Volume 42 Issue 3
May  2012
Turn off MathJax
Article Contents
YU Yibing, NING Fulong, JIANG Guosheng, ZHANG Ling. MECHANICAL BEHAVIOR OF PURE HYDRATES[J]. Advances in Mechanics, 2012, 42(3): 347-358. doi: 10.6052/1000-0992/11-136
Citation: YU Yibing, NING Fulong, JIANG Guosheng, ZHANG Ling. MECHANICAL BEHAVIOR OF PURE HYDRATES[J]. Advances in Mechanics, 2012, 42(3): 347-358. doi: 10.6052/1000-0992/11-136

MECHANICAL BEHAVIOR OF PURE HYDRATES

doi: 10.6052/1000-0992/11-136
Funds:  The project was supported by the National Natural Science Foundation of China (40974071), Natural Science Foundation of Hubei Province (2010CDA056) and the Fundamental Research Funds for the Central Universities (CUGL100410).
More Information
  • Corresponding author: NING Fulong
  • Received Date: 2011-09-30
  • Rev Recd Date: 2012-02-11
  • Publish Date: 2012-05-25
  • Mechanical behavior of pure hydrates are foundation of the research on mechanical properties of hydrate-bearing sediments, and are thus closely connected with production of gas hydrates, geological hazards, CO2 storage, gas storage and transportation and many other aspects. However, limited by the conditions of hydrate formation and the defects of hydrate samples, there are still some disputes and gaps in the current study of mechanical properties of pure hydrates. In this paper, we summarized and analyzed the state-of-art of mechanical behavior of pure hydrates from experimental measurements and theoretical calculations, respectively. It is suggested that the combination of improved macroscopic experiments and microscopic molecular simulations is a good way to eliminate the influence of the defects of hydrate samples and reveal the origins and essences of similarities and differences between pure hydrates and ices, to understand the effects of microporosity, residual water and gas in the hydrate samples and to bridge the microscopic characteristics and the macroscopic mechanical behavior for pure hydrates.

     

  • loading
  • 1 National Research Council of the National Academies. Realizing the energy potential of methane hydrate for the United States. Washington. The National Academies Press, 2010. Report No.: 0309148898
    2 Gabitto J, Barrufet M. Gas Hydrates Research Programs: An International Review. United States: Prairie View A&M University, 2009
    3 Kvenvolden K A. Gas hydrates-geological perspective and global change. Reviews of Geophysics, 1993, 31(2): 173-187
    4 Birchwood R, Singh R, Mese A. Estimating the in situ mechanical properties of sediments containing gas hydrates. In: Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008). Vancouver, British Columbia, Canada, 2008
    5 Lee M W. Elastic velocities of partially gas-saturated unconsolidated sediments. Marine and Petroleum Geology,2004, 21(6): 641-650
    6 Xu W Y, Germanovich L N. Excess pore pressure resulting from methane hydrate dissociation in marine sediments: a theoretical approach. Journal of Geophysical Research-Solid Earth, 2006, 111: B01104, doi: 10.1029/2004JB003600
    7 Collett T, Dallimore S. Detailed analysis of gas hydrate induced drilling and production hazards. In: Proceedings of the 4th International Conference on Gas Hydrates. Yokohama, Japan, 2002
    8 宁伏龙, 蒋国盛, 张凌, 等. 影响含天然气水合物地层井壁稳 定的关键因素分析. 石油钻探技术, 2008, 36(003): 59-61
    9 Rutqvist J, Grover T, Moridis G J. Coupled hydrologic, thermal and geomechanical analysis of well bore stability in hydrate-bearing sediments. In: Proceedings of the Offshore Technology Conference. Houston, Texas, 2008
    10 Rutqvist J, Moridis G J, Grover T, et al. Geomechanical response of permafrost-associated hydrate deposits to depressurization-induced gas production. Journal of Petroleum Science and Engineering, 2009, 67(1-2): 1-12
    11 Maslin M, Owen M, Betts R, et al. Gas hydrates: past and future geohazard? Philos Transact A Math Phys Eng Sci, 2010, 368(1919): 2369-2393
    12 Sultan N, Cochonat P, Foucher J P, et al. Effect of gas hydrates melting on seafloor slope instability. Marine Geology,2004, 213(1-4): 379-401
    13 Winters W J, Pecher I A, Booth J S, et al. Properties of samples containing natural gas hydrate from the JAPEX/JNOC/GSC Mallik 2L-38 Gas Hydrate Research Well, determined using gas hydrate and sediment test laboratory instrument (GHASTLI). Geological Survey of Canada bulletin, 1999, 544: 241-250
    14 Winters W J. Stress history and geotechnical properties of sediment from the cape fear diapir, Blake ridge diapir, and blake ridge. In: Paull C K, Matsumoto R, Wallace P J, et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results,: College Station, Tex. : Ocean Drilling Program, 2000. 421-429
    15 Winters W J, Pecher I A, Waite W F, et al. Physical properties and rock physics models of sediment containing natural and laboratory-formed methane gas hydrate. American Mineralogist, 2004, 89(8-9): 1221-1227
    16 Gilbert L Y, Mason D H, Pecher I A, et al. Effect of grain size and pore pressure on acoustic and strength behavior of sediments containing methane gas hydrate. In: Proceedings of the 15th International Conference on Gas Hydrates. Trondheim, Norway, 2005
    17 Waite W F, Kneafsey T J, Winters W J, et al. Physical property changes in hydrate-bearing sediment due to depressurization and subsequent repressurization. Geophysical Research, 2008, 113(B07102): 1-37
    18 Francisca F, Yun T S, Ruppel C, et al. Geophysical and geotechnical properties of near-seafloor sediments in the northern Gulf of Mexico gas hydrate province. Earth and Planetary Science Letters, 2005, 237(3-4): 924-939
    19 Santamarina J C, Yun T S, Narsilio G A. Physical characterization of core samples recovered from Gulf of Mexico. Marine and Petroleum Geology, 2006, 23(9-10): 893-900
    20 Yun T S, Santamarina J C, Ruppel C D. Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate. Geophysical Research, 2007, 112(B04106): B04106
    21 Ruppel C, Lee J Y, Santamarina J C. Mechanical and electromagnetic properties of northern Gulf of Mexico sediments with and without THF hydrates. Marine and Petroleum Geology, 2008, 25(9): 884-895
    22 Tan C P, Freij-Ayoub R, Clennell M B, et al. Managing wellbore instability risk in gas hydrate-bearing sediments. In: Proceedings of Source SPE Asia Pacific Oil and Gas Conference and Exhibition. Jakarta, Indonesia, 2005
    23 Masui A, Miyazaki K, Haneda H, et al. Mechanical characteristics of natural and artificial gas hydrate bearing sediments. In: Proceedings of the 6th International Conference on Gas Hydrates(ICGH 2008). Vancouver, British, Canada, 2008
    24 Hyodo M, Nakata Y, Yoshimoto N, et al. Shear behaviour of methane hydrate-bearing sand. In: Proceedings of the Sixteenth International Offshore and Polar Engineering Conference. Lisbon, Portugal, 2007
    25 Miyazaki K, Masui A, Tenma N, et al. Study on mechanical behavior for methane hydrate sediment based on constant strain-rate test and unloading-reloading test under triaxial compression. International Journal of Offshore and Polar Engineering, 2010, 20(1): 61-67
    26 Wu L Y, Grozic J L H. Laboratory analysis of carbon dioxide hydrate-bearing sands. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(4): 547-550
    27 王淑云, 鲁晓兵, 张旭辉. 水合物沉积物力学性质的实验装 置和研究进展. 实验力学, 2009, (005): 413-420
    28 王淑云, 鲁晓兵. 水合物沉积物力学性质的研究现状. 力学进 展, 2009, 39(002): 176-188
    29 Durham W, Stern L, Kirby S, et al. Rheological comparisons and structural imaging of sI and sII endmember gas hydrates and hydrate/sediment aggregates. In: Proceedings of the 5th International Conference on Gas Hydrates. Trondheim, Norway, 2005
    30 Waite W F, Santamarina J C, Cortes D D, et al. Physical properties of hydrate-bearing sediments. Reviews of Geophysics, 2009, 47: 1-38
    31 Gabitto J F, Tsouris C. Physical properties of gas hydrates: a review. Journal of Thermodynamics, 2010,2010: 1-12
    32 Min S K, Zhang X B, Zwiers F W, et al. Human contribution to more-intense precipitation extremes. Nature,2011, 470(7334): 376-379
    33 Pall P, Aina T, Stone D A, et al. Anthropogenic greenhouse gas contribution to flood risk in England and Wales in autumn 2000. Nature, 2011, 470(7334): 382-385
    34 Pecher I A. Gas hydrates on the brink. Nature, 2002,420(6916): 622-623
    35 Uchida T, Kawabata J. Measurements of mechanical properties of the liquid CO2-water-CO2-hydrate system. Energy,1997, 22(2-3): 357-361
    36 Ripmeester J A, Lee H, Seo Y, et al. Recovering methane from solid methane hydrate with carbon dioxide. Angewandte Chemie-International Edition, 2003, 42(41):5048-5051
    37 Ning F L, Kirill G, Thijs V, et al. Lattice parameters and corresponding properties of methane and Carbon dioxide hydrates: molecular dynamics simulations. Prep. Pap.- Am. Chem. Soc., Div. Fuel Chem., 2011, 56(1): 85-90
    38 Koh B H, Choi J H. Compressive strength of ice-powder pellets as portable media of gas hydrate. International Journal of Precision Engineering and Manufacturing,2009, 10(5): 85-88
    39 Stoll R D, Bryan G M. Physical properties of sediments containing gas hydrates. Journal of Geophysical Research,1979, 84(B4): 1629-1634
    40 Helgerud M B. Wave speeds in gas hydrate and sediments containing gas hydrate: a laboratory and modeling study. Stanford, CA: Stanford University, 2001
    41 Pandit B, King M. Elastic wave propagation in propane gas hydrates. In: Proceedings of the 4th Canadian Permafrost Conference. Ottawa, Canada, 1982
    42 Whiffen B, Kiefte H, Clouter M. Determination of acoustic velocities in xenon and methane hydrates by Brillouin spectroscopy. Geophysical Research Letters, 1982, 9(6):645-648
    43 Kiefte H, Clouter M J, Gagnon R E. Determination of acoustic velocities of clathrate hydrates by Brillouin spectroscopy. The Journal of Physical Chemistry, 1985,89(14): 3103-3108
    44 Berge L I, Jacobsen K A, Solstad A. Measured acoustic wave velocities of R11 (CCl3F) hydrate samples with and without sand as a function of hydrate concentration. Journal of Geophysical Research-Solid Earth, 1999, 104(B7):15415-15424
    45 Waite W F, Helgerud M B, Nur A, et al. Laboratory measurements of compressional and shear wave speeds through methane hydrate. Gas Hydrates: Challenges for the Future, 2000, 912: 1003-1010
    46 Stern L A, Kirby S H, Durham W B. Peculiarities of methane clathrate hydrate formation and solid-state deformation, including possible superheating of water ice. Science, 1996, 273(5283): 1843-1848
    47 Stern L A, Kirby S H, Durham W B. Polycrystalline methane hydrate: Synthesis from superheated ice, and low-temperature mechanical properties. Energy & Fuels,1998, 12(2): 201-211
    48 Helgerud M B, Waite W F, Kirby S H, et al. Elastic wave speeds and moduli in polycrystalline ice Ih, sI methane hydrate, and sII methane-ethane hydrate. Journal of Geophysical Research-Solid Earth, 2009, 114, B02212, doi: 10.1029/2008JB006132
    49 王东, 李栋梁, 张海澜, 等. 天然气水合物样品声纵波特性和 温压影响测量. 中国科学, 2008, 38(008): 1038-1045
    50 Bathe M, Vagle S, Saunders G, et al. Ultrasonic wave velocities in the structure II clathrate hydrate THF17H2O. Journal of Materials Science Letters, 1984, 3(10): 904-906
    51 Sloan E D, Koh C A. Clathrate Hydrates of Natural Gases.3rd Ed. In: Boca Raton F L, ed. USA: CRC Press, 2008
    52 Shimizu H, Kumazaki T, Kume T, et al. Elasticity of single-crystal methane hydrate at high pressure. Physical Review B, 2002, 65(21)
    53 Helgerud M B, Waite W F, Kirby S H, et al. Measured temperature and pressure dependence of compressional (V-p) and shear (V-s) wave speeds in compacted, polycrystalline ice Ih. Canadian Journal of Physics, 2003,81(1-2): 81-87
    54 Gagnon R E, Kiefte H, Clouter M J, et al. Elasticconstants of Ice-Ih, up to 2.8 kbar, by brillouin spectroscopy. Journal De Physique, 1987, 48(C-1): 23-28
    55 Smith A C, Kishoni D. Measurement of the speed of sound in ice. Aiaa Journal, 1986, 24(10): 1713-1715
    56 Shaw G H. Elastic properties and equation of state of highpressure ice. Journal of Chemical Physics, 1986, 84(10):5862-5868
    57 Helgerud M B, Waite W F, Kirby S H, et al. Measured temperature and pressure dependence of V-p and V-s in compacted, polycrystalline sI methane and sII methaneethane hydrate. Canadian Journal of Physics, 2003, 81(1-2): 47-53
    58 Bylov M, Rasmussen P. Experimental determination of refractive index of gas hydrates. Chemical Engineering Science, 1997, 52(19): 3295-3301
    59 Maruyama F, Oya N, Takano O, et al. Experimental study on CO2 storage and sequestration in form of hydrate pellets. In: Proceedings of the 5th International Conference on Gas Hydrates. Trondheim, Norway, 2005
    60 Nixon W A, Schulson E M. A micromechanical view of the fracture-toughness of ice. Journal De Physique, 1987,48(C-1): 313-319
    61 Hyodo M, Hyde A F L, Nakata Y, et al. Triaxial compressive strength of methane hydrate. In: Proceedings of the Twelfth International Offshore and Polar Engineering Conference. Kitakyushu, Japan, 2002
    62 Durham W B, Kirby S H, Stern L A, et al. The strength and rheology of methane clathrate hydrate. Journal of Geophysical Research-Solid Earth, 2003, 108(B4): 2182, doi: 10.1029/2002JB001872
    63 Stern L A, Kirby S H, Durham W B, et al. Laboratory synthesis of pure methane hydrate suitable for measurement of physical properties and decomposition behavior. In: Max M D, ed. Natural Gas Hydrate, in Oceanic and Permafrost Environments. New York: Springer, 2000.323-348
    64 Nariai H, Yamane K, Aya I. Strength abnormarility of co2 hydrate membranebrane at deep ocean storage Site.http://www.google.com.hk/url?sa=t&rct=j&q=STRENGTH+ ABNORMARILITY+OF+CO2+ HYDRATE+ MEMBRANE &source=web&cd=1&ved=0CCYQFj- AA&url=http%3A%2F%2 Fwww.nmri.go.jp%2Fco2%-2F1-3.pdf&ei= xPyTpOrOMahiAfQ5ry1AQ&usg=AFQjCNFTaM Sa335aqi3DsCYvLydUbO4UOQ&cad=rjt
    65 Ohmura R, Shigetomi T, Mori Y H. Bending tests on clathrate hydrate single crystals. Philosophical Magazine A, 2002, 82(9): 1725-1740
    66 Song Y C, Yu F, Li Y H, et al. Mechanical property of artificial methane hydrate under triaxial compression. Journal of Natural Gas Chemistry, 2010, 19(3): 246-250
    67 Nabeshima Y, Matsui T. Static shear behaviors of methane hydrate and lee. In: Proceedings of the Fifth (2003) Isope Ocean Mining Symposium. Tsukuba, Japan,2003
    68 Yu F, Song Y C, Liu W G, et al. Study on shear strength of artificial methane hydrate. In: Proceedings of the Asme 29th International Conference on Ocean, Offshore and Arctic Engineering. Shanghai, China, 2010
    69 Whalley E. Speed of longitudinal sound in clathrate hydrates. Journal of Geophysical Research, 1980, 85(B5):2539-2542
    70 Shpakov V P, Tse J S, Tulk C A, et al. Elastic moduli calculation and instability in structure I methane clathrate hydrate. Chemical Physics Letters, 1998, 282(2): 107-114
    71 Miranda C R, Matsuoka T. First-principles study on mechanical properties of CH4 hydrate. In: Proceedings of the 6th International Conference on Gas Hydrates (ICGH2008). Vancouver, British Columbia, Canada, 2008
    72 Cox J L. Natural Gas Hydrates: Properties, Occurrence and Recovery. Stoneham, MA: Butterworth Publishers,1983
    73 Dvorkin J, Helgerud M B, Waite W F, et al. Introduction to physical properties and elasticity models. In: Max MD, ed. Natural Gas Hydrate in Oceanic and Permafrost Environments. Netherlands: Kluwer Academic Publishers,2000. 245-260
    74 Sloan E D, Hester K C, Huo Z, et al. Thermal expansivity for sI and sII clathrate hydrates. Journal of Physical Chemistry B, 2007, 111(30): 8830-8835
    75 Marchi M, Mountain R D. Thermal-expansion of a structure-ii hydrate using constant pressure moleculardynamics. Journal of Chemical Physics, 1987, 86(11):6454-6455
    76 Tse J S, Klein M L, McDonald I R. Computer simulation studies of the structure I clathrate hydrates of methane, tetrafluoromethane, cyclopropane, and ethylene oxide. The Journal of chemical physics, 1984, 81: 6146
    77 Jiang H, Myshakin E M, Jordan K D, et al. Molecular dynamics simulations of the thermal conductivity of methane hydrate. Journal of Physical Chemistry B, 2008, 112(33):10207-10216
    78 Tse J S, White M A. Origin of glassy crystalline behavior in the thermal-properties of clathrate hydrates - a thermal-conductivity study of tetrahydrofuran hydrate. Journal of Physical Chemistry, 1988, 92(17): 5006-5011
    79 Schober H, Itoh H, Klapproth A, et al. Guest-host coupling and anharmonicity in clathrate hydrates. European Physical Journal E, 2003, 12(1): 41-49
    80 Tse J S, Shpakov V P, Belosludov V R, et al. Coupling of localized guest vibrations with the lattice modes in clathrate hydrates. Europhysics Letters, 2001, 54(3): 354-360
    81 Tse J S, Klug D D, Zhao J Y, et al. Anharmonic motions of Kr in the clathrate hydrate. Nature Materials, 2005,4(12): 917-921
    82 Nabeshima Y, Takai Y, Komai T. Compressive strength and density of methane hydrate. In: Proceedings of the Sixth (2005) ISOPE Ocean Mining Symposium. Changsha, Hunan, China, 2005
    83 Staykova D K, Kuhs W F, Salamatin A N, et al. Formation of porous gas hydrates from ice powders: Diffraction experiments and multistage model. Journal of Physical Chemistry B, 2003, 107(37): 10299-10311
    84 Kuhs W F, Genov G, Goreshnik E, et al. The impact of porous microstructures of gas hydrates on their macroscopic properties. International Journal of Offshore and Polar Engineering, 2004, 14(4): 305-309
    85 Kuhs W F, Klapproth A, Gotthardt F, et al. The formation of meso- and macroporous gas hydrates. Geophysical Research Letters, 2000, 27(18): 2929-2932
    86 Lee J Y, Yun T S, Santamarina J C, et al. Observations related to tetrahydrofuran and methane hydrates for laboratory studies of hydrate-bearing sediments. Geochemistry Geophysics Geosystems, 2007, 8: Q06003, doi: 10.1029/2006GC001531
    87 Bondarev E A, Groisman A G, Savvin A Z. Porous medium effect on phase equilibrium of tetrahydrofuran hydrate. In: Proceedings of the 2nd International Conference on Natural Gas Hydrates. Toulouse, France, 1996
    88 Santamarina J, Yun T, Lee J, et al. Mechanical, thermal and electromagnetic properties of hydrate-bearing clay, silt, and sand at various confining pressures. In: Proceedings of the 2005 American Geophysical Union Fall Meeting. San Francisco, CA, 2005
    89 Yun T S, Francisca F M, Santamarina J C, et al. Compressional and shear wave velocities in uncemented sediment containing gas hydrate. Geophysical Research Letters,2005, 32: L10609, doi: 10.1029/2005GL022607
    90 National Research Council of the National Academies. Charting the future of methane hydrate research in the United States. Washington DC: National Academies,2004
    91 Klapp S A, Klein H, Kuhs W F. First determination of gas hydrate crystallite size distributions using highenergy synchrotron radiation. Geophysical Research Letters,2007, 34: L13608, doi: 10.1029/2006GL029134
    92 Klapp S A, Hemes S, Klein H, et al. Grain size measurements of natural gas hydrates. Marine Geology, 2010,274(1-4): 85-94
    93 Brown T D, Taylor C E, Bernardo M P. Rapid gas hydrate formation processes: Will they work? Energies,2010, 3(6): 1154-1175
    94 Tse J S, Klein M L, McDonald I R. Dynamical properties of the structure I clathrate hydrate of xenona. Journal of Chemical Physics, 1983, 78(4): 2096-2097
    95 Tse J S, Klein M L, Mcdonald I R. Molecular-dynamics studies of ice ic and the structure-i clathrate hydrate of methane. Journal of Physical Chemistry, 1983, 87(21):4198-4203
    96 Rodger P M. Methane hydrate - Melting and memory. In: Proceedings of the 3rd International Conference on Gas Hydrates. Salt Lake, Utah, 1999
    97 Walsh M R, Koh C A, Sloan E D, et al. Microsecond simulations of spontaneous methane hydrate nucleation and growth. Science, 2009, 326(5956): 1095-1098
    98 English N J, Phelan G M. Molecular dynamics study of thermal-driven methane hydrate dissociation. Journal of Chemical Physics, 2009, 131(7): 074704, doi: 10.1063/1.3211089
    99 Moon C, Taylor P C, Rodger P M. Clathrate nucleation and inhibition from a molecular perspective. Canadian Journal of Physics, 2003, 81(1-2): 451-457
    100 Hawtin R W, Rodger P M. Polydispersity in oligomeric low dosage gas hydrate inhibitors. Journal of Materials Chemistry, 2006, 16(20): 1934-1942
    101 Horikawa S, Itoh H, Tabata J, et al. Dynamic behavior of diatomic guest molecules in clathrate hydrate structure II. Journal of Physical Chemistry B, 1997, 101(32): 6290-6292
    102 Jatkar K, Lee S, Lee J W. Molecular dynamics simulations of water cavity distortion for determining clathrate hydrate equilibria. In: Proceedings of the AIChE National meeting. Nashville, TN, 2009
    103 Greathouse J A, Cygan R T, Simmons B A. Vibrational spectra of methane clathrate hydrates from molecular dynamics simulation. Journal of Physical Chemistry B,2006, 110(13): 6428-6431
    104 English N J, Rosenbaum E J, Johnson J K, et al. Thermal conductivity of methane hydrate from experiment and molecular simulation. Journal of Physical Chemistry B,2007, 111(46): 13194-13205
    105 Frankcombe T J, Kroes G J. Molecular dynamics simulations of Type-sII hydrogen clathrate hydrate close to equilibrium conditions. Journal of Physical Chemistry C,2007, 111(35): 13044-13052
    106 Guo G J, Zhang Y G, Zhao Y J, et al. Lifetimes of cagelike water clusters immersed in bulk liquid water: a molecular dynamics study on gas hydrate nucleation mechanisms. Journal of Chemical Physics, 2004, 121(3): 1542-1547
    107 Molinero V, Jacobson L C, Hujo W. Amorphous precursors in the nucleation of clathrate hydrates. Journal of the American Chemical Society, 2010, 132(33): 11806-11811
    108 Sum A K, Walsh M R, Koh C A, et al. Microsecond simulations of spontaneous methane hydrate nucleation and growth. Science, 2009, 326(5956): 1095-1098
    109 Debenedetti P G, Sarupria S. Hydrate molecular ballet. Science, 2009, 326(5956): 1070-1071
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1382) PDF downloads(1423) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    Baidu
    map