Abstract:
In this study, 3D printing technique was introduced in the teaching of photoelasticity to fabricate model, which overcome the difficulties in traditional photoelasticity method, such as time consuming and high residual stress. A disk was used as an example to showcase the fabrication processes in 3D printing. Isoclinic and isochromatic phases and the photoelastic material stress fringe value were calculated based on a photoelastic measurement system. The introducing of 3D printing technique into photoelasticity makes it possible to teach and present the whole processes, from the design of digital models, to the fabrication of physical models, to the capture of photoelastic patterns, and finally to the extracting of stress fields. It helps students to better understand the fabrication process of photoelastic materials, measurement philosophy and key technology of photoelasticity.