Citation: | Pan D Y, Hu G H, Chen S, PHAN-THIEN N. Mesoscopic modeling of complex multiphase fluids: Dissipative particle dynamics (DPD) method and its applications. Advances in Mechanics, 2024, 54(1): 173-201 doi: 10.6052/1000-0992-23-033 |
[1] |
陈硕, 赵钧, 范西俊, 王丹. 2006. 复杂流体流动的耗散粒子动力学研究进展. 科技通报, 22, 596–602.
|
[2] |
李振. 2011. 微流控芯片中液滴操控的耗散粒子动力学模拟 (博士论文). 上海大学, 上海.
|
[3] |
李红霞, 强洪夫. 2009. 耗散粒子动力学模拟方法的发展和应用. 力学进展, 39: 165-175. doi: 10.6052/1000-0992-2009-2-J2008-002
|
[4] |
林雨青. 2017. 基于耗散粒子动力学方法的微泡动力学介观模拟研究 (硕士论文). 浙江大学, 杭州.
|
[5] |
唐梓涵, 李学进, 李德昌. 2023. 耗散粒子动力学方法在生物学领域的应用与研究进展:从蛋白质结构到细胞力学. 科学通报, 68(7): 741-761
|
[6] |
赵庚尧. 2023. 单液滴变形特性及乳浊液流变特性的介观模拟研究 (博士论文). 浙江大学, 杭州.
|
[7] |
Ahmadi M, Aliabadian E, Liu B, Lei X, Khalilpoorkordi P, Hou Q, Wang Y, Chen Z. 2022. Comprehensive review of the interfacial behavior of water/oil/surfactant systems using dissipative particle dynamics simulation. Adv. Colloid Interface Sci., 309: 102774. doi: 10.1016/j.cis.2022.102774
|
[8] |
Allen M P, Tildesley D J. 2017. Computer simulation of liquids, 2nd ed. Oxford University Press, Oxford.
|
[9] |
Arienti M, Pan W, Li X, Karniadakis G. 2011. Many-body dissipative particle dynamics simulation of liquid/vapor and liquid/solid interactions. J. Chem. Phys., 134: 204114. doi: 10.1063/1.3590376
|
[10] |
Atashafrooz M, Mehdipour N. 2016. Many-body dissipative particle dynamics simulation of liquid–vapor coexisting curve in sodium. J. Chem. Eng. Data, 61: 3659-3664. doi: 10.1021/acs.jced.6b00586
|
[11] |
Avalos J B, Mackie A D. 1997. Dissipative particle dynamics with energy conservation. Europhys. Lett. EPL, 40: 141-146. doi: 10.1209/epl/i1997-00436-6
|
[12] |
Balmforth N J, Frigaard I A, Ovarlez G. 2014. Yielding to stress: recent developments in viscoplastic fluid mechanics. Annu. Rev. Fluid Mech., 46: 121-146. doi: 10.1146/annurev-fluid-010313-141424
|
[13] |
Bentley B J, Leal L G. 1986. An experimental investigation of drop deformation and breakup in steady, two-dimensional linear flows. J. Fluid Mech., 167: 241. doi: 10.1017/S0022112086002811
|
[14] |
Bian X, Litvinov S, Qian R, Ellero M, Adams N A. 2012. Multiscale modeling of particle in suspension with smoothed dissipative particle dynamics. Phys. Fluids, 24: 012002. doi: 10.1063/1.3676244
|
[15] |
Boek E S, Coveney P V, Lekkerkerker H N W. 1996. Computer simulation of rheological phenomena in dense colloidal suspensions with dissipative particle dynamics. J. Phys. Condens. Matter, 8: 9509-9512. doi: 10.1088/0953-8984/8/47/053
|
[16] |
Boek E S, Coveney P V, Lekkerkerker H N W, Van Der Schoot P. 1997. Simulating the rheology of dense colloidal suspensions using dissipative particle dynamics. Phys. Rev. E, 55: 3124-3133.
|
[17] |
Boromand A, Jamali S, Grove B, Maia J M. 2018. A generalized frictional and hydrodynamic model of the dynamics and structure of dense colloidal suspensions. J. Rheol., 62: 905-918. doi: 10.1122/1.5006937
|
[18] |
Boromand A, Jamali S, Maia J M. 2017. Structural fingerprints of yielding mechanisms in attractive colloidal gels. Soft Matter, 13: 458-473. doi: 10.1039/C6SM00750C
|
[19] |
Chan K C, Li Z, Wenzel W. 2023. A mori–zwanzig dissipative particle dynamics approach for anisotropic coarse grained molecular dynamics. J. Chem. Theory Comput., 19: 910-923. doi: 10.1021/acs.jctc.2c00960
|
[20] |
Chen C, Gao C, Zhuang L, Li X, Wu P, Dong J, Lu J. 2010. A many-body dissipative particle dynamics study of spontaneous capillary imbibition and drainage. Langmuir, 26: 9533-9538. doi: 10.1021/la100105f
|
[21] |
Chen C, Zhuang L, Li X, Dong J, Lu J. 2012. A many-body dissipative particle dynamics study of forced water–oil displacement in capillary. Langmuir, 28: 1330-1336. doi: 10.1021/la204207s
|
[22] |
Chen S, Phan-Thien N, Fan X-J, Khoo B C. 2004. Dissipative particle dynamics simulation of polymer drops in a periodic shear flow. J. Non-Newton. Fluid Mech., 118: 65-81. doi: 10.1016/j.jnnfm.2004.02.005
|
[23] |
Chen S, Phan-Thien N, Khoo B C, Fan X J. 2006. Flow around spheres by dissipative particle dynamics. Phys. Fluids, 18: 103605. doi: 10.1063/1.2360421
|
[24] |
Chen Z, Cheng X, Cui H, Cheng P, Wang H. 2007. Dissipative particle dynamics simulation of the phase behavior and microstructure of CTAB/octane/1-butanol/water microemulsion. Colloids Surf. Physicochem. Eng. Asp., 301: 437-443. doi: 10.1016/j.colsurfa.2007.01.022
|
[25] |
Choi S J, Schowalter W R. 1975. Rheological properties of nondilute suspensions of deformable particles. Phys. Fluids, 18: 420-427. doi: 10.1063/1.861167
|
[26] |
Clark A T, Lal M, Ruddock J N, Warren P B. 2000. Mesoscopic simulation of drops in gravitational and shear fields. Langmuir, 16: 6342-6350. doi: 10.1021/la991565f
|
[27] |
Clift R, Grace J, Weber M. 2005. Bubbles, drops, and particles, 2nd ed, Dover Civil and Mechanical Engineering Series, Courier Corporation.
|
[28] |
Conti A, Kamimura H A S, Novell A, Duggento A, Toschi N. 2020. Magnetic resonance methods for focused ultrasound-induced blood-brain barrier opening. Front. Phys., 8: 547674. doi: 10.3389/fphy.2020.547674
|
[29] |
Coussios C C, Roy R A. 2008. Applications of acoustics and cavitation to noninvasive therapy and drug delivery. Annu. Rev. Fluid Mech., 40: 395-420. doi: 10.1146/annurev.fluid.40.111406.102116
|
[30] |
Coveney P V, Novik K E. 1996. Computer simulations of domain growth and phase separation in two-dimensional binary immiscible fluids using dissipative particle dynamics. Phys. Rev. E, 54: 5134-5141. doi: 10.1103/PhysRevE.54.5134
|
[31] |
Cox R G. 1986. The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech., 168: 169. doi: 10.1017/S0022112086000332
|
[32] |
Crowe C T, Schwarzkopf J D, Sommerfeld M, Tsuji Y. 2011. Multiphase flows with droplets and particles, 0 ed. CRC Press.
|
[33] |
Cupelli C, Henrich B, Glatzel T, Zengerle R, Moseler M, Santer M. 2008. Dynamic capillary wetting studied with dissipative particle dynamics. New J. Phys., 10: 043009. doi: 10.1088/1367-2630/10/4/043009
|
[34] |
Deguillard E, Pannacci N, Creton B, Rousseau B. 2013. Interfacial tension in oil–water–surfactant systems: On the role of intra-molecular forces on interfacial tension values using DPD simulations. J. Chem. Phys., 138: 144102. doi: 10.1063/1.4799888
|
[35] |
Deng M, Li Z, Borodin O, Karniadakis G E. 2016. cDPD: A new dissipative particle dynamics method for modeling electrokinetic phenomena at the mesoscale. J. Chem. Phys., 145: 144109. doi: 10.1063/1.4964628
|
[36] |
Deng M, Pan W, Karniadakis G E. 2017. Anisotropic single-particle dissipative particle dynamics model. J. Comput. Phys., 336: 481-491. doi: 10.1016/j.jcp.2017.01.033
|
[37] |
Denn M M, Morris J F. 2014. Rheology of non-brownian suspensions. Annu. Rev. Chem. Biomol. Eng., 5: 203-228. doi: 10.1146/annurev-chembioeng-060713-040221
|
[38] |
Dennis S C R, Walker J D A. 1971. Calculation of the steady flow past a sphere at low and moderate Reynolds numbers. J. Fluid Mech., 48: 771-789. doi: 10.1017/S0022112071001848
|
[39] |
Derkach S R. 2009. Rheology of emulsions. Adv. Colloid Interface Sci., 151: 1-23. doi: 10.1016/j.cis.2009.07.001
|
[40] |
Duong-Hong D, Phan-Thien N, Fan X. 2004. An implementation of no-slip boundary conditions in DPD. Comput. Mech., 35: 24-29. doi: 10.1007/s00466-004-0595-8
|
[41] |
Duong-Hong D, Phan-Thien N, Yeo K S, Ausias G. 2010. Dissipative particle dynamics simulations for fibre suspensions in newtonian and viscoelastic fluids. Comput. Methods Appl. Mech. Eng., 199: 1593-1602. doi: 10.1016/j.cma.2010.01.010
|
[42] |
Dzwinel W, Yuen D A. 2000. Matching macroscopic properties of binary fluids to the interactions of dissipative particle dynamics. Int. J. Mod. Phys. C, 11: 1-25. doi: 10.1142/S012918310000002X
|
[43] |
Ellero M, Español P. 2018. Everything you always wanted to know about SDPD* (*but were afraid to ask). Appl. Math. Mech., 39: 103-124. doi: 10.1007/s10483-018-2255-6
|
[44] |
Epstein P S, Plesset M S. 1950. On the stability of gas bubbles in liquid-gas solutions. J. Chem. Phys., 18: 1505-1509. doi: 10.1063/1.1747520
|
[45] |
Español P. 1998. Fluid particle model. Phys. Rev. E, 57: 2930-2948. doi: 10.1103/PhysRevE.57.2930
|
[46] |
Español P. 1997a. Dissipative particle dynamics with energy conservation. Europhys. Lett. EPL, 40: 631-636. doi: 10.1209/epl/i1997-00515-8
|
[47] |
Español P. 1997b. Fluid particle dynamics: A synthesis of dissipative particle dynamics and smoothed particle dynamics. Europhys. Lett. EPL, 39: 605-610. doi: 10.1209/epl/i1997-00401-5
|
[48] |
Español P, Warren P. 1995. Statistical mechanics of dissipative particle dynamics. Europhys. Lett. EPL, 30: 191-196. doi: 10.1209/0295-5075/30/4/001
|
[49] |
Español P, Warren P B. 2017. Perspective: Dissipative particle dynamics. J. Chem. Phys., 146: 150901. doi: 10.1063/1.4979514
|
[50] |
Fan X, Phan-Thien N, Yong N T, Wu X, Xu D. 2003. Microchannel flow of a macromolecular suspension. Phys. Fluids, 15: 11-21. doi: 10.1063/1.1522750
|
[51] |
Ferziger J H, Perić M, Street R L. 2020. Computational methods for fluid dynamics. Springer International Publishing, Cham.
|
[52] |
Filipovic N, Kojic M, Ferrari M. 2011. Dissipative particle dynamics simulation of circular and elliptical particles motion in 2D laminar shear flow. Microfluid. Nanofluidics, 10: 1127-1134. doi: 10.1007/s10404-010-0742-9
|
[53] |
Fu H, Comer J, Cai W, Chipot C. 2015. Sonoporation at small and large length scales: effect of cavitation bubble collapse on membranes. J. Phys. Chem. Lett., 6: 413-418. doi: 10.1021/jz502513w
|
[54] |
Groot R D, Warren P B. 1997. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys., 107: 4423-4435. doi: 10.1063/1.474784
|
[55] |
Guazzelli É, Morris J F, Pic S. 2011. A physical introduction to suspension dynamics, 1st ed. Cambridge University Press.
|
[56] |
Guido S, Simeone M. 1998. Binary collision of drops in simple shear flow by computer-assisted video optical microscopy. J. Fluid Mech., 357: 1-20. doi: 10.1017/S0022112097007921
|
[57] |
Guido S, Villone M. 1999. Measurement of interfacial tension by drop retraction analysis. J. Colloid Interface Sci., 209: 247-250. doi: 10.1006/jcis.1998.5818
|
[58] |
Guido S, Villone M. 1998. Three-dimensional shape of a drop under simple shear flow. J. Rheol., 42: 395-415. doi: 10.1122/1.550942
|
[59] |
Henrich B, Cupelli C, Moseler M, Santer M. 2007. An adhesive DPD wall model for dynamic wetting. Europhys. Lett. EPL, 80: 60004. doi: 10.1209/0295-5075/80/60004
|
[60] |
Hoang Viet M, Derreumaux P, Nguyen P H. 2016. Nonequilibrium all-atom molecular dynamics simulation of the bubble cavitation and application to dissociate amyloid fibrils. J. Chem. Phys., 145: 174113. doi: 10.1063/1.4966263
|
[61] |
Hoogerbrugge P J, Koelman J M V A. 1992. Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys. Lett. EPL, 19: 155-160. doi: 10.1209/0295-5075/19/3/001
|
[62] |
Howard M P, Truskett T M, Nikoubashman A. 2019. Cross-stream migration of a Brownian droplet in a polymer solution under Poiseuille flow. Soft Matter, 15: 3168-3178. doi: 10.1039/C8SM02552E
|
[63] |
Huang Y, Marson R L, Larson R G. 2018. Inertial migration of a rigid sphere in plane poiseuille flow as a test of dissipative particle dynamics simulations. J. Chem. Phys., 149: 164912. doi: 10.1063/1.5047923
|
[64] |
Jamali S, Armstrong R C, McKinley G H. 2019. Multiscale nature of thixotropy and rheological hysteresis in attractive colloidal suspensions under shear. Phys. Rev. Lett., 123: 248003. doi: 10.1103/PhysRevLett.123.248003
|
[65] |
Jamali S, Boromand A, Wagner N, Maia J. 2015. Microstructure and rheology of soft to rigid shear-thickening colloidal suspensions. J. Rheol., 59: 1377-1395. doi: 10.1122/1.4931655
|
[66] |
Jamali S, Brady J F. 2019. Alternative frictional model for discontinuous shear thickening of dense suspensions: Hydrodynamics. Phys. Rev. Lett., 123: 138002. doi: 10.1103/PhysRevLett.123.138002
|
[67] |
Jamali S, McKinley G H, Armstrong R C. 2017. Microstructural rearrangements and their rheological implications in a model thixotropic elastoviscoplastic fluid. Phys. Rev. Lett., 118: 048003. doi: 10.1103/PhysRevLett.118.048003
|
[68] |
Jamali S, Yamanoi M, Maia J. 2013. Bridging the gap between microstructure and macroscopic behavior of monodisperse and bimodal colloidal suspensions. Soft Matter, 9: 1506-1515. doi: 10.1039/C2SM27104D
|
[69] |
Jeffery G B. 1922. The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character, 102: 161-179.
|
[70] |
Kim J, Phillips R. 2004. Dissipative particle dynamics simulation of flow around spheres and cylinders at finite Reynolds numbers. Chem. Eng. Sci., 59: 4155-4168. doi: 10.1016/S0009-2509(04)00209-X
|
[71] |
Koelman J M V A, Hoogerbrugge P J. 1993. Dynamic simulations of hard-sphere suspensions under steady shear. Europhys. Lett. EPL, 21: 363-368. doi: 10.1209/0295-5075/21/3/018
|
[72] |
Koos E, Willenbacher N. 2011. Capillary forces in suspension rheology. Science, 331: 897-900. doi: 10.1126/science.1199243
|
[73] |
Lan C, Pal S, Li Z, Ma Y. 2015. Numerical simulations of the digital microfluidic manipulation of single microparticles. Langmuir, 31: 9636-9645. doi: 10.1021/acs.langmuir.5b02011
|
[74] |
Lan H, Khismatullin D B. 2012. A numerical study of the lateral migration and deformation of drops and leukocytes in a rectangular microchannel. Int. J. Multiph. Flow, 47: 73-84. doi: 10.1016/j.ijmultiphaseflow.2012.07.004
|
[75] |
Larson R G, Desai P S. 2015. Modeling the rheology of polymer melts and solutions. Annu. Rev. Fluid Mech., 47: 47-65. doi: 10.1146/annurev-fluid-010814-014612
|
[76] |
Li J, Renardy Y Y, Renardy M. 2000. Numerical simulation of breakup of a viscous drop in simple shear flow through a volume-of-fluid method. Phys. Fluids, 12: 269-282. doi: 10.1063/1.870305
|
[77] |
Li W, Ouyang J, Zhuang X. 2016. Dissipative particle dynamics simulation for the microstructures of ferromagnetic fluids. Soft Mater., 14: 87-95. doi: 10.1080/1539445X.2016.1150293
|
[78] |
Li Y, Guo Y, Bao M, Gao X. 2011. Investigation of interfacial and structural properties of CTAB at the oil/water interface using dissipative particle dynamics simulations. J. Colloid Interface Sci., 361: 573-580. doi: 10.1016/j.jcis.2011.05.078
|
[79] |
Li Y, Guo Y, Xu G, Wang Z, Bao M, Sun N. 2013. Dissipative particle dynamics simulation on the properties of the oil/water/surfactant system in the absence and presence of polymer. Mol. Simul., 39: 299-308. doi: 10.1080/08927022.2012.724173
|
[80] |
Li Y, Zhang H, Bao M, Wang Z. 2012. Dissipative particle dynamics simulation on the association between polymer and surfactant: Effects of surfactant and polymer feature. Comput. Mater. Sci., 63: 154-162. doi: 10.1016/j.commatsci.2012.06.007
|
[81] |
Li Z, Bian X, Caswell B, Karniadakis G E. 2014a. Construction of dissipative particle dynamics models for complex fluids via the Mori–Zwanzig formulation. Soft Matter, 10: 8659-8672. doi: 10.1039/C4SM01387E
|
[82] |
Li Z, Bian X, Li X, Deng M, Tang Y-H, Caswell B, Karniadakis G E. 2017. Dissipative particle dynamics: foundation, evolution, implementation, and applications, in: Bodnár, T., Galdi, G. P., Nečasová, Š. (Eds.), Particles in Flows, Advances in Mathematical Fluid Mechanics, Springer International Publishing, Cham, pp. 255–326.
|
[83] |
Li Z, Bian X, Li X, Karniadakis G E. 2015a. Incorporation of memory effects in coarse-grained modeling via the Mori-Zwanzig formalism. J. Chem. Phys., 143: 243128. doi: 10.1063/1.4935490
|
[84] |
Li Z, Hu G-H, Wang Z-L, Ma Y-B, Zhou Z-W. 2013. Three dimensional flow structures in a moving droplet on substrate: A dissipative particle dynamics study. Phys. Fluids, 25: 072103. doi: 10.1063/1.4812366
|
[85] |
Li Z, Tang Y-H, Lei H, Caswell B, Karniadakis G E. 2014b. Energy-conserving dissipative particle dynamics with temperature-dependent properties. J. Comput. Phys., 265: 113-127. doi: 10.1016/j.jcp.2014.02.003
|
[86] |
Li Z, Yazdani A, Tartakovsky A, Karniadakis G E. 2015b. Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems. J. Chem. Phys., 143: 014101. doi: 10.1063/1.4923254
|
[87] |
Lin C, Chen S, Xiao L, Liu Y. 2018. Tuning drop motion by chemical chessboard-patterned surfaces: A many-body dissipative particle dynamics study. Langmuir, 34: 2708-2715. doi: 10.1021/acs.langmuir.7b04162
|
[88] |
Lin C, Li Z, Lu L, Cai S, Maxey M, Karniadakis G E. 2021a. Operator learning for predicting multiscale bubble growth dynamics. J. Chem. Phys., 154: 104118. doi: 10.1063/5.0041203
|
[89] |
Lin C, Maxey M, Li Z, Karniadakis G E. 2021b. A seamless multiscale operator neural network for inferring bubble dynamics. J. Fluid Mech., 929: A18. doi: 10.1017/jfm.2021.866
|
[90] |
Lin Y, Pan D, Li J, Zhang L, Shao X. 2017. Application of Berendsen barostat in dissipative particle dynamics for nonequilibrium dynamic simulation. J. Chem. Phys., 146: 124108. doi: 10.1063/1.4978807
|
[91] |
Liu M B, Liu G R, Zhou L W, Chang J Z. 2015. Dissipative particle dynamics (DPD): An overview and recent developments. Arch. Comput. Methods Eng., 22: 529-556. doi: 10.1007/s11831-014-9124-x
|
[92] |
Liu M, Meakin P, Huang H. 2006. Dissipative particle dynamics with attractive and repulsive particle-particle interactions. Phys. Fluids, 18: 017101. doi: 10.1063/1.2163366
|
[93] |
Loewenberg M, Hinch E J. 1997. Collision of two deformable drops in shear flow. J. Fluid Mech., 338: 299-315. doi: 10.1017/S0022112097005016
|
[94] |
Loewenberg M, Hinch E J. 1996. Numerical simulation of a concentrated emulsion in shear flow. J. Fluid Mech., 321: 395-419. doi: 10.1017/S002211209600777X
|
[95] |
Lohse D, Zhang X. 2015. Surface nanobubbles and nanodroplets. Rev. Mod. Phys., 87: 981-1035. doi: 10.1103/RevModPhys.87.981
|
[96] |
Luciani A, Champagne M F, Utracki L A. 1997. Interfacial tension coefficient from the retraction of ellipsoidal drops. J. Polym. Sci. Part B Polym. Phys., 35: 1393-1403. doi: 10.1002/(SICI)1099-0488(19970715)35:9<1393::AID-POLB9>3.0.CO;2-N
|
[97] |
Lukianova-Hleb E Y, Kim Y-S, Belatsarkouski I, Gillenwater A M, O’Neill B E, Lapotko D O. 2016. Intraoperative diagnostics and elimination of residual microtumours with plasmonic nanobubbles. Nat. Nanotechnol., 11: 525-532. doi: 10.1038/nnano.2015.343
|
[98] |
Mackie A D, Bonet Avalos J, Navas V. 1999. Dissipative particle dynamics with energy conservation: Modelling of heat flow. Phys. Chem. Chem. Phys., 1: 2039-2049. doi: 10.1039/a809502g
|
[99] |
Mai-Duy N, Pan D, Phan-Thien N, Khoo B C. 2013. Dissipative particle dynamics modeling of low Reynolds number incompressible flows. J. Rheol., 57: 585-604. doi: 10.1122/1.4789444
|
[100] |
Mai-Duy N, Phan-Thien N, Khoo B C. 2015. Investigation of particles size effects in Dissipative Particle Dynamics (DPD) modelling of colloidal suspensions. Comput. Phys. Commun., 189: 37-46. doi: 10.1016/j.cpc.2014.12.003
|
[101] |
Marson R L, Huang Y, Huang M, Fu T, Larson R G. 2018. Inertio-capillary cross-streamline drift of droplets in Poiseuille flow using dissipative particle dynamics simulations. Soft Matter, 14: 2267-2280. doi: 10.1039/C7SM02294H
|
[102] |
Martys N S. 2005. Study of a dissipative particle dynamics based approach for modeling suspensions. J. Rheol., 49: 401-424. doi: 10.1122/1.1849187
|
[103] |
Menzl G, Gonzalez M A, Geiger P, Caupin F, Abascal J L F, Valeriani C, Dellago C. 2016. Molecular mechanism for cavitation in water under tension. Proc. Natl. Acad. Sci., 113: 13582-13587. doi: 10.1073/pnas.1608421113
|
[104] |
Merabia S, Bonet-Avalos J, Pagonabarraga I. 2008. Modelling capillary phenomena at a mesoscale: From simple to complex fluids. J. Non-Newton. Fluid Mech., 154: 13-21. doi: 10.1016/j.jnnfm.2008.01.009
|
[105] |
Mewis J, Wagner N J. 2012. Colloidal suspension rheology, Cambridge Series in Chemical Engineering, Cambridge University Press, Cambridge; New York.
|
[106] |
Mills Z G, Mao W, Alexeev A. 2013. Mesoscale modeling: solving complex flows in biology and biotechnology. Trends Biotechnol., 31: 426-434. doi: 10.1016/j.tibtech.2013.05.001
|
[107] |
Min S H, Lee C, Jang J. 2012. Dissipative particle dynamics modeling of a graphene nanosheet and its self-assembly with surfactant molecules. Soft Matter, 8: 8735. doi: 10.1039/c2sm26029h
|
[108] |
Mo C, Qin L, Zhao F, Yang L. 2016. Application of the dissipative particle dynamics method to the instability problem of a liquid thread. Phys. Rev. E, 94: 063113. doi: 10.1103/PhysRevE.94.063113
|
[109] |
Moeendarbary E, Ng T Y, Zangeneh M. 2009. Dissipative particle dynamics: introduction, methodology and complex fluid applications — A review. Int. J. Appl. Mech., 1: 737-763. doi: 10.1142/S1758825109000381
|
[110] |
Morris J F. 2020. Shear thickening of concentrated suspensions: Recent developments and relation to other phenomena. Annu. Rev. Fluid Mech., 52: 121-144. doi: 10.1146/annurev-fluid-010816-060128
|
[111] |
Ness C, Seto R, Mari R. 2022. The physics of dense suspensions. Annu. Rev. Condens. Matter Phys., 13: 97-117. doi: 10.1146/annurev-conmatphys-031620-105938
|
[112] |
Novik K E, Coveney P V. 2000. Spinodal decomposition of off-critical quenches with a viscous phase using dissipative particle dynamics in two and three spatial dimensions. Phys. Rev. E, 61: 435-448. doi: 10.1103/PhysRevE.61.435
|
[113] |
Novik K E, Coveney P V. 1997. Using dissipative particle dynamics to model binary immiscible fluids. Int. J. Mod. Phys. C, 8: 909-918. doi: 10.1142/S0129183197000783
|
[114] |
Olapade P O, Singh R K, Sarkar K. 2009. Pairwise interactions between deformable drops in free shear at finite inertia. Phys. Fluids, 21: 063302. doi: 10.1063/1.3153905
|
[115] |
Oseen C W. 1910. Uber die stokes’ sche formel und uber eine verwandte aufgabe in der hydrodynamik. Ark. Mat. Astron. Phisik, 6: 29.
|
[116] |
Pagonabarraga I, Frenkel D. 2001. Dissipative particle dynamics for interacting systems. J. Chem. Phys., 115: 5015-5026. doi: 10.1063/1.1396848
|
[117] |
Pagonabarraga I, Frenkel D. 2000. non-Ideal DPD fluids. Mol. Simul., 25: 167-175. doi: 10.1080/08927020008044122
|
[118] |
Pal R. 2011. Rheology of simple and multiple emulsions. Curr. Opin. Colloid Interface Sci., 16: 41-60. doi: 10.1016/j.cocis.2010.10.001
|
[119] |
Pal R. 2001. Novel viscosity equations for emulsions of two immiscible liquids. J. Rheol., 45: 509-520. doi: 10.1122/1.1339249
|
[120] |
Pan D, Lin Y, Zhang L, Shao X. 2016. Motion and deformation of immiscible droplet in plane Poiseuille flow at low Reynolds number. J. Hydrodyn., 28: 702-708. doi: 10.1016/S1001-6058(16)60673-X
|
[121] |
Pan D, Phan-Thien N, Khoo B C. 2015. Studies on liquid–liquid interfacial tension with standard dissipative particle dynamics method. Mol. Simul., 41: 1166-1176. doi: 10.1080/08927022.2014.952636
|
[122] |
Pan D, Phan-Thien N, Khoo B C. 2014. Dissipative particle dynamics simulation of droplet suspension in shear flow at low Capillary number. J. Non-Newton. Fluid Mech., 212: 63-72. doi: 10.1016/j.jnnfm.2014.08.011
|
[123] |
Pan D, Phan-Thien N, Mai-Duy N, Khoo B C. 2013. Numerical investigations on the compressibility of a DPD fluid. J. Comput. Phys., 242: 196-210. doi: 10.1016/j.jcp.2013.02.013
|
[124] |
Pan D, Zhao G, Lin Y, Shao X. 2018. Mesoscopic modelling of microbubble in liquid with finite density ratio of gas to liquid. EPL Europhys. Lett., 122: 20003. doi: 10.1209/0295-5075/122/20003
|
[125] |
Pan W, Caswell B, Karniadakis G E. 2010a. Rheology, microstructure and migration in brownian colloidal suspensions. Langmuir, 26: 133-142. doi: 10.1021/la902205x
|
[126] |
Pan W, Caswell B, Karniadakis G E. 2010b. A low-dimensional model for the red blood cell. Soft Matter, 6: 4366. doi: 10.1039/c0sm00183j
|
[127] |
Pan W, Fedosov D A, Karniadakis G E, Caswell B. 2008. Hydrodynamic interactions for single dissipative-particle-dynamics particles and their clusters and filaments. Phys. Rev. E, 78: 046706. doi: 10.1103/PhysRevE.78.046706
|
[128] |
Pan W, Tartakovsky A M. 2013. Dissipative particle dynamics model for colloid transport in porous media. Adv. Water Resour., 58: 41-48. doi: 10.1016/j.advwatres.2013.04.004
|
[129] |
Perry R H, Green D W. 1999. Perry’s Chemical Engineers’ handbook, 7th ed., McGraw-Hill, New York.
|
[130] |
Phan-Thien N, Mai-Duy N, Khoo B C. 2014a. A spring model for suspended particles in dissipative particle dynamics. J. Rheol., 58: 839-867. doi: 10.1122/1.4874679
|
[131] |
Phan-Thien N, Mai-Duy N, Pan D, Khoo B C. 2014b. Exponential-time differencing schemes for low-mass DPD systems. Comput. Phys. Commun., 185: 229-235. doi: 10.1016/j.cpc.2013.09.022
|
[132] |
Phan-Thien N, Pham D C. 1997. Differential multiphase models for polydispersed suspensions and particulate solids. J. Non-Newton. Fluid Mech., 72: 305-318. doi: 10.1016/S0377-0257(97)90002-1
|
[133] |
Proudman I, Pearson J R A. 1957. Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder. J. Fluid Mech., 2: 237-262. doi: 10.1017/S0022112057000105
|
[134] |
Pryamitsyn V, Ganesan V. 2005. A coarse-grained explicit solvent simulation of rheology of colloidal suspensions. J. Chem. Phys., 122: 104906. doi: 10.1063/1.1860557
|
[135] |
Rallison J M. 1981. A numerical study of the deformation and burst of a viscous drop in general shear flows. J. Fluid Mech., 109: 465-482. doi: 10.1017/S002211208100116X
|
[136] |
Rekvig L, Kranenburg M, Hafskjold B, Smit B. 2003a. Effect of surfactant structure on interfacial properties. Europhys. Lett. EPL, 63: 902-907. doi: 10.1209/epl/i2003-00607-5
|
[137] |
Rekvig Live, Kranenburg M, Vreede J, Hafskjold B, Smit B. 2003b. Investigation of surfactant efficiency using dissipative particle dynamics. Langmuir, 19: 8195-8205. doi: 10.1021/la0346346
|
[138] |
Revenga M, Zúñiga I, Español P. 1999. Boundary conditions in dissipative particle dynamics. Comput. Phys. Commun., 121–122 : 309–311.
|
[139] |
Revenga M, Zúñiga I, Español P, Pagonabarraga I. 1998. Boundary models in DPD. Int. J. Mod. Phys. C, 9: 1319-1328. doi: 10.1142/S0129183198001199
|
[140] |
Santo K P, Neimark A V. 2021. Dissipative particle dynamics simulations in colloid and Interface science: a review. Adv. Colloid Interface Sci., 298: 102545. doi: 10.1016/j.cis.2021.102545
|
[141] |
Segré G, Silberberg A. 1962. Behaviour of macroscopic rigid spheres in poiseuille flow Part 2. Experimental results and interpretation. J. Fluid Mech., 14: 136-157. doi: 10.1017/S0022112062001111
|
[142] |
Serrano M, Español P. 2001. Thermodynamically consistent mesoscopic fluid particle model. Phys. Rev. E, 64: 046115. doi: 10.1103/PhysRevE.64.046115
|
[143] |
Stickel J J, Powell R L. 2005. Fluid mechanics and rheology of dense suspensions. Annu. Rev. Fluid Mech., 37: 129-149. doi: 10.1146/annurev.fluid.36.050802.122132
|
[144] |
Taylor G I. 1934. The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character, 146: 501-523.
|
[145] |
Taylor G I. 1932. The viscosity of a fluid containing small drops of another fluid. Proc. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character, 138: 41-48.
|
[146] |
Tiwari A, Abraham J. 2009. A two-component two-phase dissipative particle dynamics model. Int. J. Numer. Methods Fluids, 59: 519-533. doi: 10.1002/fld.1830
|
[147] |
Tiwari A, Abraham J. 2006. Dissipative-particle-dynamics model for two-phase flows. Phys. Rev. E, 74: 056701. doi: 10.1103/PhysRevE.74.056701
|
[148] |
Tiwari A, Reddy H, Mukhopadhyay S, Abraham J. 2008. Simulations of liquid nanocylinder breakup with dissipative particle dynamics. Phys. Rev. E, 78: 016305. doi: 10.1103/PhysRevE.78.016305
|
[149] |
Tran-Duc T, Phan-Thien N, Cheong Khoo B. 2013. Rheology of bubble suspensions using dissipative particle dynamics. Part I: A hard-core DPD particle model for gas bubbles. J. Rheol., 57: 1715-1737. doi: 10.1122/1.4824387
|
[150] |
Trofimov S Y, Nies E L F, Michels M A J. 2005. Constant-pressure simulations with dissipative particle dynamics. J. Chem. Phys., 123: 144102. doi: 10.1063/1.2052667
|
[151] |
Trofimov S Y, Nies E L F, Michels M A J. 2002. Thermodynamic consistency in dissipative particle dynamics simulations of strongly nonideal liquids and liquid mixtures. J. Chem. Phys., 117: 9383-9394. doi: 10.1063/1.1515774
|
[152] |
Tsouka S, Dimakopoulos Y, Tsamopoulos J. 2016. Stress-gradient induced migration of polymers in thin films flowing over smoothly corrugated surfaces. J. Non-Newton. Fluid Mech., 228: 79-95. doi: 10.1016/j.jnnfm.2015.12.011
|
[153] |
Visser D C, Hoefsloot H C J, Iedema P D. 2006. Modelling multi-viscosity systems with dissipative particle dynamics. J. Comput. Phys., 214: 491-504. doi: 10.1016/j.jcp.2005.09.022
|
[154] |
Wang J, Han Y, Xu Z, Yang X, Ramakrishna S, Liu Y. 2021. Dissipative particle dynamics simulation: A review on investigating mesoscale properties of polymer systems. Macromol. Mater. Eng., 306: 2000724. doi: 10.1002/mame.202000724
|
[155] |
Wang J, Li J, Pan D. 2022. Mesoscopic simulation of liquid bridge spreading under squeezing of parallel plates. Phys. Fluids, 34: 123101. doi: 10.1063/5.0127420
|
[156] |
Wang X, Santo K P, Neimark A V. 2020. Modeling gas–liquid interfaces by dissipative particle dynamics: Adsorption and surface tension of cetyl trimethyl ammonium bromide at the air–water interface. Langmuir, 36: 14686-14698. doi: 10.1021/acs.langmuir.0c02572
|
[157] |
Wang Y, Ouyang J, Wang X. 2021. Machine learning of lubrication correction based on GPR for the coupled DPD–DEM simulation of colloidal suspensions. Soft Matter, 17: 5682-5699. doi: 10.1039/D1SM00250C
|
[158] |
Warren P B. 2003. Vapor-liquid coexistence in many-body dissipative particle dynamics. Phys. Rev. E, 68: 066702. doi: 10.1103/PhysRevE.68.066702
|
[159] |
Weijs J H, Snoeijer J H, Lohse D. 2012. Formation of surface nanobubbles and the universality of their contact angles: A molecular dynamics approach. Phys. Rev. Lett., 108: 104501. doi: 10.1103/PhysRevLett.108.104501
|
[160] |
Whittle M, Travis K P. 2010. Dynamic simulations of colloids by core-modified dissipative particle dynamics. J. Chem. Phys., 132: 124906. doi: 10.1063/1.3364011
|
[161] |
Wu C J, Chu K C, Sheng Y J, Tsao H K. 2017. Sliding dynamic behavior of a nanobubble on a surface. J. Phys. Chem. C, 121: 17932-17940. doi: 10.1021/acs.jpcc.7b04924
|
[162] |
Xia Y, Blumers A, Li Z, Luo L, Tang Y-H, Kane J, Goral J, Huang H, Deo M, Andrew M. 2020. A GPU-accelerated package for simulation of flow in nanoporous source rocks with many-body dissipative particle dynamics. Comput. Phys. Commun., 247: 106874. doi: 10.1016/j.cpc.2019.106874
|
[163] |
Xiao L, Zhang K, Zhao J, Chen S, Liu Y. 2021. Viscosity measurement and simulation of microbubble wetting on flat surfaces with many-body dissipative particle dynamics model. Colloids Surf. Physicochem. Eng. Asp., 608: 125559. doi: 10.1016/j.colsurfa.2020.125559
|
[164] |
Yaron I, Gal-Or B. 1972. On viscous flow and effective viscosity of concentrated suspensions and emulsions: Effect of particle concentration and surfactant impurities. Rheol. Acta, 11: 241-252. doi: 10.1007/BF01974767
|
[165] |
Ye T, Jing B, Pan D. 2023. Intelligent dissipative particle dynamics: Bridging mesoscopic models from microscopic simulations via deep neural networks. J. Comput. Phys., 475: 111857. doi: 10.1016/j.jcp.2022.111857
|
[166] |
Ye T, Pan D, Huang C, Liu M. 2019. Smoothed particle hydrodynamics (SPH) for complex fluid flows: Recent developments in methodology and applications. Phys. Fluids, 31: 011301. doi: 10.1063/1.5068697
|
[167] |
Zhang Y, Xu J, He X. 2018. Effect of surfactants on the deformation of single droplet in shear flow studied by dissipative particle dynamics. Mol. Phys., 116: 1851-1861. doi: 10.1080/00268976.2018.1459916
|
[168] |
Zhao G, Pan D, Zeng L, Shao X. 2021. Numerical study on droplet deformation in periodic pulsatile shear flow and effects of inertia. J. Non-Newton. Fluid Mech., 289: 104494. doi: 10.1016/j.jnnfm.2021.104494
|
[169] |
Zhao J, Chen S, Zhang K, Liu Y. 2021. A review of many-body dissipative particle dynamics (MDPD): Theoretical models and its applications. Phys. Fluids, 33: 112002. doi: 10.1063/5.0065538
|
[170] |
Zhao J, Zhou N, Zhang K, Chen S, Liu Y. 2020a. Study on stretching liquid bridges with symmetric and asymmetric surface wettability. Phys. Rev. Fluids, 5: 064003. doi: 10.1103/PhysRevFluids.5.064003
|
[171] |
Zhao J, Zhou N, Zhang K, Chen S, Liu Y, Wang Y. 2020b. Rupture process of liquid bridges: The effects of thermal fluctuations. Phys. Rev. E, 102: 023116.
|
[172] |
Zhao L, Li Z, Wang Z, Caswell B, Ouyang J, Karniadakis G E. 2021. Active- and transfer-learning applied to microscale-macroscale coupling to simulate viscoelastic flows. J. Comput. Phys., 427: 110069. doi: 10.1016/j.jcp.2020.110069
|