力学进展, 2020, 50(1): 202006-202006 DOI: 10.6052/1000-0992-19-017

软体智能机器人的系统设计与力学建模

尹顺禹, 许艺, 岑诺, 金飘飘, 李铁风,

浙江省软体机器人与智能器件研究重点实验室, 杭州 310027

System design and mechanical modeling of soft smart robots

YIN Shunyu, XU Yi, CEN Nuo, JIN Piaopiao, LI Tiefeng,

Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, China

通讯作者: E-mail:litiefeng@zju.edu.cn

责任编辑: 胡更开

收稿日期: 2019-09-2   接受日期: 2020-03-20   网络出版日期: 2020-05-25

Corresponding authors: E-mail:litiefeng@zju.edu.cn

Received: 2019-09-2   Accepted: 2020-03-20   Online: 2020-05-25

作者简介 About authors

李铁风,浙江大学力学系教授,博士生导师,国家自然科学基金优秀青年基金获得者.主要研究软物质力学,智能材料与结构,软体机器人,现负责浙江大学交叉力学中心-软体机器人与智能装备实验室.

摘要

机器人或机电装备通常由电机模组、液压元件、齿轮和铰链等硬质部件构成,具有动力足、精度高等优点,但在实现低噪声、高安全系数与亲和性等方面存在挑战.受自然界生物体的柔软特性与高环境适应性的启发,设计制造软体机器人是近年来机器人领域的研究热点.作为软体机器人的核心构成部分,智能软材料可在外界不同刺激下产生不同响应,具有材料柔韧、生物相容性好、易于制备、价格低廉等优点,可广泛应用于机器人的设计与制造.几类典型的具备驱动功能的智能软材料与结构获得广泛的研究,包括气动软体肌肉、形状记忆合金/聚合物、离子交换聚合物、介电高弹体、响应水凝胶等.本文介绍了多种驱动类型的软体智能机器人研究成果,并从软体智能机器人的系统设计与力学建模两个方面进行了归纳分析与讨论.

关键词: 软体机器人 ; 智能软材料 ; 力学建模 ; 系统设计

Abstract

The conventional machines and mechanical structures are usually composed of rigid parts such as motors, gears, and hinges. Possessing the advantages of sufficient power and high precision, those rigid robots still have challenges in low noise and high adaptability. Inspired by the soft structure and high environmental adaptability of natural organisms, the design, and manufacture of soft robots have been widely studied in the field of robotics. Soft smart materials can produce responses under various external stimulation. With the advantages of excellent flexibility, good biocompatibility, and easy manufacturing, soft smart materials can be widely used in the design and fabrication of bionic soft robots. Several types of soft smart materials and structures with the actuating function have been extensively studied recently, including the pneumatic soft muscle, shape memory alloy/polymer, ion-exchange polymer, dielectric high-elastic body, and responsive hydrogel. In this paper, various types of soft smart robots with different actuating methods are introduced, and the system design and mechanical modeling of soft smart robots are summarized and discussed.

Keywords: robots ; smart materials ; mechanical modeling ; system design

PDF (31346KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

尹顺禹, 许艺, 岑诺, 金飘飘, 李铁风. 软体智能机器人的系统设计与力学建模. 力学进展[J], 2020, 50(1): 202006-202006 DOI:10.6052/1000-0992-19-017

YIN Shunyu, XU Yi, CEN Nuo, JIN Piaopiao, LI Tiefeng. System design and mechanical modeling of soft smart robots. Advances in Mechanics[J], 2020, 50(1): 202006-202006 DOI:10.6052/1000-0992-19-017

1 引言

长期以来, 形态各异的生物是工程师们设计制造愈发强劲机器的灵感之源. 得益于其柔软躯体对环境的良好适应, 自然界生物或能连续变形通过崎岖地形, 如蛇的爬行; 或能在水中实现高速运动, 如枪乌贼的逃逸机动. 柔性生物体所展现出的优异环境适应性与机动能力吸引着越来越多的科学家模仿、制作相应的柔性结构、驱动器件乃至机器人系统, 并利用智能软材料组成的人工肌肉作为驱动源, 逐渐形成了一类新的机器——软体机器人.

传统的机器人由刚性材料构成, 并由电机、液压缸、连杆与齿轮等硬质组件实现驱动或传动, 虽然在精确控制上带来便利, 可高效执行专门任务, 但也限制了其环境适应性与人体亲和性. 在人机协作中, 刚性机械侵害人身安全的事件时有发生, 刚体机器人的安全性是不容忽视的问题(Matthias et al. 2010). 相较于刚体机器人, 软体机器人不仅在结构与材料构成上发生改变, 在用途和工作方式上也有着大量调整. 软体机器人在与人发生接触时, 柔性材料可以发生形变, 吸收碰撞产生的大部分能量, 显著降低了机器人对人造成伤害的可能性, 增加了人机交互的亲和能力. 此外, 可承受大变形的柔软材料赋予了软体机器人根据实际任务需求改变自身形状和尺寸的能力, 使其可适应不同的任务环境, 可高效完成抓握(Deimel & Brock 2016)、攀爬(Majidi et al. 2013)等功能性动作.

除安全性和环境适应性外, 软体机器人还具有低成本和轻量化的特点(Ilievski & Aaron 2011). 软体机器人能够通过形变来适应抓握和其他任务而无需精确定位, 在控制上具有更低的成本. 此外, 软体机器人无需轴承或其他连接件, 其磨损和维护成本更低. 软体机器人, 特别是具有大量空腔的气动软体机器人, 常使用硅胶等弹性材料制作, 重量远小于同规格的刚性机器人. 以上特点使软体机器人在可穿戴设备(Kramer et al. 2011), 医疗服务(Song & Yun 2013), 军事, 复杂运动实现(Katzschmann et al. 2014)领域有着极为广泛的潜在用途.

不同于刚性机器人大量使用传感器和主动控制器来感受和响应外界刺激, 软体机器人往往依靠材料本身的特性对外界刺激做出反应. 因此, 能够对光、热、电、磁、催化剂、压力等表现出形变、发光、化学反应等特殊功能性响应的智能软材料(如软体人工肌肉)在软体机器人领域开始被愈加广泛地应用. 智能材料所包含的种类极多, 可按其响应的外界刺激分类如下, 介电弹性体(Rosset et al. 2008)、铁电聚合物(Zhang et al. 1998)、离子聚合物-金属复合材料(Mirfakhrai et al. 2007) 等电响应聚合物, 磁流变液(Fragouli & Bayer 2012)以及铁磁流体等磁响应聚合物, 热响应形状记忆聚合物(Le et al. 2010)为代表的热响应材料, 以光响应凝胶(Wei & Yu 2012)和光响应形状记忆聚合物(Lendlein & Kelch 2002)为代表的光响应材料, 以PDMS等硅胶为代表的弹性流体致动器(Gorissen & Donose 2011).

现阶段软体机器人在驱动效能提升、智能控制优化、可靠性改进等方面还存在不足, 并对力学设计、材料制备、传感控制等方面提出了新的科学挑战. 利用软体智能材料的行为特性, 发挥其驱动与传感功能进行软体机器人系统设计, 可实现新功能或提升驱动性能. 对软体智能机器人系统的力学建模则可进一步分析其柔软结构的行为特性, 并对优化结构设计与操纵控制提供指导. 本文从软体智能机器人系统设计和力学建模两个方面进行了归纳分析与讨论, 旨在为新型软体智能机器人的制造与操控提供设计思路.

2 软体机器人的系统设计

2.1 流体压力驱动的软体机器人

流体驱动的软体机器人是指通过在结构中充入流体, 利用压力使结构产生变形或运动的一类软体机器人. 因为它具有高功率重量比, 简单的设计和较好的顺应性, 有着广泛的应用.

Robertson等(2017)发现通过并联分组气动执行器, 形成执行器组件, 其性能优于体积相等的单个气动执行器, 如图1(a). Li等(2017)提出了一种流体驱动的折纸型人造肌肉, 可以收缩超过其初始长度的90%, 产生600 kPa的压力, 并能产生超过2 kW/kg的峰值功率密度. Galloway 等 (2016)研发了两种液压控制的水下抓手(纤维增强型和波纹管型), 该抓手利用软体机器人技术对深礁上的脆弱物种进行精细操作和取样.

图1

图1   (a)并联分组气动人造肌肉(Robertson et al. 2017), (b)折纸型人造肌肉(Li et al. 2017), (c)液压水下抓手(Galloway et al. 2016), (d)软液压机器人抓手(Zhang et al. 2018)


以上此类执行器是由刚性压力源(气泵等)驱动, Zhang等(2018)设计了一种由DE和水凝胶组成的软液压机器人, 如图1(d)所示. 其中DE气球用作液压源, 水凝胶室作为液压致动器连接到DE气囊, 此结构可设计作为软体机器人抓手.

此类软体机器人能产生较大的变形和输出力, 未来的发展已经不局限于开发出更好的执行器, 还要开发出适合软体机器人实现驱动能力的相关控制部分.

2.2 形状记忆合金/聚合物驱动软体机器人

形状记忆合金(SMA)是一种智能合金材料, 低温状态下可以发生变形, 而加热后可以恢复初始形状. 形状记忆合金的热力耦合行为源于材料本身的相变, 例如热弹性马氏体相变. 在形状记忆合金中存在两种相: 高温相奥氏体相和低温相马氏体相. 马氏体相出现后, 会随温度的降低而增加, 升高温度又会消失. 两项自由能之差可作为相变驱动力, 使两项自由能相等的温度$T_0$为平衡温度. 只有当温度低于平衡温度$T_0$时才会产生马氏体相变, 反之, 只有当温度高于平衡温度$T_0$时才会发生逆相变. 在SMA中, 马氏体相变不仅由温度引起, 也可以由应力引起, 这种由应力引起的马氏体相变叫做应力诱发马氏体相变, 且相变温度同应力正相关(Chu et al. 2012).

根据SMA的变形原理, 可利用合理设计将其驱动力输出. Villanueva等(2011)利用SMA驱动设计了一种软体仿生水母机器人, 其将SMA包在刚度较小的硅橡胶中, 利用SMA变形带动整体结构的运动, 可以在静水中产生足够的推力来推动自己前进, 结构如图2(a)所示. Kim等(2012)利用形状记忆合金, 设计了一种仿生海龟, 其最高游动速度可达22.5 mm/s. Wang等(2008)提出了一种嵌入式驱动的SMA仿生鳍单元, 并将其应用在仿生蝠鲼的软体机器人(Wang et al. 2009)中, 该机器人最高游动速度可达57 mm/s, 最大扑动幅值为40 mm. 杜威(2008)、李健(2011)等研制了SMA驱动的仿生乌贼推进器. 此外, SMA还可以用来设计攀爬机器人(Trimmer et al. 2006), 仿生飞行器(Bunget & Seelecke 2009, Colorado et al. 2012), 机器人面部表情驱动(Hara et al. 2001, Tadesse et al. 2011)等. Lee 等 (2019)利用形状记忆合金设计了一款夹持装置, 如图2(e), 在这项工作中, 提出了使用自由滑动的SMA线束作为软体驱动器的驱动肌肉, 大幅度提高了其弯曲角度及夹持力. 利用350 mm的肌肉, 其弯曲角度可达400$^\circ$. Huang 等 (2019)采用SMA外包导热弹性体的方式, 能够使SMA快速恢复初始状态, 提高了响应频率, 并设计了一款跳跃式结构, 如图2(f).

图2

图2   (a) SMA仿生水母(Villanueva et al. 2011), (b) SMA仿生龟(Kim et al. 2012), (c) SMA柔性鳍单元(Wang et al. 2008), (d) SMA仿生蝠鲼(Wang et al. 2009), (e) SMA仿生抓手(Lee et al. 2019), (f) SMA跳跃结构(Huang et al. 2019)


形状记忆合金(SMA)驱动的机器人具有大驱动力、大驱动位移等优点, 可以实现系统的智能化. 但是也存在温度难以控制、驱动频率低等缺点. 与形状记忆合金相比, 形状记忆聚合物(SMP)具有密度小、赋形容易、变形量大、响应温度可调等优点, 因此作为一种新型智能高分子材料, SMP近年来受到越来越多研究者的青睐. SMP的驱动方式有热驱动、光驱动、电驱动、磁驱动等.

图3(a)所示, Jin等(2018)利用热-光可逆的形状记忆聚合物, 设计了一种光驱动折纸变形结构. 聚合物薄膜可以编程成各种软体机器人, 利用光或温度的变化实现结构变形. Behl等(2013)将形状记忆聚合物设计成蛇形结构, 如图3(b)所示, 可使长度可逆变化约100%, 从而实现变形运动. Farhan等(2017)利用形状聚合物驱动设计了一个响应执行器, 如图3(c)所示, 它可以在3个不同的位置之间可逆地转动箭头符号, 展示了形状记忆聚合物驱动器的几何通用性和潜在的行为复杂性. Ge等(2016) 结合立体光刻技术, 设计了一款形状记忆聚合物微夹持器, 如图3(d)所示, 可根据温度的变化来拾取和释放物体.

图3

图3   (a) 光控SMP"折纸"结构(Jin et al. 2018), (b) SMP蛇形结构(Behl et al. 2013),(c) SMP响应执行器(Farhan et al. 2017), (d) SMP微夹持器(Ge et al. 2016)


2.3 响应水凝胶软体机器人

水凝胶是由亲水性功能高分子, 通过物理或化学作用交联形成三维网格结构, 吸水溶胀而成. 响应水凝胶可以在轻微的外部刺激下(包括温度, pH, 离子强度, 光, 电场, 磁场等), 在很大程度上可逆地改变其体积或形状. 为了实现响应水凝胶的复杂响应变形, 例如弯曲, 扭转和各向异性变形, 使用合适的设计制作方法十分重要.

Ma等(2014)受到"Lego"玩具的启发, 利用强大并且可逆的超分子相互作用创建了三维的响应水凝胶结构, 如图4(a)所示. 如果使用更复杂的刺激响应性的构建块, 则可以显著增加结构形状改变的复杂性. Zhao等(2016)受到"维纳斯捕蝇草"的启发, 设计了一种双稳态结构, 组合了温度响应和pH响应两种刺激响应水凝胶, 并通过超分子胶水整合不同的水凝胶, 可以可逆地产生非连续的形状变化.

图4

图4   (a) 可以"组装"的三维响应水凝胶(Ma et al. 2014), (b)双稳态结构的水凝胶(Zhao et al. 2016), (c) 人造膀胱逼尿肌(Yang et al. 2018)


Yang 等(2018)用热响应水凝胶膜, 丝绸支架和柔性电子设备研发了一种人造膀胱逼尿肌, 如图4(c)所示. 升高温度, 人造逼尿肌收缩, 对膀胱施加压力以诱导排尿. Qin等(2019)研发了由金属纳米结构组件交联的、高度有序的层状网络组成的各向异性水凝胶, 该复合材料在近红外照射和低pH条件下表现出显著的多响应自愈能力, 并且展现出令人印象深刻的平面内与平面外的弯曲制动能力, 在人工肌肉执行器中有很大的潜力.

Zhang等(2011)研发了由pNIPAM和单壁碳纳米管(SWNT)-pNIPAM双层致动器异构集成的可编程花, 如图5(a)所示, 在水浴中加热至50${^\circ}$时花折叠(即关闭), 通过冷却水浴使花绽开. Wang等(2013)通过组合弹性蛋白多肽与还原氧化石墨烯, 合成了近红外光驱动的水凝胶, 并将具有微小曲率的水凝胶多孔面朝下放置, 制成了轻型履带式驱动器, 如图5(b)所示.

图5

图5   (a) 可编程花(Zhang et al. 2011), (b) 履带式水凝胶驱动器(Wang et al. 2013)


2.4 介电弹性体驱动软体机器人

介电高弹体是一种典型的电响应聚合物, 在介电高弹体薄膜上下涂抹柔性电极并施加驱动电压, 在电场力的作用下, 介电高弹聚合物厚度方向减小而面积扩张, 从而产生大变形. 该聚合物具有能量密度高、响应速度快、效率高、弹性模量低、成本低、噪声低等优点.

Li等(2013)基于介电高弹体的力电耦合特性, 通过利用力电失稳实现了材料的极大电致变形, 并可振动调频, 能用于智能结构的驱动(Li et al. 2012).

该研究组利用介电高弹体薄膜, 已研制出几种典型的软体器件结构.其中, 如图6(a) (Li et al. 2017)所示, 该机器鱼中部预拉伸的DE薄膜可以舒张收缩, 带动外部硅胶框架运动, 进而带动鱼鳍扑动实现前行. 该机器鱼利用自身携带的高压电源, 可以实现6.4 cm/s的游动速度, 且续航时间可观.

图6(b)所示, 这是利用介电高弹体材料, 仿生水母而研制的软体机器人, 该机器人由预拉伸的DE薄膜连接6个塑料翅片构成, 这种机器水母的最大记录游泳速度高达1 cm/s, 利用受力平衡可测得, 最大推力为0.000 12 N. Jun和 Dario等(2018)利用DE材料设计出一种躯干摆动型前进式机器鱼, 如图6(c)所示, 躯干摆动前进是一种高效的运动方式, 可以提供较高的速度及加速度. 该机器人主体由硅胶层及预拉伸的DE薄膜组成, 体长150 mm, 重量4.4 g, 最高速可达37.2 mm/s.

图6

图6   (a) DE材料驱动翼(鳍)扑动型水下软体机器人(Li et al. 2017), (b) DE材料驱动仿生水母(Li et al. 2018), (c) 躯干摆动型前进式机器鱼(Jun et al. 2018)


美国的Michael 和 Caleb (2018)通过仿生柳叶鳗幼虫(图7(a)), 设计了一种无框架的透明游泳机器人, 如图7(b)所示, 该机器人使用一个充满液体的内部腔作为电极之一, 周围的环境液体作为第二个电极, 从而简化设计. 本设计实现了波浪游泳前进, 最大速度1.9 mm/s.

图7

图7   (a) 鳗鱼幼虫, (b) DE材料驱动游泳机器人(Michael & Caleb 2018), (c) DE行走机器人(Pei et al. 2004), (d) 三指常闭夹持器(Lau et al. 2017), (e) DE驱动软体抓手(Zhou et al. 2018)


Pei等(2004)利用介电薄膜与弹簧相结合的方式制作卷轴结构, 具有三个自由度, 可以实现拉伸及弯曲变形, 将其作为机器人的腿部, 可以实现六足机器人的行走功能, 如图7(c)所示. Lau等(2017)设计了一款具有较高弯曲刚度的电介质弹性体手指. 研究者们利用张拉拱形结构将预拉伸介电弹性体设计为屋面形状, 这样就放大了张力诱导的力矩, 比平面结构要高出40倍. 这样的手指通常可以提升自身重量的$8\sim 9$倍的有效载荷. Zhou等(2019)利用DE薄膜与3D打印相结合的方式, 不需要任何额外的粘接剂, 实现了抓取的大变形及多功能化.

DE驱动器是一项很有潜能的驱动技术, 但其应用也受到一些挑战.例如需要柔软合适的电极材料、需要设计限制预拉伸的刚性框架等.

2.5 IMPC驱动软体机器人

离子聚合物-金属复合材料(ionic polymer-metal composites, IPMC)具有驱动电压低、变形大、应用方便等优点(Zhao et al. 2003) . 当对IPMC两侧电极施加激励电压时, 由于离子迁移而产生向阳极方向较大的弯曲; 相反, 当IPMC在外力作用下弯曲变形时, 也会引起两侧电极上产生电压. 因此, IPMC材料既可以用作驱动器又可以用作传感器. 与压电陶瓷、形状记忆合金等传统硬质功能材料相比, IPMC材料具有变形大、响应迅速、质量轻、柔性好、生物相容性出色等优点(Hunter et al. 2004). 近年来, IPMC材料逐渐成为柔体机械和软物质科学等世界前沿科学与技术发展领域中备受关注的研究对象, 该材料对传统机、电驱动方式所带来的革命性的意义及其自身所蕴藏的巨大发展潜力, 在柔性机器人、自适应光学、球囊导管、盲文显示和能量收集等领域都具有广阔应用前景.

IPMC驱动器具有弹性模量小、能量密度大、质量轻、变形范围大、易制作等优点, 应用前景广阔, 应用领域主要包括可穿戴硬件和生理传感器、仿生机器人(Guo et al. 2006)、智能光学元件、软体机器人(Yamakita et al. 2004)等. IPMC材料的工作机理决定了弯曲是其基本运动形式, 故研究者在此基础上开发出了多种结构形式的驱动器, 主要包括单片弯曲型、多片弯曲型、碟型、齿轮型、并联型和串并联混合结构型等.

在医疗和工业领域, 仿生机器鱼因其小巧、高效、静音、灵活等优点得到广泛的关注. IPMC驱动器适宜工作在潮湿的环境中, 它能够像鱼尾一样大幅度弯曲, 且响应时间比较适合, 是微型仿生鱼驱动器的优选材料之一. 如图8(a) ~ 图8(c)分别为由IPMC驱动的仿生蝠鲼(Zheng et al. 2011)、软体机器水母(Li et al. 2016)和软体行走机器人(Chang & Kim 2013).

图8

图8   (a) IPMC仿生蝠鲼(Zheng et al. 2011), (b) IPMC仿生软体机器水母(Li et al. 2016), (c) IPMC仿生软体行走机器人(Chang & Kim 2013)


2.6 化学驱动软体机器人

Bartlett等(2015)研究组成员利用3D打印的技术研发制造了一款内燃软体机器人(图9(b)), 其以丁烷和氧气为燃料, 通过内部燃烧反应使气体膨胀的形式产生跳跃和形变的动力. 该内燃软体机器人的主体由两个嵌套的半球构成. 底部半球具有一个小的凹陷, 提供了一个初始注入氧气和丁烷的入口和初始储存燃气的空间. 在进行跳跃前, 该机器人会将两者气体在密闭的燃烧腔室中混合引起一边的足部膨胀, 使机器人发生一侧的倾斜, 点燃密闭腔室中的气体进行燃烧后将会释放化学能, 使机器人腹部的膜发生剧烈膨胀并推动这个小型机器人发生跳跃, 最终使用软材料足部实现小型机器人的软着陆, 图9(a)体现了该机器人进行跳跃的全过程. 此外, Shepherd等(2013)也研发了一种三足软体跳跃内燃机器人, 如图9(c)所示. 其主要通过甲烷与氧气燃烧使得足部气体体积剧烈膨胀, 产生弹跳的反作用力推动软体机器人跳跃30倍身高的距离. 但由于该种驱动方式驱动力较大, 也存在着难以控制跳跃高度及方向的问题.

图9

图9   (a) 内燃软体机器人跳跃机理, (b) 3D打印内燃软体机器人(Bartlett et al. 2015),(c) 三足跳跃内燃软体机器人(Shepherd et al. 2013)


Chen等(2019)利用过氧化氢分解的方式设计了一款化学驱动模块, 可以实现将化学能直接转化为机械能进行驱动. 如图10所示, 过氧化氢在催化剂的作用下快速分解, 产生气体, 造成气压的变化, 从而实现驱动.

图10

图10   过氧化氢分解产生气体驱动(Chen et al. 2019)


2.7 软控制器及软传感器

除上述各种类型的软驱动器外, 软体机器人的系统组成还包含软控制器、软传感器、动力源等多个部件, 且目前已有相关研究. Wehner等(2016)利用微流道的形式实现了软体控制器的制作. 如图11所示, 控制系统大致分为4个部分, 上游(液体燃料存储), 振荡器(液体燃料调节), 反应室(分解为加压气体)和下游(用于排气驱动), 实现了气压驱动.

图11

图11   微流道型软控制器(Wehner et al. 2016)


Rothemund等(2018)设计了一种软弹性的弯折阀, 它包含一个双稳态膜, 它作为一个机械开关来控制气流, 利用结构的"突跳"使薄膜在两种状态下快速转换. 如图12(a)所示, 当膜向下弯曲时(状态1), 管道在底部气室弯曲并阻塞空气通过, 而顶部腔室的管道开放, 气流可以通过. 当膜向上弯曲时(状态2), 则相反.

图12

图12   (a) 双稳态弯折阀(Rothemund et al. 2018), (b) 弯折阀(Luo et al. 2019), (c) 水凝胶传感器(Cheng et al. 2019)


相似的, Luo等(2019)设计了另一种弯折阀, 可使得能够使用单个恒定压力的空气源来使软体机器人进行复杂的运动. 如图12(b)所示, 在临界压力下, 管子会折成纽结并阻塞管子中的空气流动. 在另一个临界压力下, 管子会打开纽结, 并使空气在管子中流动.

软体机器人需要柔软、可拉伸、舒适的传感器, 以保持其适应性和安全性. 最近的研究中, Cheng等(2019)成功地将水凝胶应用于大应变传感器结构, 如图12(c)所示. 该传感器具有优异的电气和机械性能: 可以检测超过400%的应变而不受损伤, 在1500次加载周期后仍能保持稳定的性能, 工作带宽至少为10 Hz, 可以应用于快速驱动的软体机器人.

3 软体机器人的力学建模

软体机器人不同于一般的刚性机器人, 它具有无限多个自由度, 且变形接近于连续体的行为, 理论上可以通过连续数学来对这种行为建模, 但也导致了这种建模的复杂性, 加上软体机器人是一门综合了多种科学的学科, 所以对其建模需要掌握诸如电学、化学等学科知识. 一直以来, 建立精确的软体机器人的力学模型都是一项挑战. 通常, 将软体机器人的力学建模分为3类: 静力学模型, 运动学模型和动力学模型.

静力学建模通常指应用材料的本构模型, 力学和几何关系建立本体材料模型, 分析多场耦合下的力学特性. 此类问题的分析思路通常是根据材料的本构方程和研究对象的力和几何关系方程, 应用其边界条件解出应力应变关系等未知量.

以前文提到的软体机器人抓手(Zhang et al. 2018)为例(如图13所示), 分析DE膜的力学特性. 假设DE膜是不可压缩的, 使用理想介电弹性体的Gent模型来描述弹性行为, 用来表示应力应变分量.

图13

图13   软液压抓手DE薄膜静力学建模(Zhang et al. 2018)


Liu等(2017)研发的人造鱼鳔机器人, 由DE膜的变形, 从而改变机器人的总体积和浮力来完成驱动(如图14). 对于DE膜的力学建模基本上和软液压机器人的建模相似, 不同的是, 这里将DE气囊简化为一个半球形, 从而得到不同的几何方程.

图14

图14   人造鱼鳔机器人简化模型(Liu et al. 2017)


以上两者建模过程相似, 以前者为例

$ \lambda _1 \lambda _2 \lambda _3 = 1$
$ W = - \dfrac{\mu J_{\rm lim } }{2}\log \left(1 - \dfrac{\lambda _1^2 + \lambda _2^2 + \lambda _1^{-2} \lambda _2^{-2} -3}{J_{\rm lim} }\right)$

式中, $\lambda _1 $, $\lambda _2 $和$\lambda _3 $分别为轴向, 周向和厚度方向的变形, $W$表示自由能密度, $\mu $表示材料的剪切模量, $J_{\rm lim} $是定义极限拉伸的材料参数, 根据体积不变性可得式(1).

再根据其几何与应力应变关系方程

$ \dfrac{{\rm d}r}{{\rm d}R} = \lambda _1 \cos \theta$
$ \dfrac{{\rm d}z}{{\rm d}R} = \lambda _1 \sin \theta$
$ \dfrac{{\rm d}\theta }{{\rm d}R} = - \dfrac{\sigma _2 \lambda _1 }{\sigma _1 \lambda _2 }\sin \theta + \dfrac{\lambda _1 ^2\lambda _2 p}{\sigma _1 H}$
$ \dfrac{{\rm d}\lambda _1 }{{\rm d}R} = \left(R\dfrac{\partial (\sigma _1 / \lambda _1 )}{\partial \lambda _1 }\right)^{-1}\left(\dfrac{\sigma _2 }{\lambda _2 }\cos \theta - \dfrac{\sigma _1 }{\lambda _1 }\right) + \left(R\dfrac{\partial (\sigma _1 / \lambda _1 )}{\partial \lambda _1 }\right)^{-1}\left[\dfrac{\partial (\sigma _1 / \lambda _1 )}{\partial \lambda _2 }(\lambda _1 \cos \theta - \lambda _2 )\right]$

式中, $H$表示膜的厚度, $R$, $r$, $z$表示点在图示坐标系中的位置, $p$表示压力, $\theta $表示图示的倾角. 最后用到边界条件$r(0) = 0$, $z(0) = 0$, $\theta (0)= 0$和$r(A) = a$, 得到$z(R)$, $r(R)$, $\theta (R)$和$\lambda _1 (R)$, 也可以进一步得到其他控制方程.

上述图7(e)所示的介电弹性体驱动的抓手(Zhou et al. 2018)同样利用静力学建模的方式进行理论分析. 如图15(a)简化模型图所示, 框架的近端固定, 预拉伸膜紧贴框架, 构成双层结构, 利用弹性力学理论, 可以得出远端的弯转情况. 由于模型是高度简化得到, 因此需要利用有限元的方法(图15(b))进行计算模拟, 并与实验结果(图15(c))相比较.

图15

图15   (a) 简化静力学模型, (b) 有限元建模模拟, (c) 实验结果对比(Zhou et al. 2018)


有限元模拟是一种有效的建模手段, 如文献(Li et al. 2017)中,利用有限元模拟的方式, 展现了仿生机器鱼的扑动前进过程,如图16所示.

图16

图16   (a) 结构变形原理图, (b) 驱动前进的有限元模拟, (c) 实验对比图(Li et al. 2017)


系统力学模型的建立往往能帮助优化该系统的设计. Yang 等(2018)研发了一种"墨鱼"机器人(如图17), 通过磁铁与DE的配合使用驱动实现可逆的往复运动, 通过空腔内的体积变化, 来实现喷射推进"墨鱼"运动, 并利用强化学习的方法, 通过建立系统各部分的力与位移关系来实现性能的优化, 并利用有限元的方法进行了建模计算.

图17

图17   (a) (b) 墨鱼模型简化原理图, (c) (d) 有限元建模计算, (e) 结构实物图(Yang et al. 2018)


关于水凝胶驱动结构的力学建模, Zhao等(2016)在对仿生"维纳斯捕蝇草"的可逆变换研究中, 对水凝胶的双稳态结构建立了力学模型, 给出了以下方程

$ F(d) = Ad + Bd^3$
$ W_{\rm E} = \int {F(d){\rm d}d}$
$ G = W_{\rm E} - F_0 \times d = \dfrac{1}{2}Ad^2 + \dfrac{1}{4}Bd^3 - F_0 d$

其中, $F(d)$取决于水凝胶模量和结构几何形状, $d$为与水凝胶结构的高度有关的变形. {式(7)}是一般的用于表达双稳态结构的数学拟合. 无量纲参数$A$和$B$由材料和结构特性确定, 并可以根据实验数据进行拟合. $W_{\rm E}$代表变形结构的弹性能. $F_{0}$是来自水凝胶体积变化的驱动力, 取决于收缩/溶胀比和水凝胶模量. $F_{0}d$代表$F_{0}$做功, $G$代表系统自由能.

同样, 该文献也利用有限元模拟的方法, 展现了阶跃变化的过程, 如图18所示.

图18

图18   水凝胶驱动双稳态结构的有限元模拟(Zhao et al. 2016)


运动学建模是指通过建模仿真软体机器人的运动过程, 并对其进行控制和规划. 目前比较传统和常用的建模方法是分段常曲率法(王树新 等 2002). 以很常见的柔性机械臂为例, 可将其沿轴线方向分为$n$个微段, 每一段可看作上下截面直径相等的圆柱, 根据常曲率假设, 可以求出每段上下截面间的变换矩阵, 进而得到末端位置的运动描述. 但是这种传统的将曲率分段近似为常量的方法缺乏精确性, 为提高精度和模型的适用性, 非恒定曲率模型(Rus & Michael 2015)也已被广泛使用. Renda等(2014)基于cosserat的弹性杆的非线性理论, 开发了一种严格几何精确的由电缆驱动的连续软体机器人臂的动态模型, 该模型具有通用性.

动力学建模通常用来模拟软体机器人运动, 优化软体机器人的设计. 主要方法有凯恩法, 牛顿-欧拉法和拉格朗日法(蒋国平 等 2018). 前两种分析方法过程较为繁琐, 一般使用拉格朗日法. 拉格朗日法需要先求出系统的动能和势能, 再将其代入拉格朗日方程计算, 将其转化成动力学普遍方程的形式. 下面举例说明拉格朗日法在动力学建模中的应用.

近年来, 具有最小能量结构的介电弹性体执行器(DEAS-MES)因其应变大且结构简单而被广泛用于开发各种软体机器人. 然而, 由于几何非线性和黏弹性, 很少有关于DEAS-MES动态建模的研究. Zou 和Gu (2019)提出了一种用于DEAs-MES的动态建模方法, 其通过使用等效的曲柄滑块结构简化了几何非线性, 通过使用一系列黏弹性单元表示黏弹非线性, 图19(b)所示, 从而可以计算应力分布.

图19

图19   (a) 驱动器工作过程, (b) 动力学建模简化模型(Zou & Gu 2019)


基于简化的曲柄滑块机构, 建立拉格朗日方程, 如式(10)所示

$ \dfrac{\rm d}{{\rm d}t}\left( \dfrac{{\rm d}E_ k }{{\rm d}\dot{x}} \right) - \dfrac{{\rm d}E_k }{{\rm d}x} + \dfrac{{\rm d}E_{p} }{{\rm d}x} = F$

其中, $E_{k}$和$E_{p}$分别代表系统动能和势能, $x$和$F$分别代表广义坐标和广义力.

4 总结与展望

本文介绍了软体机器人的研究进展, 并以不同驱动类型驱动分类介绍了软体机器人的系统设计. 总结了几类软体机器人结构的力学建模方法. 软体机器人在近年来得到机械、力学、材料、计算机等多个学科的关注与研究, 体现出很强的学科交叉特点. 作为软体机器人驱动组件的软体人工肌肉(软体智能材料), 其材料合成、结构设计与性能控制优化是现阶段软体机器人研究的重点、难点. 利用力学建模分析软材料多场耦合特性与大变形行为, 并由建模结果指导软体人工肌肉结构与机器人系统设计, 有望为解决以上问题提供有效手段. 未来的软体机器人的发展, 有望采用仿生与结构优化相结合的方法实现系统设计, 通过刚-柔共融的方式应对不同任务需求, 实现高度柔性化、多功能化、控制精准化、高亲和度等性能特点, 在更加广泛的领域发挥作用.

(责任编委: 胡更开)

致谢

国家自然科学基金(11572280, U1613202)与国家重点研发计划(2017YFA0701100)资助项目.

参考文献

杜威 . 2008.

SMA驱动的仿乌贼喷射推进器原型研究

[博士论文]. 哈尔滨: 哈尔滨工业大学

URL    

( Du W . 2008.

A prototype of squid like propeller driven by SMA

[Master Thesis]. Harbin: Harbin Institute of Technology).

URL    

蒋国平, 孟凡昌, 申景金, 徐丰羽 . 2018.

软体机器人运动学与动力学建模综述

南京邮电大学学报: 自然科学版, 38:21-26

URL     [本文引用: 1]

( Jiang G P, Meng F C, Shen J G, Xu F Y . 2018.

Overview of kinematics and dynamics modeling of software robots

Journal of Nanjing University of Posts and Telecommunications: Natural Science Edition, 38: 21-26).

URL     [本文引用: 1]

李健 . 2011.

仿生乌贼推进器及其流体动力仿真和实验研究

[博士论文]. 哈尔滨: 哈尔滨工业大学

URL     [本文引用: 1]

( Li J . 2011.

Simulation and experimental investigation of biomimetic squidthruster

[PhD Thesis]. Harbin: Harbin Institute of Technology).

URL     [本文引用: 1]

王树新, 贠今天, 石菊荣, 刘又午 . 2002.

柔性机械臂建模理论与控制方法研究综述

机器人, 24:86-92

URL     [本文引用: 1]

针对柔性机械臂进行有效和精确的建模以及对其进行有效的控制一直是国内外学者研究的重要课题.由于柔性机械臂本身所具有的高度非线性、强耦合和时变的特点,建立精确的动力学模型成为柔性臂研究的一个重点.而随着系统和控制领域理论和技术的不断发展,针对柔性机械臂的控制,也形成了许多不同的控制策略.本文从柔性机机械建模理论和控制方法两方面,对国内外学者的研究工作分别加以介绍,并对各种方法的优缺点进行分析和比较,并对今后的研究方向进行了展望.

( Wang S X, Yuan J T, Shi J R, Liu Y W . 2002.

Overview of modeling theory and control methods for flexible manipulators

Robot, 24: 86-92).

URL     [本文引用: 1]

针对柔性机械臂进行有效和精确的建模以及对其进行有效的控制一直是国内外学者研究的重要课题.由于柔性机械臂本身所具有的高度非线性、强耦合和时变的特点,建立精确的动力学模型成为柔性臂研究的一个重点.而随着系统和控制领域理论和技术的不断发展,针对柔性机械臂的控制,也形成了许多不同的控制策略.本文从柔性机机械建模理论和控制方法两方面,对国内外学者的研究工作分别加以介绍,并对各种方法的优缺点进行分析和比较,并对今后的研究方向进行了展望.

Bartlett N W, Michael T, Johannes T, James C. 2015.

Soft robotics. a 3D-printed, functionally graded soft robot powered by combustion

Science, 349:161-165.

DOI      URL     PMID      [本文引用: 2]

Roboticists have begun to design biologically inspired robots with soft or partially soft bodies, which have the potential to be more robust and adaptable, and safer for human interaction, than traditional rigid robots. However, key challenges in the design and manufacture of soft robots include the complex fabrication processes and the interfacing of soft and rigid components. We used multimaterial three-dimensional (3D) printing to manufacture a combustion-powered robot whose body transitions from a rigid core to a soft exterior. This stiffness gradient, spanning three orders of magnitude in modulus, enables reliable interfacing between rigid driving components (controller, battery, etc.) and the primarily soft body, and also enhances performance. Powered by the combustion of butane and oxygen, this robot is able to perform untethered jumping.

Behl M, Kratz K, Noechel U, Sauter T, Lendlein A. 2013.

Temperature-memory polymer actuators

Proceedings of the National Academy of Sciences, 110:12555-12559.

DOI      URL     [本文引用: 2]

Bunget G, Seelecke S. 2009. Actuator placement for a bio-inspired bonejoint system based on SMA. Active and Passive Smart Structures and Integrated Systems, 72880L. Bellingham: SPIE Press.

[本文引用: 1]

Chang Y C, Kim W J. 2013.

Aquatic ionic-polymer-metal-composite insectile robot with multi-DOF legs

IEEE/ASME Transactions on Mechatronics, 18:547-555.

DOI      URL     [本文引用: 2]

Chen L Y, Chen W J, Xue Y T. 2019.

An untethered soft chemo-mechanical robot with composite structure and optimized control

Extreme Mechanics Letters, 27:27-33.

DOI      URL     [本文引用: 2]

Cheng S, Narang Y S, Yang C, Suo Z G, Howe R D. 2019.

Stick-on-large-strain sensors for soft robots

Advanced Materials Interfaces, 20:1900985.

[本文引用: 2]

Chu W S, Lee K T, Song S H. 2012.

Review of biomimetic underwater robots using smart actuators

International Journal of Precision Engineering and Manufacturing, 13:1281-1292.

DOI      URL     [本文引用: 1]

In this paper, biomimetic underwater robots built using smart actuators, e.g., a shape memory alloy (SMA), an ionic polymer metal composite (IPMC), lead zirconate titanate (PZT), or a hybrid SMA and IPMC actuator, are reviewed. The effects of underwater environment were also considered because smart actuators are often affected by their external environment. The characteristics of smart actuators are described based on their actuating conditions and motion types. Underwater robots are classified based on different swimming modes. We expanded our classification to non-fish creatures based on their swimming modes. The five swimming modes are body/caudal actuation oscillatory (BCA-O), body/caudal actuation undulatory (BCA-U), median/paired actuation oscillatory (MPA-O), median/paired actuation undulatory (MPAU), and jet propulsion (JET). The trends of biomimetic underwater robots were analyzed based on robot speed (body length per second, BL/s). For speed per body length, robots using an SMA as an actuator are faster than robots using an IPMC when considering a similar length or weight. Robots using a DC motor are longer while their speeds per body length are similar, which means that robots using smart actuators have an advantage of compactness. Finally, robots (using smart actuators or a motor) were compared with underwater animals according to their speed and different swimming modes. This review will help in setting guidelines for the development of future biomimetic underwater robots, especially those that use smart actuators.

Colorado J, Barrientos A, Rossi C. 2012.

Biomechanics of smart wings in a bat robot: Morphing wings using SMA actuators

Bioinspiration and Biomimetics, 7:036006.

DOI      URL     PMID      [本文引用: 1]

This paper presents the design of a bat-like micro aerial vehicle with actuated morphing wings. NiTi shape memory alloys (SMAs) acting as artificial biceps and triceps muscles are used for mimicking the morphing wing mechanism of the bat flight apparatus. Our objective is twofold. Firstly, we have implemented a control architecture that allows an accurate and fast SMA actuation. This control makes use of the electrical resistance measurements of SMAs to adjust morphing wing motions. Secondly, the feasibility of using SMA actuation technology is evaluated for the application at hand. To this purpose, experiments are conducted to analyze the control performance in terms of nominal and overloaded operation modes of the SMAs. This analysis includes: (i) inertial forces regarding the stretchable wing membrane and aerodynamic loads, and (ii) uncertainties due to impact of airflow conditions over the resistance-motion relationship of SMAs. With the proposed control, morphing actuation speed can be increased up to 2.5 Hz, being sufficient to generate lift forces at a cruising speed of 5 m s(-1).

Deimel R, Brock O. 2016.

A novel type of compliant and underactuated robotic hand for dexterous grasping

The International Journal of Robotics Research, 35:161-185.

DOI      URL     [本文引用: 1]

Farhan M, Rudolph T, Nöchel U, Yan W, Kratz K, Lendlein A. 2017.

Noncontinuously responding polymeric actuators

ACS Applied Materials & Interfaces, 9:33559-33564.

DOI      URL     PMID      [本文引用: 2]

Reversible movements of current polymeric actuators stem from the continuous response to signals from a controlling unit, and subsequently cannot be interrupted without stopping or eliminating the input trigger. Here, we present actuators based on cross-linked blends of two crystallizable polymers capable of pausing their movements in a defined manner upon continuous cyclic heating and cooling. This noncontinuous actuation can be adjusted by varying the applied heating and cooling rates. The feasibility of these devices for technological applications was shown in a 140 cycle experiment of free-standing noncontinuous shape shifts, as well as by various demonstrators.

Fragouli D, Bayer I. 2012.

Superparamagnetic cellulose fiber networks via nanocomposite functionalization

Journal of Materials Chemistry, 22:1662-1666.

DOI      URL     [本文引用: 1]

We present a simple and cost-effective method for rendering networks of cellulose fibers, such as paper, fabrics or membranes, superparamagnetic by impregnating the individual fibers with a reactive acrylic monomer. The cellulose fibers are wetted by a cyanoacrylate monomer solution containing superparamagnetic manganese ferrite colloidal nanoparticles. Upon moisture initiated polymerization of the monomer on the fiber surfaces, a thin nanocomposite shell forms around each fiber. The nanocomposite coating renders the cellulose fibers water repellent and magnetically responsive. Magnetic and microscopy studies prove that the amount of the entrapped nanoparticles in the nanocomposite shell is fully controllable, and that the magnetic response is directly proportional to this amount. A broad range of applications can be envisioned for waterproof magnetic cellulose materials (such as magnetic paper/tissues) obtained by such a simple yet highly efficient method.

Galloway K C, Becker K P, Phillips B, Kirby J, Licht S, Tchernov D, Gruber D F. 2016.

Soft robotic grippers for biological sampling on deep reefs

Soft Robotics, 3:23-33.

DOI      URL     PMID      [本文引用: 2]

This article presents the development of an underwater gripper that utilizes soft robotics technology to delicately manipulate and sample fragile species on the deep reef. Existing solutions for deep sea robotic manipulation have historically been driven by the oil industry, resulting in destructive interactions with undersea life. Soft material robotics relies on compliant materials that are inherently impedance matched to natural environments and to soft or fragile organisms. We demonstrate design principles for soft robot end effectors, bench-top characterization of their grasping performance, and conclude by describing in situ testing at mesophotic depths. The result is the first use of soft robotics in the deep sea for the nondestructive sampling of benthic fauna.

Ge Q, Sakhaei A, Lee H. 2016.

Multimaterial 4D printing with tailorable shape memory polymers

Sci. Rep., 6:31110.

DOI      URL     PMID      [本文引用: 2]

We present a new 4D printing approach that can create high resolution (up to a few microns), multimaterial shape memory polymer (SMP) architectures. The approach is based on high resolution projection microstereolithography (PmuSL) and uses a family of photo-curable methacrylate based copolymer networks. We designed the constituents and compositions to exhibit desired thermomechanical behavior (including rubbery modulus, glass transition temperature and failure strain which is more than 300% and larger than any existing printable materials) to enable controlled shape memory behavior. We used a high resolution, high contrast digital micro display to ensure high resolution of photo-curing methacrylate based SMPs that requires higher exposure energy than more common acrylate based polymers. An automated material exchange process enables the manufacture of 3D composite architectures from multiple photo-curable SMPs. In order to understand the behavior of the 3D composite microarchitectures, we carry out high fidelity computational simulations of their complex nonlinear, time-dependent behavior and study important design considerations including local deformation, shape fixity and free recovery rate. Simulations are in good agreement with experiments for a series of single and multimaterial components and can be used to facilitate the design of SMP 3D structures.

Gorissen B, Donose R. 2011.

Flexible pneumatic micro-actuators: Analysis and production

Procedia Engineering, 25:681-684.

DOI      URL     [本文引用: 1]

Guo S, Ge Y, Li L, Sheng L. 2006.

Underwater swimming micro robot using IPMC actuator.

International Conference on Mechatronics and Automation. IEEE. LuoYang, China, June 2006.

[本文引用: 1]

Hara F, Akazawa H, Kobayashi H. 2001.

Realistic facial expressions by SMA driven face robot. IEEE International Workshop on Robot & Human Interactive Communication

IEEE. Roman, Feb. 2001.

[本文引用: 1]

Huang X N, Kumar K, Jawed M K. 2019.

Highly dynamic shape memory alloy actuator for fast moving soft robots

Advanced Materials Technologies, 4:1800540.

DOI      URL     [本文引用: 2]

Hunter I W, Madden J D, Vandesteeg N, Madden P G, Takshi A. 2004.

Artificial muscle technology: Physical principles and naval prospects

IEEE. Journal of Oceanic Engineering, 29:706-728.

DOI      URL     [本文引用: 1]

Ilievski F, Aaron D M. 2011.

Soft robotics for chemists

Angewandte Chemie International Edition, 50:1890-1895.

DOI      URL     PMID      [本文引用: 1]

Jin B, Song H, Jiang R. 2018.

Programming a crystalline shape memory polymer network with thermo- and photo-reversible bonds toward a single-component soft robot

Science Advances, 4: eaao3865.

URL     PMID      [本文引用: 2]

Jun S, Dario F. 2018.

Soft biomimetic fish robot madme of dielectric elastomer actuators

Soft Robotics, 5:466-474.

DOI      URL     PMID      [本文引用: 2]

This article presents the design, fabrication, and characterization of a soft biomimetic robotic fish based on dielectric elastomer actuators (DEAs) that swims by body and/or caudal fin (BCF) propulsion. BCF is a promising locomotion mechanism that potentially offers swimming at higher speeds and acceleration rates, and efficient locomotion. The robot consists of laminated silicone layers wherein two DEAs are used in an antagonistic configuration, generating undulating fish-like motion. The design of the robot is guided by a mathematical model based on the Euler-Bernoulli beam theory and takes account of the nonuniform geometry of the robot and of the hydrodynamic effect of water. The modeling results were compared with the experimental results obtained from the fish robot with a total length of 150 mm, a thickness of 0.75 mm, and weight of 4.4 g. We observed that the frequency peaks in the measured thrust force produced by the robot are similar to the natural frequencies computed by the model. The peak swimming speed of the robot was 37.2 mm/s (0.25 body length/s) at 0.75 Hz. We also observed that the modal shape of the robot at this frequency corresponds to the first natural mode. The swimming of the robot resembles real fish and displays a Strouhal number very close to those of living fish. These results suggest the high potential of DEA-based underwater robots relying on BCF propulsion, and applicability of our design and fabrication methods.

Katzschmann R K, Marchese A D, Rus D. 2014.

Hydraulic autonomous soft robotic fish for 3D swimming

Experimental Robotics. Springer Tracts in Advanced Robotics, 109.

[本文引用: 1]

Kim H J, Song S H, Ahn S H. 2012.

A turtle-like swimming robot using a smart soft composite (SSC) structure

Smart Materials and Structures, 22:014007.

DOI      URL     [本文引用: 1]

Kramer R K, Majidi C, Wood R J. 2011.

Wearable tactile keypad with stretchable artificial skin. IEEE International Conference on Robotics and Automation

Melbourne, Australia, Dec. 2011.

[本文引用: 1]

Lau G K, Heng K R, Ahmed A S, Shrestha M. 2017.

Dielectric elastomer fingers for versatile grasping and nimble pinching

Applied Physics Letters, 110:182906.

DOI      URL     [本文引用: 2]

Le H H, Kolesov I, Ali Z. 2010.

Effect of filler dispersion degree on the Joule heating stimulated recovery behaviour of nanocomposites

Journal of Materials Science, 45:5851-5859.

DOI      URL     [本文引用: 1]

Composites based on highly branched ethylene-1-octene copolymer (EOC) and carbon black (CB) with different dispersion degree of CB were prepared. The method of the online measured electrical conductance/resistance was used to monitor the change of the electrical conductance/resistance of the composites during the preparation processes, i.e. mixing and cross-linking. It was found that the kinetics of thermally stimulated shape-memory recovery of CB filled EOC is strongly influenced by the filler dispersion degree, which actually affects the heat transfer in the composites. Using a special arrangement of experiments the Joule heating stimulated shape-memory behaviour was quantified. CB dispersion degree and related electrical resistivity determine the extent of the Joule heating stimulated shape-memory behaviour. Composite collected at the maximum in the online measured conductance–time characteristics showed the best shape-memory effect owing to the highest electrical conductivity in the solid state. The CB filled EOC showed a negative thermal coefficient of resistivity (NTC) effect, which accelerates the temperature increase and shape-memory recovery of the composites when applying a voltage.

Lee J H, Chung Y S, Rodrigue H. 2019.

Long shape memory alloy tendon-based soft robotic actuators and implementation as a soft gripper

Scientific Reports, 9.

DOI      URL     PMID      [本文引用: 2]

The human malaria parasite Plasmodium falciparum is responsible for the deaths of more than a million people each year. Fosmidomycin has been proven to be efficient in the treatment of P. falciparum malaria by inhibiting 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR), an enzyme of the non-mevalonate pathway, which is absent in humans. However, the structural details of DXR inhibition by fosmidomycin in P. falciparum are unknown. Here, we report the crystal structures of fosmidomycin-bound complete quaternary complexes of PfDXR. Our study revealed that (i) an intrinsic flexibility of the PfDXR molecule accounts for an induced-fit movement to accommodate the bound inhibitor in the active site and (ii) a cis arrangement of the oxygen atoms of the hydroxamate group of the bound inhibitor is essential for tight binding of the inhibitor to the active site metal. We expect the present structures to be useful guides for the design of more effective antimalarial compounds.

Lendlein A, Kelch S. 2002.

Shape-memory polymers

Angewandte Chemie International Edition, 4:2034-2057.

[本文引用: 1]

Li T F, Cheng T Y, Li G R. 2018.

Untethered soft robotic jellyfish

Smart Materials and Structures, 28:015019.

DOI      URL     [本文引用: 1]

Li T F, Keplinger C, Baumgartner R. 2013.

Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability

Journal of the Mechanics and Physics of Solids, 61:611-628.

DOI      URL    

Li T F, Li G R, Liang Y M. 2017.

Fast-moving soft electronic fish

Science Advances, 3:e1602045.

DOI      URL     PMID      [本文引用: 6]

Soft robots driven by stimuli-responsive materials have unique advantages over conventional rigid robots, especially in their high adaptability for field exploration and seamless interaction with humans. The grand challenge lies in achieving self-powered soft robots with high mobility, environmental tolerance, and long endurance. We are able to advance a soft electronic fish with a fully integrated onboard system for power and remote control. Without any motor, the fish is driven solely by a soft electroactive structure made of dielectric elastomer and ionically conductive hydrogel. The electronic fish can swim at a speed of 6.4 cm/s (0.69 body length per second), which is much faster than previously reported untethered soft robotic fish driven by soft responsive materials. The fish shows consistent performance in a wide temperature range and permits stealth sailing due to its nearly transparent nature. Furthermore, the fish is robust, as it uses the surrounding water as the electric ground and can operate for 3 hours with one single charge. The design principle can be potentially extended to a variety of flexible devices and soft robots.

Li T F, Qu S X, Yang W. 2012.

Electromechanical and dynamic analyses of tunable dielectric elastomer resonator

International Journal of Solids and Structures, 49:3754-3761.

DOI      URL     [本文引用: 1]

When used as resonators, dielectric elastomers are subjected to high frequencies and nonlinear oscillation. The present study is focused on a dielectric elastomer resonator whose dielectric membrane is subject to combined loads of tensile forces and voltages. When the loads are static, the resonator may reach a state of equilibrium. The stability and the natural frequency of the resonator with small-amplitude oscillation around the equilibrium state are analyzed. When a periodic voltage is applied, the device resonates at multiple frequencies of excitation. Pre-stretches and applied static voltages tune the natural frequency and modify the dynamic behavior of the resonator. The membrane may suffer loss of tension and electromechanical instability, causing the failure of the resonator. Safe operation range is identified for failure prevention while actuating the resonator. (c) 2012 Elsevier Ltd.

Li H, Go G, Ko S Y, Park J O, Park S. 2016.

Magnetic actuated ph-responsive hydrogel-based soft micro-robot for targeted drug delivery

Smart Materials and Structures, 25:027001.

DOI      URL     [本文引用: 2]

Li S, Vogt D M, Rus D, Wood R J. 2017.

Fluid-driven origami-inspired artificial muscles

Proceedings of the National Academy of Sciences, 114:13132-13137.

DOI      URL    

Liu B, Chen F, Wang S. 2017.

Electromechanical control and stability analysis of a soft swim-bladder robot driven by dielectric elastomer

Journal of Applied Mechanics, 84:091005.

DOI      URL     [本文引用: 2]

Luo K, Rothemund P, Whitesides G M, Suo Z G. 2019.

Soft kink valves

Journal of the Mechanics and Physics of Solids, 131:230-239.

DOI      URL     [本文引用: 2]

Ma C, Li T, Zhao Q, Yang X, Wu J, Luo Y. 2014.

Supramolecular lego assembly towards three-dimensional multi-responsive hydrogels

Advanced Materials, 26:5665-5669.

DOI      URL     [本文引用: 2]

Inspired by the assembly of Lego toys, hydrogel building blocks with heterogeneous responsiveness are assembled utilizing macroscopic supramolecular recognition as the adhesion force. The Lego hydrogel provides 3D transformation upon pH variation. After disassembly of the building blocks by changing the oxidation state, they can be re-assembled into a completely new shape.

Majidi C, Shepherd R F, Kramer R K. 2013.

Influence of surface traction on soft robot undulation

The International Journal of Robotics Research, 32:1577-1584.

DOI      URL     [本文引用: 1]

Matthias B, Treitz S O, Staab H. 2010.

Injury risk quantification for industrial robots in collaborative operation with humans

ISR 2010 (41st International Symposium on Robotics) and ROBOTIK 2010 (6th German Conference on Robotics). Munich, Germany, 2010.

[本文引用: 1]

Michael T, Caleb C. 2018.

Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators

Science Robotics, 3: eaat1893.

DOI      URL     PMID      [本文引用: 2]

A barrier to practical use of electrotactile stimulation for haptic feedback has been large variability in perceived sensation intensity due to changes in the impedance of the electrode-skin interface, such as when electrodes peel or users sweat. Here, we show how to significantly reduce this variability by modulating stimulation parameters in response to measurements of impedance. Our method derives from three contributions. First, we created a model between stimulation parameters and impedance at constant perceived sensation intensity by looking at the peak pulse energy and phase charge. Our model fits experimental data better than previous models (mean R(2) > 0.9) and holds over a larger set of conditions (subjects, sessions, magnitudes of sensation, stimulation locations, electrode sizes). Second, we implemented a controller that regulates perceived sensation intensity by using our model to derive a new current amplitude and pulse duration in response to changes in impedance. Our controller accurately predicts subject-chosen stimulation parameters at constant sensation intensity (mean R(2) > 0.9). Third, we demonstrated as a proof-of-concept on two subjects with below-elbow amputations-using a prosthesis with electrotactile touch feedback-that our controller can regulate sensation intensity in response to large impedance changes that occur in activities of daily living. These results make electrotactile stimulation for human-machine interfaces more reliable during activities of daily living.

Mirfakhrai T, John D W M, Ray H B. 2007.

Polymer artificial muscles

Materials Today, 10:10-30.

DOI      URL     [本文引用: 1]

Pei Q, Rosenthal M, Stanford S. 2004.

Multiple-degrees-of-freedom electroelastomer roll actuators

Smart Materials and Structures, 13:86.

[本文引用: 2]

Qin H, Zhang T, Li N, Cong H P, Yu S H. 2019.

Anisotropic and self-healing hydrogels with multi-responsive actuating capability

Nature Communications, 10: 2202(1-11).

DOI      URL     PMID      [本文引用: 1]

The HML2 (HERV-K) group constitutes the most recently acquired family of human endogenous retroviruses, with many proviruses less than one million years old. Many maintain intact open reading frames and provirus expression together with HML2 particle formation are observed in early stage human embryo development and are associated with pluripotency as well as inflammatory disease, cancers and HIV-1 infection. Here, we reconstruct the core structural protein (CA) of an HML2 retrovirus, assemble particles in vitro and employ single particle cryogenic electron microscopy (cryo-EM) to determine structures of four classes of CA Fullerene shell assemblies. These icosahedral and capsular assemblies reveal at high-resolution the molecular interactions that allow CA to form both pentamers and hexamers and show how invariant pentamers and structurally plastic hexamers associate to form the unique polyhedral structures found in retroviral cores.

Renda F, Giorelli M, Calisti M, Cianchetti M, Laschi C. 2014.

Dynamic model of a multibending soft robot arm driven by cables

IEEE Transactions on Robotics, 30:1109-1122.

[本文引用: 1]

Robertson M A, Sadeghi H, Florez J M, Paik J. 2017.

Soft pneumatic actuator fascicles for high force and reliability

Soft Robotics, 4:23-32.

DOI      URL     PMID      [本文引用: 2]

Soft pneumatic actuators (SPAs) are found in mobile robots, assistive wearable devices, and rehabilitative technologies. While soft actuators have been one of the most crucial elements of technology leading the development of the soft robotics field, they fall short of force output and bandwidth requirements for many tasks. In addition, other general problems remain open, including robustness, controllability, and repeatability. The SPA-pack architecture presented here aims to satisfy these standards of reliability crucial to the field of soft robotics, while also improving the basic performance capabilities of SPAs by borrowing advantages leveraged ubiquitously in biology; namely, the structured parallel arrangement of lower power actuators to form the basis of a larger and more powerful actuator module. An SPA-pack module consisting of a number of smaller SPAs will be studied using an analytical model and physical prototype. Experimental measurements show an SPA pack to generate over 112 N linear force, while the model indicates the benefit of parallel actuator grouping over a geometrically equivalent single SPA scale as an increasing function of the number of individual actuators in the group. For a module of four actuators, a 23% increase in force production over a volumetrically equivalent single SPA is predicted and validated, while further gains appear possible up to 50%. These findings affirm the advantage of utilizing a fascicle structure for high-performance soft robotic applications over existing monolithic SPA designs. An example of high-performance soft robotic platform will be presented to demonstrate the capability of SPA-pack modules in a complete and functional system.

Rosset S, Niklaus P, Dubois M. 2008.

Mechanical characterization of a dielectric elastomer microactuator with ion-implanted electrodes

Sensors and Actuators A: Physical, 144:185-193.

DOI      URL     [本文引用: 1]

Rothemund P, Ainla A, Belding L, Preston D J, Kurihara S, Suo Z, Whitesides G M. 2018.

A soft, bistable valve for autonomous control of soft actuators

Science Robotics, 3:7986.

[本文引用: 2]

Rus D, Michael T. 2015.

Design, fabrication and control of soft robots

Nature, 521:467-475.

DOI      URL     PMID      [本文引用: 1]

Conventionally, engineers have employed rigid materials to fabricate precise, predictable robotic systems, which are easily modelled as rigid members connected at discrete joints. Natural systems, however, often match or exceed the performance of robotic systems with deformable bodies. Cephalopods, for example, achieve amazing feats of manipulation and locomotion without a skeleton; even vertebrates such as humans achieve dynamic gaits by storing elastic energy in their compliant bones and soft tissues. Inspired by nature, engineers have begun to explore the design and control of soft-bodied robots composed of compliant materials. This Review discusses recent developments in the emerging field of soft robotics.

Shepherd R F, Stokes A A, Freake J, Barber J, Snyder P W, Mazzeo A D. 2013.

Using explosions to power a soft robot

Angewandte Chemie, 52:2892-2896.

DOI      URL     PMID      [本文引用: 2]

Song Y S, Sun Y, van den Brand R, von Zitzewitz J, Micera S, Courtine G, Paik J. 2013.

Soft robot for gait rehabilitation of spinalized rodents

IEEE/RSJ International Conference on Intelligent Robots and Systems, 971-976. Tokyo, Japan, Nov 2013.

[本文引用: 1]

Tadesse Y, Hong D, Priya S. 2011.

Twelve degree of freedom baby humanoid head using shape memory alloy actuators

Journal of Mechanisms and Robotics, 3:011008.

DOI      URL     [本文引用: 1]

Trimmer B A, Takesian A E, Sweet B M. 2006.

Caterpillar locomotion: A new model for soft-bodied climbing and burrowing robots

7th International Symposium on Technology and the Mine Problem, 1: 1-10. Monterey, CA, May 2006.

[本文引用: 1]

Villanueva A, Smith C, Priya S. 2011.

A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators

Bioinspiration and Biomimetics, 6:036004.

DOI      URL     PMID      [本文引用: 2]

An analysis is conducted on the design, fabrication and performance of an underwater vehicle mimicking the propulsion mechanism and physical appearance of a medusa (jellyfish). The robotic jellyfish called Robojelly mimics the morphology and kinematics of the Aurelia aurita species. Robojelly actuates using bio-inspired shape memory alloy composite actuators. A systematic fabrication technique was developed to replicate the essential structural features of A. aurita. Robojelly's body was fabricated from RTV silicone having a total mass of 242 g and bell diameter of 164 mm. Robojelly was able to generate enough thrust in static water conditions to propel itself and achieve a proficiency of 0.19 s(-1) while the A. aurita achieves a proficiency of around 0.25 s(-1). A thrust analysis based on empirical measurements for a natural jellyfish was used to compare the performance of the different robotic configurations. The configuration with best performance was a Robojelly with segmented bell and a passive flap structure. Robojelly was found to consume an average power on the order of 17 W with the actuators not having fully reached a thermal steady state.

Wang E, Desai M S, Lee S W. 2013.

Light-controlled graphene-elastin composite hydrogel actuators

Nano Letters, 13:2826-2830.

DOI      URL     PMID      [本文引用: 2]

Hydrogels actuators (HAs) that can reversibly respond to stimuli have applications in diverse fields. However, faster response rates and improved control over actuation timing and location are required to fulfill their potential. To address these criteria, we synthesized near-infrared light-driven HAs by interfacing genetically engineered elastin-like polypeptides with reduced-graphene oxide sheets. The resulting nanocomposites exhibited rapid and tunable motions controlled by light position, intensity, and path, including finger-like flexing and crawling. This work demonstrates the ability of rationally designed proteins to be combined with synthetic nanoparticles for the creation of macroscale functional materials.

Wang Z, Hang G, Wang Y. 2008.

Embedded SMA wire actuated biomimetic fin: A module for biomimetic underwater propulsion

Smart Materials and Structures, 17:025039.

DOI      URL     [本文引用: 2]

Wang Z, Wang Y, Li J. 2009.

A micro biomimetic manta ray robot fish actuated by SMA. Robotics and Biomimetics (ROBIO), 2009 IEEE International Conference on.

IEEE: 1809-1813. Guangxi, China, Dec 2009.

[本文引用: 2]

Wei J, Yu Y L. 2012.

Photodeformable polymer gels and crosslinked liquid-crystalline polymers

Soft Matter, 8:8050-8059.

DOI      URL     [本文引用: 1]

Wehner M, Truby R L, Fitzgerald D J. 2016.

An integrated design and fabrication strategy for entirely soft, autonomous robots

Nature, 536:451.

DOI      URL     PMID      [本文引用: 2]

Soft robots possess many attributes that are difficult, if not impossible, to achieve with conventional robots composed of rigid materials. Yet, despite recent advances, soft robots must still be tethered to hard robotic control systems and power sources. New strategies for creating completely soft robots, including soft analogues of these crucial components, are needed to realize their full potential. Here we report the untethered operation of a robot composed solely of soft materials. The robot is controlled with microfluidic logic that autonomously regulates fluid flow and, hence, catalytic decomposition of an on-board monopropellant fuel supply. Gas generated from the fuel decomposition inflates fluidic networks downstream of the reaction sites, resulting in actuation. The body and microfluidic logic of the robot are fabricated using moulding and soft lithography, respectively, and the pneumatic actuator networks, on-board fuel reservoirs and catalytic reaction chambers needed for movement are patterned within the body via a multi-material, embedded 3D printing technique. The fluidic and elastomeric architectures required for function span several orders of magnitude from the microscale to the macroscale. Our integrated design and rapid fabrication approach enables the programmable assembly of multiple materials within this architecture, laying the foundation for completely soft, autonomous robots.

Yamakita M, Kamamichi N, Kaneda Y, Asaka K, Luo Z W. 2004.

Development of an artificial muscle linear actuator using ionic polymer-metal composites

Advanced Robotics, 18:17.

[本文引用: 1]

Yang T, Xiao Y, Zhang Z. 2018.

A soft artificial muscle driven robot with reinforcement learning

Scientific Reports, 8:14518.

DOI      URL     PMID      [本文引用: 4]

Soft robots driven by stimuli-responsive materials have their own unique advantages over traditional rigid robots such as large actuation, light weight, good flexibility and biocompatibility. However, the large actuation of soft robots inherently co-exists with difficulty in control with high precision. This article presents a soft artificial muscle driven robot mimicking cuttlefish with a fully integrated on-board system including power supply and wireless communication system. Without any motors, the movements of the cuttlefish robot are solely actuated by dielectric elastomer which exhibits muscle-like properties including large deformation and high energy density. Reinforcement learning is used to optimize the control strategy of the cuttlefish robot instead of manual adjustment. From scratch, the swimming speed of the robot is enhanced by 91% with reinforcement learning, reaching to 21 mm/s (0.38 body length per second). The design principle behind the structure and the control of the robot can be potentially useful in guiding device designs for demanding applications such as flexible devices and soft robots.

Yang X X, An C R, Liu S T, Cheng T Y, Bunpetch V, Liu Y X, Dong S R, Li S J, Zou X H, Li T F, Ouyang H W, Wu Z H, Yang W. 2018.

Soft artificial bladder detrusor

Advanced Healthcare Materials, 7:1701014.

DOI      URL    

Zhang M Q, Li G R, Yang X X, Xiao Y H, Yang T, Li T F. 2018.

Artificial muscle driven soft hydraulic robot: Electromechanical actuation and simplified modeling

Smart Materials and Structures, 27:095016.

DOI      URL     [本文引用: 4]

Zhang Q M, Vivek B, Zhao X. 1998.

Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly (vinylidene fluoride-trifluoroethylene) copolymer

Science, 280:2101-2104.

DOI      URL     PMID      [本文引用: 1]

An exceptionally high electrostrictive response ( approximately 4 percent) was observed in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer. The material exhibits typical relaxor ferroelectric behavior, suggesting that the electron irradiation breaks up the coherent polarization domain (all-trans chains) in normal ferroelectric P(VDF-TrFE) copolymer into nanopolar regions (nanometer-size, all-trans chains interrupted by trans and gauche bonds) that transform the material into a relaxor ferroelectric. The expanding and contracting of these polar regions under external fields, coupled with a large difference in the lattice strain between the polar and nonpolar phases, generate an ultrahigh strain response.

Zhang X, Pint C L, Lee M H, Schubert B E, Jamshidi A, Takei K. 2011.

Optically- and thermally-responsive programmable materials based on carbon nanotube-hydrogel polymer composites

Nano Letters, 11:3239-3244.

DOI      URL     PMID      [本文引用: 2]

A simple approach is described to fabricate reversible, thermally- and optically responsive actuators utilizing composites of poly(N-isopropylacrylamide) (pNIPAM) loaded with single-walled carbon nanotubes. With nanotube loading at concentrations of 0.75 mg/mL, we demonstrate up to 5 times enhancement to the thermal response time of the nanotube-pNIPAM hydrogel actuators caused by the enhanced mass transport of water molecules. Additionally, we demonstrate the ability to obtain ultrafast near-infrared optical response in nanotube-pNIPAM hydrogels under laser excitation enabled by the strong absorption properties of nanotubes. The work opens the framework to design complex and programmable self-folding materials, such as cubes and flowers, with advanced built-in features, including tunable response time as determined by the nanotube loading.

Zhao Q, Yang X, Ma C, Chen D, Bai H, Li T, Xie T. 2016.

A bioinspired reversible snapping hydrogel assembly

Materials Horizons, 3:422-428.

DOI      URL     [本文引用: 4]

Zhao X P, Zhao Q, Xiang L Q. 2003.

Optical activity of microemulsion induced by electric field and its tunable behaviors

Science in China, 46:164-172.

[本文引用: 1]

Zheng C, Tae I, Hilary B. 2011.

A novel fabrication of ionic polymer-metal composite membrane actuator capable of 3-dimensional kinematic motions

Sensors and Actuators A Physical, 168:131-139.

DOI      URL     [本文引用: 2]

Zhou F H, Zhang M Q, Cao X N. 2019.

Fabrication and modeling of dielectric elastomer soft actuator with 3D printed thermoplastic frame

Sensors and Actuators, A Physical, 292:112-120.

[本文引用: 4]

Zou J, Gu G Y. 2019.

Dynamic modeling of dielectric elastomer actuators with a minimum energy structure

Smart Materials and Structures, 28:085039.

DOI      URL     [本文引用: 2]

/

Baidu
map