EXPERIMENTAL STUDY ON AMPLITUDE FREQUENCY MODULATION CHARACTERISTICS OF ROGUE WAVES
-
摘要:
在漂浮式风力机水池缩尺模型实验中,生成畸形波以模拟其在实际海况下的性能响应十分重要,而畸形波的生成机制以及产生概率一直是研究的热点问题。为此,本文通过在海洋工程实验水池中进行物理实验,以此来探究波浪的演化过程以及畸形波的产生概率。实验采用随机波幅和随机相位法生成初始波序,对实验结果进行统计学分析,并对波浪能谱进行研究。实验结果表明,波浪谱的谱峰值下移以及谱峰频率逐渐减小。波浪的波高分布不再服从Rayleigh分布,具有大Benjamin-Feir指数的波浪场更容易出现极限波高或畸形波。
-
关键词:
- 非线性波 /
- 波浪调制演化 /
- 畸形波 /
- Benjamin-Feir指数
Abstract:Generating rogue waves in offshore tank during the scaled model tests of an offshore wind turbine is crucial, and the mechanisms and probabilities of rogue wave generation have always been a hot issue in the research. Therefore, through the experiment in the ocean engineering experimental tank, the experiment uses the random amplitude and random phase method to generate the initial wave sequence, and conducts a statistical analysis of the experimental results. The wave energy spectrum is studied to explore the evolution of waves and assess the probability of rogue waves. The results show that in the wave propagation, the spectral peak moves down and the frequency of the spectral peak decreases gradually. Additionally, the wave height distribution of waves does not obey the Rayleigh distribution, and the wave field with large Benjamin-Feir index (BFI) is more prone to limit wave height or rogue wave.
-
Keywords:
- nonlinear waves /
- modulational instability /
- rogue wave /
- Benjamin-Feir index
-
表 1 实验参数表
Table 1 Parameters of the test cases
Cases γ Hs/m ϵ BFI Case 1 1.0 0.125 0.046 0.6 Case 2 3.3 0.162 0.052 1.4 Case 3 6.0 0.182 0.056 2.0 表 2 X/L = 34.87处谱峰频率
Table 2 Wave frequencies in X/L = 34.87
Cases $ {f}_{0} $ $ {f}_{\text{test}} $ $ \Delta f $ Case 1 0.6667 0.6697 + 0.0031 Case 2 0.6667 0.6488 − 0.0179 Case 3 0.6667 0.6069 − 0.0597 表 3 畸形波产生概率(单位:%)
Table 3 The probability of generating rogue waves (unit: %)
X/L = 11.57 X/L = 15.76 X/L= 34.87 Rayleigh 0.0333 0.0333 0.0333 Case 1 0.0763 0.1901 0.1559 Case 2 0.1230 0.6645 0.2152 Case 3 0.0628 0.7986 1.4157 -
[1] 陈旭东, 朱仁庆, 杨帆等. 畸形波作用下浮体的载荷与响应研究新方法. 舰船科学技术, 2018, 40(9): 8-14 doi: 10.3404/j.issn.1672-7649.2018.05.002 Chen Xudong, Zhu Renqing, Yang Fan, et al. A new research method on loads and response of floating bodies under freak wave. Ship science and technology, 2018, 40(9): 8-14 (in Chinese) doi: 10.3404/j.issn.1672-7649.2018.05.002
[2] 张运秋, 胡金鹏. 畸形波生成的一种非线性机理分析. 华南理工大学学报(自然科学版), 2009, 37(6): 117-123 Zhang Yunqiu, Hu Jinpeng. Analysis of a nonlinear generation mechanism of freak waves. Journal of South China University of Technology (Natural science edition ), 2009, 37(6): 117-123 (in Chinese)
[3] 夏维达, 马玉祥, 董国海. 随机波浪中畸形波的数值模拟. 中国水运, 2014, 14(7): 117-122 [4] 薛亚东, 石爱国, 张本辉等. 基于方向谱的短峰畸形波数值模拟研究. 舰船科学技术, 2016, 38(21): 75-79 Xue Yadong, Shi Aiguo, Zhang Benhui, et al. Numerical simulation of freak wave based on directional spectrum. Ship Science and Technology, 2016, 38(21): 75-79 (in Chinese)
[5] Onorato M, Residori S, Bortolozzo U, et al. Rogue waves and their generating mechanisms in different physical contexts. Physics Reports , 2013, 47: 528
[6] Kharif C, Pelinovsky E. Physical mechanisms of the rogue wave phenomenon. European Journal of Mechanics B-Fluids, 2003, 22: 603
[7] Ducrozet G, Abdolahpour M, Nelli F, et al. Predicting the occurrence of rogue waves in the presence of opposing currents with a high-order spectral method. Physics Review Fluids, 2021(6): 064803
[8] Benjamin TB, Feir JE. The disintegration of wave trains on deep water, part 1: theory. Journal of Fluid Mechanics, 1967, 27: 417
[9] Janssen PA. Nonlinear four-wave interactions and freak waves. Journal of Physical Oceanography, 2002, 33: 863
[10] Koussaifi R, Tikan A, Toffoli A, et al. Spontaneous emergence of rogue waves in partially coherent waves: a quantitative experimental comparison between hydrodynamics and optics. Physics Review E, 2018, 97(1): 012208
[11] Dudley JM. Genty G, Mussot A, et al. Rogue waves and analogies in optics and oceanography. Nature Reviews Physics, 2019, 1(11): 675-689
[12] Ostrovskii LA, Soustov LV. “Selfmodulation” of electromagnetic waves in nonlinear transmission lines. Radiophysics and Quantum Electronics, 1972, 15(2): 182-187
[13] Strecker KE, Partridge GB, Truscott AG, et al. Formation and propagation of matter-wave soliton trains. Nature, 2002, 417(6885): 150-153
[14] 吴迪, 陶爱峰, 曾银东等. 调制Stokes波列长期演化过程中的熵值分析. 海洋湖沼通报, 2018(3): 106-112 Wu Di, Tao Aifeng, Zeng Yindong, et al. The analysis of entropy in long-term evolution of modulated Stokes wave trains. Transactions of Oceanology and Limnology, 2018(3): 106-112 (in Chinese)
[15] Onorato M, Osborne AR, Serio M, et al. Modulational instability and non-Gaussian statistics in experimental random water-wave trains. Physics of Fluids, 2005, 17(7): 1-4
[16] 张子檀, 徐文涛, 唐天宁等. 非定常风作用下极端波浪统计特性初探. 中国科学: 物理学力学天文学, 2021, 51(8): 084711 Zhang Zitan, Xu Wentao, Tang Tianning, et al. Preliminary investigation on statistical properties of extreme waves under unsteady wind. Scientia Sinica : Physica, Mechanica & Astronomica, 2021, 51(8): 084711 (in Chinese)
[17] Tang T, Xu W, Barratt D, et al. Spatial evolution of the kurtosis of steep unidirectional random waves. Journal of Fluid Mechanics, 2021, 908: A3 doi: 10.1017/jfm.2020.841
[18] 徐文涛, 唐天宁, 李晔. 不规则波长期调制演化的实验研究. 中国力学大会, 杭州, 2019 [19] ITTC. Laboratory modelling of waves: regular, irregular and extreme events. ITTC-Recommended Procedures and Guidelines, 2017