缺口件疲劳特性研究方法

FATIGUE PROPERTY BASED ON NOTCHED SPECIMEN TESTS

  • 摘要: 缺口件疲劳问题的研究日益引起各国学者的重视. 局部应力-应变法以其简单性在工程中得到了广泛应用, 该方法通常会得到偏于安全的结果. 引入疲劳缺口因子代替弹性应力集中因子针对缺口疲劳进行研究, 仍未能从本质上改善预测结果的准确性. 考虑到"热点应力" 附近的相对应力梯度, 提出了应力梯度法研究缺口件疲劳问题, 这一概念亦被用于应力场强度方法中, 如何准确确定损伤区域是应力场强度方法需要解决的问题. 临界距离理论可将Neuber 律、Peterson 方法及应力场强度方法进行有效统一, 同时有限元方法的发展进一步支持了该理论. 目前, 该方法在高周疲劳研究中取得了较好的效果, 但对低周疲劳寿命预测的有效性仍需进一步的验证.

     

    Abstract: Notched specimens are more and more widely used in fatigue studies. Since Neuber rule was proposed, the local stress-strain method has been used widely because of its simplicity. Conservative prediction results were usually obtained by this approach. The fatigue notch factor based on notched specimens has been used for the fatigue study instead of the stress concentration factor. However, the prediction precision has not been improved essentially. The stress gradient approach was proposed for the notched study with considerations of the stress gradient near the "hot point" and the concept of stress gradient was used in the stress field intensity approach. The dificult problem in the stress field intensity approach is how to decide the damage area accurately. The effective unification between the Neuber rule, the Peterson approach, and the stress field intensity approach can be achieved by the critical distance theory. The improvement of the finite element method supports the critical distance theory further. Now, better prediction results on high cycle fatigue were obtained by the critical distance theory, but this approach has not been much used for the predictions of low cycle fatigue.

     

/

返回文章
返回
Baidu
map