Citation: | Lu Y R, Wang J J. Review and prospect on the efficient synthetic jet. Advances in Mechanics, 2024, 54(1): 61-85 doi: 10.6052/1000-0992-23-038 |
[1] |
罗振兵, 夏智勋. 2005. 合成射流技术及其在流动控制中应用的进展. 力学进展, 35(2): 14 (Luo Z B, Xia Z X. 2005. Advances in synthetic jet technology and applications in flow control. Advances in Mechanics, 35(2): 14).
|
[2] |
明晓, 戴昌晖, 史胜熙. 1992. 声学整流效应的新现象. 力学学报, 24(1): 48-54. (Ming X, Dai C H, Shi S X. 1992. A new phenomenon of acoustic streaming. Acta Mech. Sin., 24(1): 48-54).
|
[3] |
王雷, 李哲, 冯立好. 2023. 合成射流激励器能量转换效率的参数影响规律及优化研究. 实验流体力学, 37 (4): 87-95 (Wang L, Li Z, Feng L H. 2023. Parameter influence and optimization of energy conversion efficiency of synthetic jet actuators. Journal of Experiments in Fluid Mechanics, 37 (4): 87-95).
Wang L, Li Z, Feng L H. 2023. Parameter influence and optimization of energy conversion efficiency of synthetic jet actuators. Journal of Experiments in Fluid Mechanics, 37(4): 87-95
|
[4] |
张鉴源, 罗振兵, 彭文强, 等. 2023. 基于合成双射流的襟翼舵效增强技术研究. 实验流体力学, 37 (4): 76-86 (Zhang J Y, Luo Z B, Peng W Q, et al. 2023. Investigation on performance enhancement of flap based on dual synthetic jets. Journal of Experiments in Fluid Mechanics, 37 (4): 76-86).
Zhang J Y, Luo Z B, Peng W Q, et al. 2023. Investigation on performance enhancement of flap based on dual synthetic jets. Journal of Experiments in Fluid Mechanics, 37(4): 76-86
|
[5] |
张攀峰, 王晋军, 冯立好. 2008. 零质量射流技术及其应用研究进展. 中国科学(E辑:技术科学), 38(3): 321-349. (Zhang P F, Wang J J, Feng L H. 2008. Review of zero-net-mass-flux jet and its application in separation flow control. Sci China Series E-Tech. Sci., 38(3): 321-349).
|
[6] |
庄逢甘, 黄志澄. 2003. 未来高技术战争对空气动力学创新发展的需求. 2003空气动力学前沿研究论文集, 73-79 (Zhuang F G, Huang Z C. 2003. The demand for innovative development of aerodynamics in future high-tech wars. 2003 Symposium on Frontier Research in Aerodynamics, 73-79).
Zhuang F G, Huang Z C. 2003. The demand for innovative development of aerodynamics in future high-tech wars. 2003 Symposium on Frontier Research in Aerodynamics, 73-79
|
[7] |
Arshad A, Jabbal M, Yan Y Y. 2020. Synthetic jet actuators for heat transfer enhancement - A critical review. Int. J. Heat Mass Trans., 146: 118815. doi: 10.1016/j.ijheatmasstransfer.2019.118815
|
[8] |
Azzawi I D J, Jaworski A J, Mao X. 2021. An overview of synthetic jet under different clamping and amplitude modulation techniques. ASME. J. Heat Transfer, 143: 031501. doi: 10.1115/1.4049189
|
[9] |
Bushnell D M, Wygnanski I. 2020. Flow control applications. National Aeronautics and Space Administration, Langley Research Center.
|
[10] |
Cattafesta L N, Sheplak M. 2011. Actuators for active flow control. Annual Review of Fluid Mechanics, 43: 247-272. doi: 10.1146/annurev-fluid-122109-160634
|
[11] |
Chaudhari M, Puranik B, Agrawal A. 2011. Multiple orifice synthetic jet for improvement in impingement heat transfer. Int. J. Heat Mass Trans., 54: 2056-2065. doi: 10.1016/j.ijheatmasstransfer.2010.12.023
|
[12] |
Chiatto M, Capuano F, de Luca L. 2018. Numerical and experimental characterization of a double-orifice synthetic jet actuator. Meccanica, 53: 2883-2896. doi: 10.1007/s11012-018-0866-7
|
[13] |
de Luca L, Girfoglio M, Coppola G. 2014. Modeling and experimental validation of the frequency response of synthetic jet actuators. AIAA J., 52: 1733-1748.
|
[14] |
Chiatto M, Capuano F, Coppola G, de Luca L. 2017. LEM characterization of synthetic jet actuators driven by piezoelectric element: A Review. Sensors. 17 : 1216. doi: 10.2514/1.J052674
|
[15] |
Feng L H, Wang J J. 2010a. Circular cylinder vortex-synchronization control with a synthetic jet positioned at the rear stagnation point. J. Fluid Mech., 662: 232-259. doi: 10.1017/S0022112010003174
|
[16] |
Feng L H, Wang J J, Pan C. 2010b. Effect of novel synthetic jet on wake vortex shedding modes of a circular cylinder. J. Fluid Struct., 26: 900-917. doi: 10.1016/j.jfluidstructs.2010.05.003
|
[17] |
Fu H X, Cohen R E. 2000. Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403 : 281-283.
|
[18] |
Fukiba K, Ota K, Harashina Y. 2018. Heat transfer enhancement of a heated cylinder with synthetic jet impingement from multiple orifices. Int. Commun. Heat Mass, 99: 1-6. doi: 10.1016/j.icheatmasstransfer.2018.10.006
|
[19] |
Gallas Q, Holman R, Nishida T, Carroll B, Sheplak M, Cattafesta L. 2003. Lumped element modeling of piezoelectric-driven synthetic jet actuators. AIAA J., 41: 240-247. doi: 10.2514/2.1936
|
[20] |
Gil P, Strzelczyk P. 2016. Performance and efficiency of loudspeaker driven synthetic jet actuator. Experimental Thermal and Fluid Science, 76: 163-174. doi: 10.1016/j.expthermflusci.2016.03.020
|
[21] |
Glezer A. 1988. The formation of vortex rings. Phys. Fluids, 31(12): 3532-3541. doi: 10.1063/1.866920
|
[22] |
Glezer A, Amitay M. 2002. Synthetic jets. Annual Review of Fluid Mechanics, 34: 503-529. doi: 10.1146/annurev.fluid.34.090501.094913
|
[23] |
Gungordu B, Jabbal M, Popov A A. 2023. Enhancing jet velocity and power conversion efficiency of piezoelectric synthetic jet actuators. AIAA J, 61: 4321-4331. doi: 10.2514/1.J062930
|
[24] |
He W, Luo Z B, Deng X, Xia Z X. 2019. Experimental investigation on the performance of a novel dual synthetic jet actuator-based atomization device. Int. J. Heat Mass Trans., 142: 118406. doi: 10.1016/j.ijheatmasstransfer.2019.07.056
|
[25] |
Holman R, Utturkar Y, Mittal R, Smith B L, Cattafesta L. 2005. A formation criterion for synthetic jets. AIAA J., 43(10): 2110-2116. doi: 10.2514/1.12033
|
[26] |
Hong M H, Cheng S Y, Zhong S. 2020. Effect of geometric parameters on synthetic jet: A review. Physics of Fluids, 32(3): 031301. doi: 10.1063/1.5142408
|
[27] |
Huber M, Zienert A, Weigel P, Schuller M, Berger H R, Schuster J, Otto T. 2021. Optimization of synthetic jet actuation by analytical modeling. Aircraft Engineering and Aerospace Technology, 93: 558-565. doi: 10.1108/AEAT-06-2019-0127
|
[28] |
Ingard U, Labate S. 1950. Acoustic circulation effects and the nonlinear impedance of orifices. J. Acoust. Soc. Am., 22(2): 211-218. doi: 10.1121/1.1906591
|
[29] |
Jain M, Puranik B, Agrawal A. 2011. A numerical investigation of effects of cavity and orifice parameters on the characteristics of a synthetic jet flow. Sensors and Actuators A:Physical, 165: 351-366. doi: 10.1016/j.sna.2010.11.001
|
[30] |
Krieg M, Mohseni K. 2008. Thrust characterization of pulsatile vortex ring generators for locomotion of underwater robots. IEEE J. Oceanic Eng., 33: 123-132. doi: 10.1109/JOE.2008.920171
|
[31] |
Lawson J M, Dawson J R. 2013. The formation of turbulent vortex rings by synthetic jets. Phys. Fluids, 25: 105113. doi: 10.1063/1.4825283
|
[32] |
Lee C Y, Goldstein D B. 2002. Two-dimensional synthetic jet simulation. AIAA J., 40: 510-516. doi: 10.2514/2.1675
|
[33] |
Li S, Luo Z B, Deng X, Liu Z. 2021. Experimental investigation on active control of flow around a finite-length square cylinder using dual synthetic Jet. J. Wind Eng. Ind. Aerod., 210: 104519. doi: 10.1016/j.jweia.2021.104519
|
[34] |
Li S, Luo Z B, Deng X, Liu Z Y, Gao T X, Zhao Z J. 2022. Lift enhancement based on virtual aerodynamic shape using a dual synthetic jet actuator. Chinese J. Aeronaut., 35: 117-129.
|
[35] |
Lockerby D A, Carpenter P W. 2004. Modeling and design of microjet actuators. AIAA J., 42(2): 220-227. doi: 10.2514/1.9091
|
[36] |
Lu Y R, Qu Y, Wang J S, Wang J J. 2022a. Numerical investigation of flow over a two-dimensional square cylinder with a synthetic jet generated by a bi-frequency signal. Appl. Math. Mech. -Engl. Ed., 43: 1569-1584. doi: 10.1007/s10483-022-2919-6
|
[37] |
Lu Y R, Wang J J. 2023. Numerical investigation of synthetic jets generated by various signals in quiescent ambient. Phys. Fluids, 35: 015107. doi: 10.1063/5.0129806
|
[38] |
Lu Y R, Wang J S, Wang J J. 2022b. Numerical investigation of efficient synthetic jets generated by multiple-frequency actuating signals. Acta Mech. Sin., 38: 321177. doi: 10.1007/s10409-021-09015-x
|
[39] |
Luo Z B, Xia Z X, Liu B. 2006. New generation of synthetic jet actuators. AIAA J., 44: 2418-2420. doi: 10.2514/1.20747
|
[40] |
Luo Z B, Zhao Z J, Liu J F, Deng X, Zheng M, Yang H, Chen Q Y, Li S Q. 2022. Novel roll effector based on zero-mass-flux dual synthetic jets and its flight test. Chinese J. Aeronaut., 35(8): 1-6. doi: 10.1016/j.cja.2021.08.015
|
[41] |
Mane P, Mossi K, Rostami A, Bryant R, Castro N. 2007. Piezoelectric actuators as synthetic jets: cavity dimension effects. J. Intel. Mat. Sys. Struct., 18: 1175-1190.
|
[42] |
Mangate L D, Chaudhari M B. 2016. Experimental study on heat transfer characteristics of a heat sink with multiple-orifice synthetic jet. Int. J. Heat Mass Trans, 103: 1181-1190. doi: 10.1016/j.ijheatmasstransfer.2016.08.058
|
[43] |
McCormick D. 2000. Boundary layer separation control with directed synthetic jets. AIAA P., 2000-0519.
|
[44] |
Palumbo A, de Luca L. 2021. Experimental and CFD characterization of a double-orifice synthetic jet actuator for flow control. Actuators, 10: 326. doi: 10.3390/act10120326
|
[45] |
Riazi H, Ahmed N A. 2011. Numerical investigation on two-orifice synthetic jet actuators of varying orifice spacing, diameter. 29th AIAA applied aerodynamics conference, 2011-3171.
|
[46] |
Rice T T, Taylor K, Amitay M. 2021. Pulse modulation of synthetic jet actuators for control of separation. Phys. Rev. Fluids, 6: 093902. doi: 10.1103/PhysRevFluids.6.093902
|
[47] |
Rizzetta D P, Visbal M R, Stanek M J. 2015. Numerical Investigation of Synthetic Jet Flowfields. AIAA J., 37: 919-927.
|
[48] |
Rusovici R, Lesieutre G A. 2004. Design of a single-crystal piezoceramic-driven synthetic-jet actuator. Smart Structures and Materials 2004 Conference. San Diego, CA2004, 276-283.
|
[49] |
Service R F. 1997. Materials science: shape-changing crystals get shiftier. Science, 275 (5308): 1878-1878.
|
[50] |
Shan R Q, Wang J J. 2010. Experimental Studies of the Influence of Parameters on Axisymmetric Synthetic Jets. Sensors and Actuators A-Physical, 157: 107-112. doi: 10.1016/j.sna.2009.11.006
|
[51] |
Sharma R. 2007. Fluid-Dynamic-Based Analytical Model for Synthetic Jet Actuation. AIAA J., 45: 1841-1847. doi: 10.2514/1.25427
|
[52] |
Shmilovich A, Yadlin Y, Vijgen P, Woszidlo R. 2023. Applications of Flow Control to Wing High-Lift Leading Edge Devices on a Commercial Aircraft, 2023 AIAA SciTech Forum, 23–27 January, National Harbor, Maryland.
|
[53] |
Shuster J M, Smith D R. 2007. Experimental Study of the Formation and Scaling of a Round Synthetic Jet. Phys. Fluids, 19(4): 045109. doi: 10.1063/1.2711481
|
[54] |
Smith B L, Glezer A. 1998. The formation and evolution of synthetic jets. Phys. Fluids, 10(9): 2281-2297. doi: 10.1063/1.869828
|
[55] |
Smith B L, Swift G W. 2001. Synthetic Jet at Large Reynolds Number and Comparison to Continuous Jets. AIAA P., 2001-3030.
|
[56] |
Tobalske B W, Dial K P. 1996. Flight kinematics of black-billed magpies and pigeons over a wide range of speeds. J. Exp. Bio., 199: 263-280. doi: 10.1242/jeb.199.2.263
|
[57] |
Utturkar Y, Holman R, Mittal R. 2003. A Jet Formation Criterion for Synthetic Jet Actuator. AIAA P., 2003-0636.
|
[58] |
Walimbe P, Agrawal A, Cjaudhari M. 2021. Flow characteristics and novel applications of synthetic jets: A review. ASME. J. Heat Transfer., 143: 1-67.
|
[59] |
Wang J J, Feng L H. 2019. Flow Control Techniques and Applications. Cambridge University Press.
|
[60] |
Wang J J, Shan R Q, Zhang C, Feng L H. 2010. Experimental investigation of a novel two-dimensional synthetic jet. Eur. J. Mech. B-Fluid, 29: 342-350. doi: 10.1016/j.euromechflu.2010.05.001
|
[61] |
Wang L, Feng L H, Wang J J, Li T. 2018. Characteristics and mechanism of mixing enhancement for noncircular synthetic jets at low reynolds number. Exp. Therm. Fluid Sci., 98: 731-743. doi: 10.1016/j.expthermflusci.2018.06.021
|
[62] |
Wang L, Feng L H, Xu Y. 2023. Lagrangian analysis on structure evolution and mass transport of circular and noncircular turbulent synthetic jets. Acta Mech. Sin., 39: 322294. doi: 10.1007/s10409-022-22294-x
|
[63] |
Watson M, Jaworski A J, Wood N J. 2003. A study of synthetic jets from rectangular, dual-circular orifices. Aeronaut. J., 107: 427-434. doi: 10.1017/S000192400001335X
|
[64] |
Wiltse J, Glezer A. 1993. Manipulation of free shear flows using piezoelectric actuators. J. Fluid Mech., 249: 261-285. doi: 10.1017/S002211209300117X
|
[65] |
William L S Ⅲ, Gregory S J, Mark D M. 2002. Flow control research at NASA Langley in support of high-lift augmentation. AIAA P., 2002-6006.
|
[66] |
Xia X, Mohseni K. 2015. Far-field momentum flux of high-frequency axisymmetric synthetic jets. Phys. Fluids, 27: 115101. doi: 10.1063/1.4935011
|
[67] |
Xu C Y, Long Y G, Wang J J. 2023. Entrainment mechanism of turbulent synthetic jet flow. J. Fluid Mech., 958: A31. doi: 10.1017/jfm.2023.102
|
[68] |
Zhang P F, Wang J J. 2007. Novel signal wave pattern for efficient synthetic jet generation. AIAA J., 45: 1058-1065. doi: 10.2514/1.25445
|