Citation: | Li Liang, Liu Bingrui, Zhang Runhui, et al. Numerical simulation of cylindrical particles motion in inclined pipeline. Mechanics in Engineering, 2022, 44(5): 1172-1178. DOI: 10.6052/1000-0879-22-216 |
In this paper, the movement of cylindrical particles in inclined pipeline is numerically simulated with computational fluid dynamics–discrete element method (CFD–DEM). The effects of particle density, particle length diameter ratio, suction velocity, pipe inclination and pipe length diameter ratio on the particle transportation efficiency are investigated. The results showed that the higher the particle density is, the lower the transportation efficiency is. The overall transportation efficiency decreases with the increase of the aspect ratio. Additionally, the increase of suction speed is beneficial to improve the particle suction efficiency. Meanwhile, the pipeline aspect ratio has an effect on the efficiency, but the relationship between them is not monotonic. The transportation efficiency is inversely proportional to the pipeline aspect ratio.
[1] |
D’Avino G, Maffettone PL. Particle dynamics in viscoelastic liquids. Journal of Non-Newtonian Fluid Mechanics, 2015, 215: 80-104 doi: 10.1016/j.jnnfm.2014.09.014
|
[2] |
Morris JF, Brady JF. Pressure-driven flow of a suspension: buoyancy effects. International Journal of Multiphase Flow, 1998, 24(1): 105-130
|
[3] |
Wachmann B, Kalthoff W, Schwarzer S, et al. Collective drag and sedimentation. Granular Matter, 1998, 1: 75 doi: 10.1007/s100350050012
|
[4] |
Pan TW, Joseph DD, Glowinski RBR, et al. Fluidization of 1204 spheres: simulation and experiment. Journal of Fluid Mechanics, 2002, 451: 169 doi: 10.1017/S0022112001006474
|
[5] |
Climent E, Maxey MR. Numerical simulations of random suspensions at finite Reynolds number. International Journal of Multiphase Flow, 2003, 29: 579 doi: 10.1016/S0301-9322(03)00016-8
|
[6] |
Yin X, Koch DL. Hindered settling velocity and microstructure in suspensions of solid spheres with moderate Reynolds number. Physics of Fluids, 2007, 19: 093302 doi: 10.1063/1.2764109
|
[7] |
Yin X, Koch DL. Velocity fluctuations and hydrodynamic diffusion in finite Reynolds number sedimenting suspensions. Physics of Fluids, 2008, 20: 043305 doi: 10.1063/1.2903623
|
[8] |
Kuusela E, Lahtinen JM, Ala-Nissila T. Sedimentation dynamics of spherical particles in confined geometries. Physical Review E, 2004, 69: 066310 doi: 10.1103/PhysRevE.69.066310
|
[9] |
Yan Y, Koplik J. Transport and sedimentation of suspended particles in inertial pressure-driven flow. Physics of Fluids, 2009, 21: 013301 doi: 10.1063/1.3070919
|
[10] |
Zhong W, Yu A, Liu X, et al. DEM/CFD–DEM modelling of non-spherical particulate systems: theoretical developments and applications. Powder Technology, 2016, 302: 108-152 doi: 10.1016/j.powtec.2016.07.010
|
[11] |
Golshan S, Sotudeh-Gharebagh R, Zarghami R, et al. Review and implementation of CFD–DEM applied to chemical process systems. Chemical Engineering Science, 2020, 221: 115646 doi: 10.1016/j.ces.2020.115646
|
[12] |
Zhong W, Yu A, Zhou G, et al. CFD simulation of dense particulate reaction system: approaches, recent advances and applications. Chemical Engineering Science, 2016, 140: 16-43 doi: 10.1016/j.ces.2015.09.035
|
[13] |
Ku X, Li T, Løvås T. Influence of drag force correlations on periodic fluidization behavior in Eulerian–Lagrangian simulation of a bubbling fluidized bed. Chemical Engineering Science, 2013, 95: 94-106 doi: 10.1016/j.ces.2013.03.038
|
[14] |
库晓珂, 王金, 陈涛等. 生物质热化学转化的CFD模拟研究. 力学与实践, 2021, 43(5): 663-673 doi: 10.6052/1000-0879-20-475
Ku Xiaoke, Wang Jin, Chen Tao, et al. CFD studies of biomass thermochemical conversion. Mechanics in Engineering, 2021, 43(5): 663-673 (in Chinese) doi: 10.6052/1000-0879-20-475
|
[15] |
Favier JF, Abbaspour-Fard MH, Kremmer M, et al. Shape representation of axi-symmetrical, non-spherical particles in discrete element simulation using multi-element model particles. Engineering Computations, 1999, 16(4): 467-480 doi: 10.1108/02644409910271894
|
[16] |
Hertz H. Ueber die Berührung fester elastischer Körper. Journal für die reine und angewandte Mathematik, 1882, 92: 156-171
|
[17] |
Cundall PA, Strack OD. A discrete numerical model for granular assemblies. Géotechnique, 1979, 29(1): 47-65
|
[18] |
Zhang R, Ku X, Yang S, et al. Modeling and simulation of the motion and gasification behaviors of superellipsoidal biomass particles in an entrained-flow reactor. Energy&Fuels, 2021, 35(2): 1488-1502
|