翼梢小翼高度影响综合研究

STUDY ON THE AIRCRAFT INTEGRATED CHARACTERS WITH DIFFERENT HEIGHT WINGLETS

  • 摘要: 利用有限体积法离散求解雷诺平均Navier-Stokes方程以及气动和结构耦合计算了带2种不同类型翼梢小翼(融合式和鲨鳍式小翼)的翼身组合体构型.重点研究了小翼不同高度对飞机升阻比、机翼压力中心移动量、重量以及颤振特性的影响规律.研究结果表明,因小翼高度增加而带来的结构重量远远低于其有效载重的增量;因小翼高度增加而带来的颤振临界速度的降低在安全余量的范围内是可以调整的.因此,在设计小翼时与结构、重量和颤振的权衡中,建议高度的选择尽量优先满足纵向的升阻特性,以发挥其减阻潜力.

     

    Abstract: This paper considers the wingbody shape with two different types of winglets (the blended winglet and shark winglet) by discretized Reynolds average Navier-Stokes equation and the aero-structure coupled equation. The impact of the different heights of the winglet on the lift-drag ratio, the displacement of the wing pressure center, the weight and the flutter character is studied. The results show that the weight increase of the aircraft structure is smaller than the weight increase of effective loads and that the flutter velocity decrease is adjustable within the safety range. Therefore, it is suggested that the selection of the winglet height should have a priority over the lift-drag ratio character during the trade off between aero and weight & flutter in order to have a good drag reduction.

     

/

返回文章
返回
Baidu
map