气相爆轰驱动二级轻气炮内弹道数值模拟
NUMERICAL RESEARCH ON INTERIOR BALLISTICS OF THE TWO-STAGE LIGHT GAS GUN DRIVEN BY GASEOUS DETONATION
-
摘要: 二级轻气炮是超高速弹丸驱动技术中使用最广泛的技术之一, 它在超高速气动物理现象及材料高速碰撞下力学性能的实验研究和验证方面起着不可或缺的作用. 中国科学院力学研究所基于爆轰驱动方法研制了一座大型二级轻气炮, 可弥补高压气体驱动能力有限和火药使用受限的不足. 本文基于经过实验验证的准一维数值模拟方法, 详细研究了该设备的内弹道动力学参数及发射性能, 并探讨了不同发射方法及装填参数对设备性能的影响规律和机理. 研究结果表明, 氢氧爆轰驱动相比于高压气体驱动具有明显优势; 不同爆轰驱动方式对弹丸发射性能影响较小, 但其影响到整个设备的强度设计; 对装填运行参数的研究表明增大爆轰段充气压力可以有效加强轻气炮发射性能, 而活塞质量变化对发射速度的影响较为复杂, 轻气炮实际运行中受设备设计指标及模型材料性能的限制, 优化过程中需要同时调整3种参数以达到轻气炮最佳性能.Abstract: Two-stage light gas gun is one of the most widely used equipment in hypervelocity projectile launching technology, which plays an important role in a various of engineering fields such as hypersonic aerodynamics and material mechanical in high velocity impact. A two-stage light gas gun driven by gaseous detonation was designed and constructed at Institute of Mechanics, Chinese Academy of Sciences, which eliminated the disadvantages like deficient driving capability of high-pressure gas and low maintainability of gunpower. A one-quasi-dimensional numerical method was used to investigate the interior ballistic process and launching performance of detonation driving mode and pressure gas mode, the effect that the change of ignition tube position has on light gas gun and the effect of various parameters on launching performance. The result showed that the launching performance of detonation driving was superior to that of high-pressure gas driving. The contrast of forward and backward detonation driving mode showed that the change of detonation driving mode had slight influence on launching performance, but the strength design of the whole equipment had to take into consideration the driving mode. The research of various loading parameters showed the increase of detonation tube filling pressure enhanced the launching performance, beside, piston mass had complex effect on launching velocity. But the design index of light gas gun and the material performance of piston and projectile restrict the adjusting range of loading parameters. Due to the limitation, the parameters should adjust together in order to optimize the launching performance during the practical process.