节水水嘴起泡器气液两相流数值模拟

NUMERICAL SIMULATION OF THE GAS-LIQUID TWO-PHASE FLOW IN THE WATER SAVING FAUCET BUBBLER

  • 摘要: 为了研究节水水嘴起泡器内部两相流的流动规律,采用Fluent软件对其内部流场进行数值模拟.根据起泡器内部流场的流动特性,采用欧拉两相流模型以及RNG (re-normalization group) κ-ε湍流模型,分析起泡器出口截面气液两相体积分数和速度的分布特点.结果表明:增大入口水流速度可以加快分散出口截面气液两相的分布,缩短流体流动的稳定时间;整流网具有分散流体,降低流速的作用;错开整流网相邻层之间的网格可以改善出口截面的液相分布;本模型中整流网采用三层网格达到较好的出水效果.

     

    Abstract: The interior flow-field of the water saving faucet bubbler is simulated by the Fluent software to study the flow characteristics of a two phase flow. According to the flow characteristics in the faucet bubbler, an Eulerian-model with the two phase flow and the RNG (re-normalization group) κ-ε turbulence model are established separately to analyze the distribution of the gas-liquid phase volume fraction and the velocity at the exit section. Results show that the increased velocity of the inlet flows accelerates the dispersion of the gas and liquid at the exit section. Furthermore, the commute-net disperses the flow and reduces the flow velocity at the same time. Additionally, staggering the grid of the commute-net between the adjacent layers improves the distribution of the liquid phase in the exit section, and the commute-net with a 3-level grid achieves an even better flow effect.

     

/

返回文章
返回
Baidu
map