EI、Scopus 收录
中文核心期刊

一种新型浮升一体化排式飞翼的设计与研究

Design and research for a new type buoyancy-lifting row flying-wings

  • 摘要: 设计既有较大的内部容积、又有高气动效率的新型浮升一体化气动布局对此类低速飞行器的发展具有重要的科学研究价值和工程应用前景. 以NACA0030翼型为基础,构造了具有较高体积率(体积/表面积)的排式飞翼气动布局. 对不同排列形式的排式飞翼进行了详细的计算和评估分析,并提出了具有更好操纵性和稳定性的排式后掠飞翼气动布局. 数值模拟结果表明: 通过排式飞翼中后翼对前翼下方气流的阻滞作用,排式直飞翼和排式后掠飞翼的升阻比分别增大40%和 20%, 整个飞行器的气动效率显著提高; 同时, 浮升一体化排式飞翼的弦向尺寸较小,可有效降低材料的表面张力,这为高空飞行器表面柔性材料提供了较宽的选择范围.

     

    Abstract: It has important sciencfic and engineering applicationsfor aircrafts of low speed to design the buoyancy-lifting aircraft with bothbigger volume and higher aerodynamic efficiency. Based on the aerofoilNACA0030, some aerodynamic configurations of row flying-wings with thehigher volume efficiency (volume/surface) were constructed. Differentarrayed row flying-wings were calculated and investigated minutely. Anaerodynamic configuration of row sweptback flying-wings with the bettermaneuverability and stability was educed. The numerical simulation resultsindicate that the lift-drag ratios of row straight flying-wings and rowsweptback flying-wings increase by up to 40% and 20%, respectively,and the aerodynamic efficiency of aircrafts are improved obviously from theblock of airflow under the anterior flying-wing by the posteriorflying-wing. Meanwhile, the chordwise size of buoyancy-lifting rowflying-wings is comparatively small so that the surface tension of skinmaterial can be reduced availably. This characteristic provides the widerscope on the skin flexible material selection for high altitude aircrafts.

     

/

返回文章
返回
Baidu
map