nonlinear mechanical oscillator and its application in vibration isolation and energy harvesting. Mechanical systems and signal processing, 155: 107636. doi: 10.1016/j.ymssp.2021.107636
|
[191] |
Yang T, Cao Q J. 2017. Nonlinear transition dynamics in a time-delayed vibration isolator under combined harmonic and stochastic excitations. Journal of Statistical Mechanics:Theory and Experiment, 4: 043202.
|
[192] |
Yang T, Cao Q J. 2018. Delay-controlled primary and stochastic resonances of the SD oscillator with stiffness nonlinearities. Mechanical Systems and Signal Processing, 103: 216-235. doi: 10.1016/j.ymssp.2017.10.002
|
[193] |
Yang T, Cao Q J. 2019. Noise- and delay-enhanced stability in a nonlinear isolation system. International Journal of Non-Linear Mechanics, 110: 81-93. doi: 10.1016/j.ijnonlinmec.2019.01.010
|
[194] |
Yang T, Cao Q J. 2021. Modeling and analysis of a novel multi-directional micro-vibration isolator with spring suspension struts. Archive of Applied Mechanics, 92: 801-819.
|
[195] |
Yang T, Zhou S X, Fang S T, et al. 2021. Nonlinear vibration energy harvesting and vibration suppression technologies: Designs, analysis, and applications. Applied Physics Reviews, 8: 031317. doi: 10.1063/5.0051432
|
[196] |
Yang X L, Wu H T, Chen B, et al. 2019. Dynamic modeling and decoupled control of a flexible Stewart platform for vibration isolation. Journal of Sound and Vibration, 439: 398-412. doi: 10.1016/j.jsv.2018.10.007
|
[197] |
Yang X L, Wu H T, Li Y, et al. 2017. Dynamic isotropic design and decentralized active control of a six-axis vibration isolator via Stewart platform. Mechanism and Machine Theory, 117: 244-252. doi: 10.1016/j.mechmachtheory.2017.07.017
|
[198] |
Ye K, Ji J C, Brown T. 2020. Design of a quasi-zero stiffness isolation system for supporting different loads. Journal of Sound and Vibration, 471: 115198. doi: 10.1016/j.jsv.2020.115198
|
[199] |
Ye K, Ji J C, Brown T. 2021. A novel integrated quasi-zero stiffness vibration isolator for coupled translational and rotational vibrations. Mechanical Systems and Signal Processing, 149: 107340. doi: 10.1016/j.ymssp.2020.107340
|
[200] |
Ye K, Ji J C. 2022. An origami inspired quasi-zero stiffness vibration isolator using a novel truss-spring based stack Miura-ori structure. Mechanical Systems and Signal Processing, 165: 108383. doi: 10.1016/j.ymssp.2021.108383
|
[201] |
Zeng R, Wen G L, Zhou J X, et al. 2021. A limb-inspired bionic quasi-zero stiffness vibration isolator. Acta Mechanica Sinica, 37: 1152-1167. doi: 10.1007/s10409-021-01070-6
|
[202] |
Zeng R, Yin S, Wen G, et al. 2022. A non-smooth quasi-zero-stiffness isolator with displacement constraints. International Journal of Mechanical Sciences, 225: 107351. doi: 10.1016/j.ijmecsci.2022.107351
|
[203] |
Zhang H P, Yang L H, Su P, et al. 2020. The influence of the controlling delay time on two-degree-of-freedom system with a high-static-low-dynamic-stiffness isolator. Journal of Vibroengineering, 22: 751-761. doi: 10.21595/jve.2020.20720
|
[204] |
Zhang J, Xu D, Zhou J, et al. 2012. Chaotification of vibration isolation floating raft system via nonlinear time-delay feedback control. Chaos Solitons and Fractals, 45: 1255-1265. doi: 10.1016/j.chaos.2012.05.012
|
[205] |
Zhang M K, Yang J Y, Zhu R. 2021. Origami-based bistable metastructures for low-frequency vibration control. Journal of Applied Mechanics- Transactions of the ASME, 88: 051009. doi: 10.1115/1.4049953
|
[206] |
Zhang Q, Guo D K, Hu G K. 2021. Tailored mechanical metamaterials with programmable quasi-zero-stiffness features for full-band vibration Isolation. Advanced Functional Materials, 31: 2101428. doi: 10.1002/adfm.202101428
|
[207] |
Zhang W, Zhao J B. 2016. Analysis on nonlinear stiffness and vibration isolation performance of scissor-like structure with full types. Nonlinear Dynamics, 86: 17-36. doi: 10.1007/s11071-016-2869-z
|
[208] |
Zhang X X, Ji J, Xu J. 2019. Parameter identification of time-delayed nonlinear systems: An integrated method with adaptive noise correction. Journal of the Franklin Institute, 356: 5858-5880. doi: 10.1016/j.jfranklin.2019.03.023
|
[209] |
Zhang X X, Xu J, Feng Z C. 2017. Nonlinear equivalent model and its identification for a delayed absorber with magnetic action using distorted measurement. Nonlinear Dynamics, 88: 937-954. doi: 10.1007/s11071-016-3286-z
|
[210] |
Zhang X X, Xu J, Ji J. 2018. Modelling and tuning for a time-delayed vibration absorber with friction. Journal of Sound and Vibration, 424: 137-157. doi: 10.1016/j.jsv.2018.03.019
|
[211] |
Zhang X X, Xu J. 2014. Identification of time delay in nonlinear systems with delayed feedback control. Journal of the Franklin Institute, 352: 2987-2998.
|
[212] |
Zhang X X, Xu J. 2016. Time delay identifiability and estimation for the delayed linear system with incomplete measurement. Journal of Sound and Vibration, 361: 330-340. doi: 10.1016/j.jsv.2015.09.034
|
[213] |
Zhang Y, Liu Q H, Lei Y G, et al. 2023. Halbach high negative stiffness isolator: Modeling and experiments. Mechanical Systems and Signal Processing, 188: 110014. doi: 10.1016/j.ymssp.2022.110014
|
[214] |
Zhang Y L, Wei G, Wen H, et al. 2021. Design and analysis of a vibration isolation system with cam-roller-spring-rod mechanism. Journal of Vibration and Control, 28: 1781-1791.
|
[215] |
Zhang Y T, Cao Q J, Huang W H. 2021. Bursting oscillations in an isolation system with quasi-zero stiffness. Mechanical Systems and Signal Processing, 161: 107916. doi: 10.1016/j.ymssp.2021.107916
|
[216] |
Zhao F, Ji J C, Luo Q T, et al. 2021. An improved quasi-zero stiffness isolator with two pairs of oblique springs to increase isolation frequency band. Nonlinear Dynamics, 104: 1-17. doi: 10.1007/s11071-021-06413-3
|
[217] |
Zhao F, Ji J C, Ye K, et al. 2020. Increase of quasi-zero stiffness region using two pairs of oblique springs. Mechanical Systems and Signal Processing, 144: 106975. doi: 10.1016/j.ymssp.2020.106975
|
[218] |
Zhao F, Cao S Q, Ji J C, et al. 2022a. Enhanced design of the quasi-zero stiffness vibration isolator with three pairs of oblique springs: theory and experiment. Journal of Vibration and Control, 0: 1-15.
|
[219] |
Zhao F, Cao S Q, Luo Q T, et al. 2022b. Practical design of the QZS isolator with one pair of oblique bars by considering pre-compression and low-dynamic stiffness. Nonlinear Dynamics, 108: 3313-3330. doi: 10.1007/s11071-022-07368-9
|
[220] |
Zheng Y S, Li Q P, Yan B, et al. 2018. A Stewart isolator with high-static-low-dynamic stiffness struts based on negative stiffness magnetic springs. Journal of Sound and Vibration, 422: 390-408. doi: 10.1016/j.jsv.2018.02.046
|
[221] |
Zhou J X, Wang K, Xu D L, et al. 2018. Vibration isolation in neonatal transport by using a quasi-zero-stiffness isolator. Journal of Vibration and Control, 24: 3278-3291. doi: 10.1177/1077546317703866
|
[222] |
Zhou J X, Wang X L, Xu D L, et al. 2015a. Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam-roller-spring mechanisms. Journal of Sound and Vibration, 346: 53-69. doi: 10.1016/j.jsv.2015.02.005
|
[223] |
Zhou J X, Xu D L, Bishop S. 2015b. A torsion quasi-zero stiffness vibration isolator. Journal of Sound and Vibration, 338: 121-133. doi: 10.1016/j.jsv.2014.10.027
|
[224] |
Zhou J X, Xu D L, Zhang J, et al. 2012. Spectrum optimization-based chaotification using time-delay feedback control. Chaos Solitons and Fractals, 45: 815-824. doi: 10.1016/j.chaos.2012.02.015
|
[225] |
Zhou N, Liu K. 2010. A tunable high-static-low-dynamic stiffness vibration isolator. Journal of Sound and Vibration, 329: 1254-1273. doi: 10.1016/j.jsv.2009.11.001
|
[226] |
Zhu G N, Cao Q J, Chen Y S. 2022. An archetypal zero- or quasi-zero-stiffness model with three degrees of freedom based upon an inverse method. Nonlinear Dynamics, Online.
|
[227] |
Zhu T, Cazzolato B, Robertson W, et al. 2015. Vibration isolation using six degree-of-freedom quasi-zero stiffness magnetic levitation. Journal of Sound and Vibration, 358: 48-73. doi: 10.1016/j.jsv.2015.07.013
|
[228] |
Zhu T, Cazzolato B S, Robertson W S, et al. 2011. The development of a 6 degree of freedom quasi-zero stiffness Maglev vibration isolator with adaptive-passive load support// Icmt Secretariat, 2011.
|