力学进展, 2020, 50(1): 202012-202012 DOI: 10.6052/1000-0992-20-008

认知神经科学中蕴藏的力学思想与应用

王如彬,1,2,, 王毅泓1, 徐旭颖1, 潘晓川1

1 华东理工大学认知神经动力学研究所, 上海 200237

2 杭州电子科技大学计算机学院, 杭州 310018

Mechanical thoughts and applications in cognitive neuroscience

WANG Rubin,1,2,, WANG Yihong1, XU Xuying1, PAN Xiaochuan1

1 Institute for Cognitive Neurodynamics, East China University of Science and Technology, Shanghai 200237, China

2 School of Computer Science, Hangzhou Dianzi University, Hangzhou 310018, China

通讯作者: E-mail:rbwang@ecust.edu.cn

责任编辑: 丁千

收稿日期: 2020-04-17   接受日期: 2020-06-17   网络出版日期: 2020-07-25

Corresponding authors: E-mail:rbwang@ecust.edu.cn

Received: 2020-04-17   Accepted: 2020-06-17   Online: 2020-07-25

作者简介 About authors

王如彬,1998年毕业于日本名古屋大学,获工学博士学位.历任东华大学和华东理工大学教授、博士生导师,华东理工大学认知神经动力学研究所所长.曾任日本大阪大学名誉教授和日本玉川大学脑科学研究所研究教授,多次访问日本理化学研究所.1998年和2012年二次被日本学术振兴会(JSPS)聘为外国人特别研究员,国际脑联盟会员(DANAAllianceforBrainInitiatives(DABI).现为杭州电子科技大学讲座教授,主要从事认知神经动力学与脑信息处理等交叉学科研究.已在国内外发表科研论文200多篇,其中SCI收录论文160多篇.主持和正在主持8项国家自然科学基金,包括1项国家自然科学基金重点项目和5个面上项目.SCI源刊CognitiveNeurodynamics的主编.第一届(2007)、第二届(2009)和第五届(2015)TheInternationalConferenceonCognitiveNeurodynamics(ICCN)的主席.第一届(2012年)、第三届(2016年)、第四届(2018年)和第五届(2020)全国神经动力学会议主席.第一届(2017年)和第二届(2019年)认知神经科学与智能应用杭州国际研讨会主席.

摘要

该文系统总结了作者团队在脑科学领域内提出的神经能量理论与方法,以及力学与神经能量理论之间的内在联系.着重介绍了如何运用分析动力学的思想构建一个与H-H模型等效的W-Z神经元模型.并以此为基础,在神经科学领域内提出了以神经能量为核心的大尺度神经科学模型和大脑全局神经编码的理论框架.在包括视知觉等多个感知觉神经系统的信息处理、大脑的智力探索以及预测神经元新的工作机制、解释神经科学难以解释的实验现象等方面,证实了这个新颖的神经元模型所展现出来的独特功能与优势.由于可塑性是认知神经科学与智能行为的核心,通过蛋白质分子机器的经典力学分析,进一步阐明了神经元的可塑性和神经发育不仅仅只是生物化学反应过程,力学的作用与贡献也是不可或缺的重要因素.表明了力学科学在神经科学、生命科学中的研究思想及其内在逻辑的深远影响.这些研究对于今后推动实验神经科学与理论神经科学的融合,摒弃神经科学领域中还原论与整体论研究方法中的不足,并将它们各自的优点进行有效地整合,促进力学科学的理论与方法的渗透是极其重要的.

关键词: 脑科学 ; 力学 ; 神经元模型 ; 大尺度神经科学 ; 神经动力学 ; 神经能量理论

Abstract

This review article systematically summarizes the neural energy theory and methods proposed by our team in the field of brain science, and the internal relationship between mechanics and neural energy theory. This paper introduces how to construct an equivalent W-Z neuron model with the H-H model using the idea of analytic dynamics. Based on this, a large-scale neural model with neural energy as the core and a theoretical framework of global neural coding are proposed in the field of neuroscience. The unique functions and advantages of this novel neuron model are confirmed in the aspects of information processing, including visual perception, brain intelligence exploration, prediction of new working mechanisms of neurons and explanation of experimental phenomena challenging to explain in neuroscience. Because plasticity is the core of cognitive neuroscience and intelligent behavior, through the classical mechanical analysis of protein molecular machines, it is further clarified that the plasticity and neurodevelopment of neurons are not only biochemical reaction processes but also the role and contribution of mechanics are indispensable and important factors. It shows that the research thought of mechanics science in neuroscience and life science and its profound influence on internal logic. These studies will promote the integration of experimental neuroscience and theoretical neuroscience in the future, abandon the shortcomings in the research methods of reductionism and holism in the field of neuroscience, and integrate their respective advantages effectively. It is extremely important to promote the penetration of theories and methods of mechanical science.

Keywords: brain science ; mechanics ; neuron models ; large scale neuroscience ; neurodynamics ; theory of neural energy

PDF (7616KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王如彬, 王毅泓, 徐旭颖, 潘晓川. 认知神经科学中蕴藏的力学思想与应用. 力学进展[J], 2020, 50(1): 202012-202012 DOI:10.6052/1000-0992-20-008

WANG Rubin, WANG Yihong, XU Xuying, PAN Xiaochuan. Mechanical thoughts and applications in cognitive neuroscience. Advances in Mechanics[J], 2020, 50(1): 202012-202012 DOI:10.6052/1000-0992-20-008

1 引言

自20多年前美国伯克利大学分子神经生物学家Walter Freeman (2000)教授提出了神经动力学概念以来, 用动力学的理论和方法来研究认知与神经系统的活动已经成为一个崭新的研究领域 (Basar 1998, Basar 2011, Betz et al. 2006, Buxton 2012, Byrne & Roberts 2009, Churchland et al. 2012, Ermentrout et al. 2007, Hayashi 1998, Hipp et al. 2011, Hopfield 2010, Iribarren & Moro 2009, Lakatos et al. 2008, Memmesheimer & Timme 2006, Pouget & Latham 2002, Rabinovich et al. 2006, Rangan et al. 2008, Sandrini et al. 2015, Tass 1999, 汪云九 2006), 科研成果像雨后春笋一样层出不穷. 神经动力学在欧美各国更多地被称之为计算神经科学, 而在日本被称之为神经力学 (武田晓 1999). 在实验神经科学研究领域内, 科学家们更喜欢用神经信息学来定性或定量地表述神经信息处理的基本规律 (Gazzaniga et al. 2009, Wang et al. 2018). 但是无论使用什么样的名称都改变不了这样一个基本事实, 即神经科学家和人工智能领域内的科学家与工程师已经深刻认识到, 认知神经科学的发展不仅越来越依赖于实验技术手段的进步和严格的实验数据, 而且还需要从理论的高度用定量的方法来理解和挖掘大脑网络信号处理与传输的原理、洞察神经编码发放模式的内部机制, 从而发现浩瀚的实验数据背后所蕴藏的规律和本质, 以便能够更多的了解和掌握大脑的运筹方式以及能够应对各种脑疾患并对潜在的退行性脑疾病患者做出准确的前期预报 (Clancy et al. 2017; Nimmy John et al. 2018; Videbech 2000; Wang et al. 2006, 2018).

长期以来, 以实验作为基本研究方法的认知神经科学重点关注了实验现象、实验数据和实验技术手段的提高而忽略了理论的重要性, 这导致已经具有几百年历史的脑科学至今没有自己的一个系统的、完备的理论体系. 这种极不正常的现象使得脑科学迄今为止依然是一门不成熟的学科. 虽然20年前诞生了理论神经科学, 但是仅仅冠以一个理论是无法被学术界广泛接受的. 虽然在今天理论神经科学家也做出了一系列优秀的研究成果 (Bonzon 2017; Bullmore & Sporns 2009; Erdogdu et al. 2019; Jia et al. 2017; Kim & Lim 2018, 2019; Mondal et al. 2019; Mora-Sanchez et al. 2019; Parastesh et al. 2018; Rao 2018; Tejo et al. 2019; Wang et al. 2018; Yao & Wang 2019; Yao & Ma 2018; Zhang et al. 2019), 但仍然很难广泛地与实验神经科学家们进行有效的合作, 互相促进、融合发展. 目前的现状是, 在各个层次上获得的神经科学研究成果之间似乎有一条看不见且无法跨越的鸿沟. 这些现状使得它们之间的研究成果不能互相利用、相互影响、相互促进以及无法推动认知神经科学取得重大突破. 尤其在意识、思维、创造力产生机制、情绪、智能的本质、预测、视知觉产生机制、记忆的存储与调用、全局脑功能等诸多方面研究进展十分缓慢, 有的甚至没有任何进展. 尽管如此, 脑研究领域内大量未解的科学问题以及它们的复杂程度也同时引起越来越多的其他领域科学家们的关注, 并激起了他们的强烈兴趣, 其中也包括了许多优秀的力学工作者(如陆启韶和徐健学教授等). 神经动力学领域内的大学科交岔研究, 对于推动我国特别是在力学科学领域内将力学的理论与方法运用于认知神经科学和生命科学, 与其他科学领域一起创造性地构建大脑的理论体系和类脑智能理论体系具有重要的现实意义和深远的影响.

神经动力学的基本思想已经越来越多地渗透和体现在神经科学、人工智能、类脑计算、生物信息、 医学诊断、图像处理、控制科学、复杂网络以及工程应用等诸多方面 (Abbasi et al. 2020, Ji et al. 2019, Jiang et al. 2020, Li et al. 2020, Oprea et al. 2020, Talebi et al. 2018, Wang & Zhu 2016). 脑科学是一个大尺度科学, 它不仅涉及到许多学科领域的立体交叉, 而且对许多成熟的学科也提出很多前所未有的挑战. 例如从物理学观点出发, 大脑内部微弱的磁场对神经信号的传导是否有贡献? 如果有贡献, 实验证据在哪里? 如果没有贡献, 如何解释神经元的负功率成分 (Wang et al. 2015, Wang & Wang 2018). 又如何解释Wang-Zhang (W-Z)神经元模型与Hodgkin-Huxley (H-H)模型的等效性 (Wang & Wang 2018). 更深入的问题是脑区内的神经元之间, 或者脑区之间即使没有突触连接和神经纤维连接, 在电磁场耦合情况下是否还能传递神经信号从而实现神经元之间和各个脑区之间的通讯 (Ma & Tang 2017, Parastesh et al. 2018). 从数学的观点出发, 是否存在一种数学理论可以跨层次地描述大脑各层次的动态响应以及低层次作用下高层次所涌现的宏观性质? 是否有一种数学方法可以将认知与行为联系起来? 从信息论的观点出发, 人类智能就是信息处理的这一假设, 一直以来主宰着社会以及科学界人士对于人脑的看法, 而且迄今为止也没有任何论文表示人类智能行为的表现不依赖于信息处理的原则. 这一传统假设在我们的认知中已经根深蒂固, 那么我们的疑问是这种假设究竟是推进还是阻碍了我们对于大脑运筹方式本质的认识与探索 (Epstein 2016)?

大脑作为一个不稳定的动力学系统在学术界已经没有任何争议, 大量的实验数据和实验结果揭示了大脑无论在哪一个层次上都具有特定的功能特性, 其呈现的活性都表现出很强的非线性和复杂性. 脑动力学中所呈现的高度非线性和复杂性以及它们的各种功能表达, 除了与基因和功能基因组学以及生物学和生物化学相关以外, 还与固体力学 (McIntyre et al. 2001)、流体力学 (Moore & Cao 2008)、动力学与控制(一般力学与力学基础)息息相关 (Lu et al. 2008, 陆启韶等 2008). 可以说力学与认知神经动力学和脑科学之间有着千丝万缕的联系 (Deco et al. 2009, Evans & Hochmuth 1976, Mitrossilis et al. 2009, Rauzi et al. 2008, Schwarz Henriques et al. 2012). 笔者的研究表明, 认知神经科学中的许多实验现象有些是可以通过力学模型来再现和重复的 (Wang et al. 2015), 有些神经科学无法解释的实验数据, 利用力学模型也能够给予科学的解释 (Peng et al. 2020). 还可以通过力学模型来预测神经科学中没有发现的现象和新的神经机制 (Wang et al. 2015, Wang & Wang 2018). 这充分显示出力学科学在脑科学研究领域中的强大力量. 然而, 脑科学领域中所蕴藏的丰富的力学问题长期以来一直还未被一些力学工作者广泛的认识和研究.

最近由陆启韶教授(2020)发表的综述性评论文章《神经动力学与力学》深刻阐述了神经动力学与力学之间的内在联系, 阐明了经典力学如何向广义力学的转化, 以及广义力学与神经动力学之间一一对应的关系. 他指出: "进入20世纪以后, 动力系统理论和方法得到进一步发展, 并成功地用于各种力学系统, 以至非线性微分方程描述的一般系统具有普遍的理论意义和重要的应用价值". 这表明近代力学研究突破了经典力学体系的传统范畴, 开拓了"广义"力学体系的新范畴. 也就是说力学的研究对象从"质点或质点系"拓展到了一般性的"动力学系统", "力"的概念从"机械力"拓展到一般性的"相互作用", "运动"的概念也从几何空间中的"位形变化"拓展到在状态空间中的"状态演化". 这些思想澄清了神经动力学与力学之间没有关联的不正确观点, 对于力学思想在认知神经科学中的建模与计算, 以及对于类脑智能理论体系的构建都是重要的, 带有指导意义. 国内外大量的研究成果也已经表明, 用力学(固体力学、流体力学以及生物力学)以及动力学与控制的理论和方法(一般力学与力学基础)研究认知神经科学的必要性和重要性, 主要研究方向体现在5个方面:

(1) 神经元与耦合神经元网络系统的放电模式的动力学分析. 例如同济大学古华光课题组的研究发现, 阈下共振在信息处理或Theta $( \theta )$节律的形成中有重要作用, 而放电精确性增加和阈下共振的产生机制是可以通过分岔与平衡点类型的改变获得理论上的解释(Zhao et al. 2018). 实验和理论研究发现, Hopf分岔附近的随机节律的功率(信息)比鞍结分岔的高, 说明不同类平衡点分岔的信息处理能力是不同的, 从而揭示了不同的血压压力下感受器放电频率的变化对节律编码的贡献是不同的 (Jia & Gu 2017). 以往的研究结果显示, 神经元之间突触连接的耦合强度越强, 神经元系统的同步性会越高. 然而, 现有的研究却发现并非突触连接强度越强, 神经元系统的同步性就越高. 北京邮电大学孙晓娟等 (Sun et al. 2011)以Hindmarsh-Rose (HR)神经元为节点构建了一个具有模块化的神经元网络, 其中HR神经元处于簇放电模态. 通过对单个神经元放电模态进行的分岔研究发现, 突触电流的改变会诱使HR神经元的放电模态发生两次分岔转迁. 网络拓扑结构和单个神经元自身放电动力学特性的协同作用会导致转迁过程中神经元网络同步性的降低.

(2) 脑神经网络系统的建模和认知功能的动力学分析. 最近, 笔者构造了基于解剖学基础并融合深度学习理论的新颖的视觉神经系统网络模型, 利用实验数据所提供的信息, 通过视觉皮层编码精确再现了外部世界的视觉感知 (Zhong & Wang 2020). 这项研究成果回答并初步解决了视觉神经科学长期以来的疑惑, 为什么大脑的视觉皮层可以从匮乏的数据信息中解释和编码外部的视觉感知, 并且能够预测环境变化的需求. 在高级认知功能的研究方面, 华东理工大学潘晓川等最新的研究成果揭示了脑内推理决策的神经回路机制, 并通过神经电生理实验证明了大脑的前额叶皮层和纹状体具有不同的推理功能 (Pan et al. 2014, Zhang et al. 2016). 它们在各个不同脑区的网络层次上, 通过竞争与合作的相互作用完成一个共同的行为决策 (Fan et al. 2017).

(3) 与神经活动有关的蛋白质分子生物网络动力学建模与分析. 我们的研究(Wang et al. 2003)证明了即使在微观的蛋白质层面上, 也可以用经典力学的方法去模拟生命系统的活动和解释它们的动力学特性, 模拟结果与实验观察现象 (Baker et al. 1998)高度一致.

(4) 神经信息的动力学编码. 我国在该领域的研究成果已有大量的研究报道 (Du et al. 2015; Li et al. 2018; Qu & Wang 2017; Qu et al. 2017; Sun et al. 2018; Wang & Wang 2017; Wang et al. 2011, 2018, 2018b; Xu et al. 2016, 2017; Yin & Wang 2016; Zhan & Liu 2019; Zhan et al. 2018; Zhang et al. 2017; Zhu et al. 2016; 王如彬 和 张志康 2012; 郑锦超 & 王如彬 2012). 例如电子科技大学郭大庆课题组研究发现, 突触传入与传出异质性对神经雪崩动力学具有不同的调控效应 (Wu et al. 2019). 特别是神经雪崩可以由适当水平的突触输入异质性所激发, 而突触输出结构异质性不能触发神经雪崩活动. 在神经雪崩产生区域, 他们进一步观察到大脑的神经活动具有放电不规则性和振荡随机性, 而电生理实验表明这样的多尺度皮层活动的同时出现, 与大脑高效的神经信息处理能力高度相关. 这些结果为突触传入非随机性参与神经雪崩调控提供了关键证据, 表明恰当的脑连接结构能够优化神经信息处理. 海马中的gamma-theta混合型神经振荡行为在电生理实验中被广泛观察到, 被认为与大脑的多种高级认知功能相关, 但其产生的动力学机制依然存在争论. Guo 等 (2012)通过建立大脑海马中间神经元网络模型. 发现短抑制性突触延时能诱导海马产生gamma振荡, 长抑制性突触延时可触发网络产生gamma-theta混合型神经振荡. 进一步研究揭示, 电突触不影响神经元放电模式, 但对同步放电起保护作用. 该工作在一定程度上解开了gamma-theta混合型神经振荡起源以及多神经振动模式间切换的谜团, 成为近10年在gamma-theta 混合型振荡神经机制领域中被引用最多的模型工作之一. 华南理工大学刘深泉课题组提出了一类基于离散时间的FitzHugh-Nagumo(FHN)模型的类Henon映射(广义映射)系统, 主要贡献是: (1)提出一个类Henon映射, (2)发现映射的分形结构和混沌, (3)展示映射子序列的马蹄形结构. 具体而言,可以观察到倍周期分岔到混沌结构的过程与最大Lyapunov指数谱一致. 通过数值模拟,分析了广义映射的相平面、分岔图以及功率谱和混沌吸引子等基本性质 (Zhan & Liu 2019).

(5) 神经功能调控与神经疾病的建模与分析以及类脑智能的原理与方法等方面的应用. 在这一研究领域, 我国虽然起步较晚, 但也取得了许多实质性的研究成果. 癫痫是全球重大神经系统疾病之一. 对癫痫机制的研究不仅需要整合跨尺度、多模态神经数据, 还需要充分借助理论与多层次神经计算模型. 近几年来, 北京航空航天大学王青云教授课题组在神经系统疾病, 如癫痫和帕金森症等的建模分析与控制方面取得了一些高水平的学术成果. 基于神经医学的临床数据分析, 发展了多种神经疾病网络动力学模型, 证实了时滞 (Fan & Wang 2018, Fan et al. 2018)、突触可塑性 (Zhang et al. 2018), 网络拓扑 (Yang et al. 2018)等参与神经疾病发生和发展的复杂动力学机理. 发现了影响疾病关联的病态神经网络放电模式及其同步转迁的关键生理参数, 提出了精准的癫痫灶定位与术后评估方案, 发展了帕金森症和癫痫的深脑刺激调控策略和非线性控制手段 (Fan et al. 2016, 2017; Yang et al. 2018; Yu et al. 2020). 这些成果为寻求脑神经疾病发生机制与调控策略、研发类脑智能应用技术的理论和方法提供了新的思路, 拓展了神经动力学的研究范畴. 在这一研究领域, 电子科技大学尧德中教授团队长期关注全面性癫痫, 通过建立"皮层-丘脑-基底节"神经环路的神经场计算模型, 系统地提出了全面性癫痫特征放电的多重调控机制 (Chen et al. 2014, 2015). 纹状体的多巴胺能神经元的损伤被认为是帕金森病的主要原因. 在多巴胺神经元损伤的状态下, 树突棘的丢失和树突长度的减少可能会阻止中等多棘神经元从皮层接受过多的兴奋性刺激, 从而减轻帕金森病的症状. 然而, 不同实验得到的树突棘密度降低值存在显著差异. 刘深泉等建立了一个基于生物的网络计算模型来量化树突棘损失和树突树退化对基底神经节信号调节的影响. 研究结果表明, 适当调整大脑皮层的活动可以阻止由多巴胺损耗引起的树突棘的损失 (Zhang et al. 2017).

实际上, 研究表明经典力学也与神经动力学之间有千丝万缕的联系 (Rong et al. 2020; Wang et al. 2003, 2015; Wang & Wang 2018). 在这方面, 日本科学家将理论神经科学冠名为神经力学充分显示了他们对脑科学认知的前瞻性和睿智. 为了让大家认识到脑科学领域中的力学现象、力学对认知神经科学的作用与贡献, 下面将根据笔者团队的研究成果并充分结合国际学术界的新颖观点, 从分子、细胞、神经元集群(介观水平)、感知觉神经网络、认知与行为的各个层次上全面阐述脑科学中所蕴藏的力学问题. 希望脑科学这个在本世纪甚至下个世纪中最复杂、最迷人、最前沿的研究领域内开辟出力学研究的崭新面貌和勃勃生机.

2 分析动力学在神经元建模中的应用

2.1 问题的提出

从力学的角度观察, 大脑神经系统的发育、神经元之间的连接、功能回路的形成以及神经组织变性退化后的再生能力等, 都与生长锥的动力学结构以及它们的运动状态有关, 而生长锥运动状态的变化以及它的运动趋势离不开各种力的相互作用(详见第6节). 虽然我们已经在分子水平上了解了神经元活动的力学基础, 但是大脑所有的功能性神经活动是建立在1000亿个神经元活性的基础之上. 在神经系统发育过程中, 神经元一旦在大脑中找到了自己的位置, 那么它即是整个神经系统中基本的结构单元, 也是它的功能单元. 为了理解大脑这个复杂的多层次相互作用的系统以及探索这个系统所具有的各种功能背后所蕴藏的规律和本质, 根据神经元轴突和树突在信号传导过程中各种力的作用与贡献, 需要在前人关于神经生物学和细胞生物学研究的基础上进一步探讨神经元的电磁感应对膜电位变化及对应的能量代谢的影响. 在这一方面, 兰州理工大学的马军等作者已经做了一定的先驱性工作. 他指出"在电生理活动过程中需要考虑神经细胞内、外离子输运产生的电磁场效应, 进一步从物理学角度解释突触可塑性的动力学机制" (Lv et al. 2016a). 基于电磁感应原理, 他们在神经元模型中引入了磁通量, 利用感应电流来表达细胞内离子输运产生的电磁场效应和外界电磁辐射效应,它可以解释神经元电活动过程的多模态振荡和神经元网络内场耦合同步过程.

1952年, Alan Hodgkin 和 Andrew Huxley首次给出了神经元膜电位的定量化描述(H-H方程), 提出了离子通道的概念, 从而揭开了神经元兴奋性的面纱. 正是由于他们二人极富创造性的工作, Alan Hodgkin 和 Andrew Huxley获得了1963年的诺贝尔生理学和医学奖, 也是迄今为止唯一的一个通过构造数学模型而获得诺贝尔奖的二位科学家. 然而, 他们提出H-H神经元模型是一个高维复杂的非线性方程. 由于参数很多, 虽然可以反映神经细胞的许多非线性性质, 适用于亚细胞水平的研究. 但是当神经元数目巨大的时候却带来了相当大的计算困难, 甚至变的不可能. 因此不适合用于大规模神经网络和大尺度神经计算的研究. 为了解决这些困难, 一些学者在H-H精确模型发表的前后分别提出了一些简化的神经元模型. 典型的有Hindermarsh-Rose非线性模型(HR), 这个模型的特点和适用范围是计算量和参数比H-H模型大为减少, 即可作为单个神经元动作电位发放特性的研究, 也可用于较大规模网络的基本单元. HR模型的主要缺点是在单个神经元或几个神经元条件下得到的丰富的非线性动力学性质并不能直接推广到高维非线性系统和神经网络系统, 在实际应用方面存在较多的局限性. Integrate-and-Fire模型(IF)因为计算简便也可用于较多数量神经元集群的动态研究, 但这个模型由于不能记录神经元膜电位变化的完整性, 使得它成为了一个有一定缺陷的模型. 与H-H模型相比, FithzHuge-Nagumo非线性模型(FHN)计算量大为减少, 仅可适用于单个神经元动作电位性质的研究. 单个神经元簇发放动力学研究的Chay模型是H-H模型的一个简化版本, 相对而言计算工作量减少了许多. 它的主要缺点同样是不适合用于大规模神经网络和大尺度神经计算的研究. 这些情况事实上不仅严重阻碍了神经动力学、计算神经科学对神经系统在各个层次上的完整描述, 而且也严重阻碍了脑科学理论体系的构建, 使得我们无法从理论的高度理解神经科学大数据背后所蕴藏的规律和本质. 其后果是实验神经科学与理论神经科学之间将会持续地缺乏一种共同语言, 使得本应该相互理解、互相合作、融合发展的脑科学研究至今仍然存在一条隐藏的不可跨越的鸿沟.

2.2 W-Z神经元模型的生物物理机制

综上所述, 需要找到一个能够在各个层次上进行大尺度组合计算而且又不丢失主要信息、简单而又可靠的神经元计算模型. 这种新的神经元模型的特点是: (1)它必须是与H-H模型等效的神经元模型; (2)它不仅适用于脑区之间相互交流的计算, 而且也适用于大脑各个层次上的计算以及各个层次的组合计算; (3)在神经核团、介观、复杂网络、宏观认知与行为层次上, 这个新的神经元模型可以忽略次要信息但不能丢失主要的信息; (4)计算是简单且是可靠的.

经过十几年的努力探索, 笔者初步找到了这样一个基本符合上述要求的被称之为W-Z的新的神经元模型 (Wang et al. 2015, Wang & Wang 2018). 令人惊喜的是, 当 使用分析力学的方法在细胞层次上构建这个原创神经元模型的时候, 却意外发现了神经元的一个新的工作机制. 特别让人兴奋的是, 虽然H-H神经元模型和W-Z神经元模型是2个在完全不同的层次上构建的神经元模型, 但居然是等效的 (Wang & Wang 2018). 而这2个神经元模型的最大区别是在W-Z模型中引入了电感原件. 电感原件被引入的生物学依据是 神经科学实验中的一个被大家长期熟视无睹的现象. 这些实验现象提供了不同类型的哺乳类动物的离体脑、脊髓切片的细胞内记录, 显示中枢神经元在没有突触联系时, 完全可以由内在的离子机制产生各种复杂的动作电位发放模式以及自发且持续性地产生动作电位. 这个现象表明, 即使没有刺激输入, 神经元发放模式的机制也与离子电流的活动存在很强的内在联系 (Byrne & Roberts 2009). 马军等虽然没有看到上述实验现象, 但是他们从物理学角度出发, 并基于W-Z神经元模型的雏形 (Wang & Zhang 2006, Wang & Zhang 2009)和忆阻器工作原理 (Lv et al. 2016b, Wu et al. 2016), 敏锐地感觉到感应电流在细胞内离子输运过程中所产生的电磁场效应和外界电磁辐射效应对神经信号的传导是有贡献的 (Lv et al. 2016a). 他们将该方法用于研究心肌组织在电磁辐射下的电活动行为, 预测了电磁辐射诱发的心脏猝死和休克机制 (Ma et al. 2017, Wu et al. 2016). 从而对神经元突触可塑性的物理机制进行了科学的解释, 任务突触电流触发的过程伴随着电磁场的产生, 因此可以利用电容器、感应线圈的组合来模拟混合突触的功能 (Ma et al. 2019).

Alan Hodgkin 和 Andrew Huxley证明了在膜的通透性不变的情况下, 离子电流可以被描述为电导和驱动力(膜电压与离子的能斯特电位之差)乘积的形式. 电导反映了细胞膜对离子的通透性, 而驱动力反映了细胞内、外液中带电粒子在电场梯度和浓度梯度的二重作用下离子电流运动的趋势. 大量的实验数据表明 (Byrne & Roberts 2009), 由于神经元的静息电位并不在任意一个特定离子的平衡电位水平上, 故各种离子都会持续地顺浓度差扩散, 这在产生动作电位和突触电位时是很明显的. 因此, 细胞需要通过钠钾泵的主动转运来恢复, 一般认为钠钾泵通过蛋白质磷酸化和去磷酸化产生变构效应而完成转运. 而当膜电位超过阈值产生动作电位时, 会先引发一个大的短暂的内向电流(钠电流)并跟随一个持久的外向电流(钾电流). 他们证明当膜电位去极化时, 钠电流(钠电导)被迅速激活, 然后失活. 钾电流(钾电导)在一个延迟后激活, 只要去极化保持就会一直存在一个高的激活水平. 由于钠通道的失活慢于激活, 所以钠通道处在激活而未失活时有钠离子大量内流导致钠电流升高形成正反馈. 接着因钠通道失活和钾通道激活而转入复极化过程, 以备产生下一个动作电位. H-H模型中的各种离子电流无论是钠电流还是钾电流等, 由于在各个离子通道上离子电流极其微弱, 很难在离子通道的层次上构建它们各自的自感应效果. 尽管神经系统中的磁场强度很微弱 (刘亚宁 2002), 但电磁感应效果是客观存在的. 基于这样一个客观事实, 又基于笔者给出的神经元模型直接建立在神经细胞的水平上, 因此所有各种类型离子通道电流的自感应的总效果可以用一个电感来表示. 这个电感 可以用来表达在H-H模型中所代表的所有离子电流运动过程中所产生的磁场总效应. 这就是W-Z模型中为什么要引入电感的生物学解释, 也是为什么H-H模型和W-Z模型是等效神经元模型的内在的根本原因.

2.3 分析动力学揭示神经元活动的新的工作原理

根据电生理提供的实验数据和神经元的工作特性, 给出了图1所示的耦合神经元活动的生物物理模型. 该模型反映了单个神经元对与之相连的所有其他神经元的相互作用, 神经元之间的相互耦合是通过大脑皮层中第$N$个神经元对第$m$个神经元的输入所形成的电流$I_m $来实现的.

图1

图1   W-Z模型的电路图描述 (Wang et al. 2015)


根据图1, 得到下列电路方程

$ U_m=r_{0m}I_{0m}+r_{1m}I_{1m}+L_{m}\dot{I}_{1m}$
$ I_{0m}=I_{1m}-I_{m}+\dfrac{U_{im}}{r_{m}}+C_{m}\dot{U}_{0m}$
$ U_{im}=C_{m}r_{3m}\dot{U}_{0m} + {U}_{0m}$

其中, 膜电容$C_{m}$表示正负离子在细胞膜内外的积聚. $r_{3m}$ 是内外膜的离子交换时碰撞所引起热损耗. 正如以上所述, 在这个新的神经元模型中, 引入了H-H模型中所没有的电感原件$L_{m}$, 表示细胞膜上各个离子通道产生了多个离子流动的回路电流所引起的自感应效果. 它包含神经细胞内的大量带电离子如钠离子、钾离子和钙离子在离子通道中的输运过程, 可以触发细胞内外的均匀或非均匀的电磁场, 这些电磁场反过来会影响带电离子的输运. 即细胞内电荷分布密度的改变和电荷输运过程中所产生电磁场效应会使细胞内产生感应电流, 这恰恰是传统神经元模型所没有考虑的 (Ma et al. 2019). $r_{1m}$表示电流产生情况下离子相互碰撞所消耗的热量, 可以等效为电阻. $U_{m}$可表示为神经元内部的化学梯度, 会驱使离子的流动, 在电模型中可用电压源或者电流源模拟. $r_{0m}$是由于电压源不理想所造成的损耗. $I_{m}$和$r_{m}$表示除了化学梯度外, 神经元还接受其他神经元的作用, 同时还维持静息时神经元的静息电位, 为了表示这个功能, 设输入电流为

$ I_{m}=i_{1m}+\sum_{j=1}^n i_{0m}(j-1)\sin\omega_m(j-1)(t_j-t_{j-1})+i_{0m}(n)\sin\omega_m(n)(t- t_{n}) \\ t_{n}<t<t_{n+1},\quad n=0,1,\cdots,\quad t_0=0$

其中$i_{1m}$是为了维持静息电位, 而其余部分表示周围$N$个神经元对第$m$个神经元的输入. $\omega_{m}$是动作电位的频率. $r_{m}$是跨越$I_{m}$的电阻, 是由于电流源不理想所造成的损耗. $i_{0m}$在阈下时接受周围神经元的刺激. 在发动作电位时不受外部影响, 由神经元的内部机制发生作用. $r_{2m}$的作用是由于电压源与电流源的作用不是在同一位点上产生, 电压源主要提供离子通道的小回路电流, 电流源主要接受周围神经元的刺激作用, 相互之间几乎是封闭的, 但是它们之间又有内在的联系, 可以用电阻$r_{2m}$来表示. 在这个物理模型中可供观测的物理量分别是膜电位$U_{im}$和膜电流$I_{0m}$. $N$个神经元的总功率可表示为

$ P=\sum_{m=1}^N P_{m}$

根据电路图,第$m$个神经元的功率由下式给出

$ P_{m}=U_{m}I_{0m}+U_{im}I_{m}= d_{1m}\dot{U}_{0m}^2+d_{2m}\dot{U}_{0m}+d_{3m}\dot{U}_{0m}{U}_{0m}+d_{4m}\dot{U}_{0m}^2+d_{5m} {U}_{0m}+d_{6m}$

其中参数$d_{im}$可以在文献 (Wang et al. 2015)找到.

由于无法从图1中的电路模型中得到电压源$U_m$的表达式, 一般就不能确定膜电位$U_{im} $. 但是大脑皮层耦合神经元之间的相互作用是有序的并遵循自组织规律 (Haken 1996, 顾凡及 & 梁培基 2007), 耶鲁大学的神经科学家提供的数据已经证实大脑皮层中神经元的活动需要消耗能量 (Lin et al. 2010, Maandag et al. 2007, Raichle & Gusnard 2002). 他们的研究工作表明, 与静息态相比刺激作用下大脑能量的消耗主要用于动作电位的传播, 以及神经递质刺激受体引起突触后离子流的恢复 (Lin et al. 2010).

笔者所建立的神经元集群在耦合条件下第$m$个神经元的模型, 可以通过它与周围神经元的电流耦合关系来描述神经元集群在阈下和阈上电活动的基本特征 (Wang et al. 2008, 2009). 但是直接从该模型出发并不能得到它的膜电位, 如果 能够找到神经元能量消耗的函数形式, 并且找到被能量函数所控制的神经元运动方程的约束条件,就能得到膜电位的解. 由于神经元集群的自发电位活动服从自组织规律 (Haken 1996), 同时根据耶鲁大学神经科学家关于神经信号的传输与能量耗散紧密耦合在一起的实验结果, 判定所给定的这个新的神经元模型的约束条件很可能是该电路系统中的能量函数. 在力学分析中, 对于一个已知的动力学系统, 可以写出该系统的动能和势能, 从而得到它的拉格朗日函数. 在 神经元电模型中, 假定势能等于常数 (而功率就是平均能量), 即可以设想消耗在该电路模型上的功率可以看作是动力学系统的能量函数, 由此引出拉格朗日函数作为该电路模型的约束条件, 起到完整描述该神经元模型的关键作用. 这样的思想是否合理, 要看这种设想所得到的结果与神经电生理实验结果是否吻合? 这个思想的巧妙之处在于把经典力学系统中关于动力系统建模的方法推广到了神经系统.

根据上述思想, 设模型中的拉格朗日函数与电路模型的总功率有关,其动力学方程由下式给出

$ \dfrac{\rm d}{{\rm d}t}\left(\dfrac{\partial P}{\partial \dot{U}_{0m}}\right)-\left(\dfrac{\partial P}{\partial {U}_{0m}}\right)=0,\qquad m=1,2,\cdots, N$

上述方程的解是

$ {U}_{0m}=-\dfrac{\hat{g}_1}{\lambda^2_m}-\dfrac{\hat{g}_2{\rm e}^{-a(t-t_n)}}{\lambda^2_m-a^2}-\dfrac{ 1}{\lambda^2_m+\omega^2_m}\bigg[\hat{g}_3\sin \omega_m (n)(t-t_n)+\hat{g}_4\cos \omega_m (n)(t-t_n)+ \\ \bigg(U_{0m}(t_n)+\dfrac{\hat{g}_1}{\lambda^2_m}+\dfrac{\hat{g}_2}{\lambda^2_m-a^2}+\dfrac{\hat{g}_4} {\lambda^2_m+\omega_m^2 (n) }\bigg)\bigg]{\rm e}^{-\lambda_m(t-t_n)} \\ t_n<t<t_{n+1},\quad n=0,1,2,\cdots,\quad t_0=0$

当$i_{0m}(n)$是强刺激使得膜电位达到阈值水平时, 得到神经元膜电位$U_{0m} $和对应的能量函数$P_{m} $, 如图2所示.

$ r_{0m}=0.0001 \Omega,\quad r_{1m}=0.01 \Omega,\quad r_{2m}=1000 \Omega,\quad r_{3m}=0.1 \Omega,\quad r_{m}=1000 \Omega, \\ C_{m}=1 {\rm fF},\quad L_{m}=50 {\rm fF}, \quad i_{0m}=0.0707 {\rm mA} $

图2

图2   (a)动作电位 和(b)对应的能量函数


从计算结果看, 动作电位的波形和实验数据是完全吻合的, 从而证实 之前的判定是正确的. 需要特别强调的是, 从用分析力学方法得到的计算结果 看到一个以前从未发现的现象, 即当神经元在发放动作电位的时候, 其对应的能量消耗并不是像神经科学传统的观点那样, 神经元只是消耗能量的, 而是在消耗能量之前是先吸收能量然后再消耗能量. 实际上在一个动作电位的产生过程中, 神经元的能量变化由两部分组成, 一部分是从血流中获得的氧合的血红蛋白表现为负的能量(负功率), 用于能量的储存. 而另一部分是脱氧的血红蛋白表现为正的能量, 用于能量的消耗 (Wang et al. 2015, Wang & Wang 2018). 对于这个新颖的能量计算结果, Zheng 等 (2014, 2016)结合分子生物学知识及已有的实验数据, 对动作电位发生期间神经元及其相关的胶质细胞对离子通道开闭、谷氨酸循环、葡萄糖等的调控过程进行了定性的解释. 指出动作电位中出现的负能量是一个储能的过程, 即从血流中吸收葡萄糖和摄取氧气的量大于所需消耗的量. 也就是说神经元受刺激后会引起脑血流增加, 但去极化时有耗氧的需求(此刻并未耗氧), 主要表现为能量的吸收. 在神经元的复极化阶段, 储能已消耗完毕, 此时神经元的耗氧量大幅增加, 表现为能量消耗. 简而言之, 神经元不仅是个耗能元件也是一个储能元件. 从一个动作电位来看, 神经元先从血流中吸收能量, 然后再将吸收的能量消耗掉, 这样周而复始的进行, 达到一个动态平衡, 这表明单个神经元的能量储备能力是有限的. 从血流的葡萄糖和氧气供应来看, 在血流的葡萄糖和氧气供应充足且神经元的储能未达上限的情况下, 神经元进行能量储备, 即在产生动作电位的过程中, 出现的负能量(即储存的能量)不会被消耗. 此时神经元所消耗的能量完全由血流中的葡萄糖提供, 而"负能量"则作为后续神经活动的能量储备被神经元储存下来, 这说明单个神经元储存的能量应该是在一个动作电位中存储能量的整数倍 (Peng et al. 2020).

需要强调的是, 神经元发放动作电位时所对应的能量函数存在负功率成份是神经元工作机制的一个极其重要的新发现 (Wang et al. 2015). 这个新的工作机制揭示了以前未曾被发现的神经元活动的两个规律. 第一个是神经元的膜电位发放和神经能量有对应的关系; 第二个是神经元在阈值以下活动时以消耗能量为主, 而在阈值以上活动时以吸收能量和消耗能量并存(Wang et al. 2015). 第一个规律揭示了神经元膜电位的功能获取与能量函数之间独特的对应关系, 这一发现已经得到了H-H模型的有力证实 (Wang & Wang 2018). 第二个规律验证了这样一种神经科学目前无法解释的实验现象, 即大脑区域激活后血流增加31%, 而耗氧量仅增加6% (Zheng et al. 2016),两者之间的关系近似等于$5:1$. 经 计算表明, 图2 中能量曲线内正、负区间的面积恰恰也近似等于$5:1$ (Wang et al. 2015). 这里需要强调的是这个功率曲线中的正负区域具有深刻的神经生物学意义: 正负区域很好地对应了刺激诱导的神经元活动时血流上升约为31%, 而伴随的氧气消耗仅仅只上升了大约6%这一实验结果 (Zheng et al. 2016). 利用负功率成分还可以解释大脑血液动力学现象, 即为什么皮层指定区域被激活以后, 血流的大幅上升要比激活的时刻延迟$6\sim 7$ s. 还可以解释为什么触觉的感知与意识的涌现是同步的等等. 建立在实验数据基础之上的新的神经元模型使得笔者原创性地提出了能量编码的概念、理论和方法 (Wang et al. 2008, 2009, 2014, 2015, 2019; Wang & Zhu 2016, 2017; Wang & Xu 2017; Wang & Wang 2014; Zhu et al. 2018; 王如彬 2020; 王如彬 & 张志康 2012; 郑锦超 & 王如彬 2012). 这个新的概念和编码理论不仅可以解释神经科学一些至今无法解释的实验现象以及定量化揭示一些实验数据背后的规律, 而且还能够预测一些实验神经科学发现不了的现象 (Wang et al. 2015). 当 充分理解和掌握了神经元活动的上述本质时, 将会对大脑皮层神经信息处理的规则和神经编码的原理产生一个全新的认识和质的飞跃. 这充分体现了力学对于推动神经科学的进步以及神经科学、生命科学领域中处处存在着力学的影响与作用.

根据神经元新的工作机制的发现, 用 神经元模型还能够定量证明大脑工作的运筹方式服从以下准则 (Laughlin & Sejnowski 2003, 彭俊 & 王如彬 2020, 郑锦超 & 王如彬 2012): (1)经济性——大脑在休息和参与认知活动的状态下神经网络的活动符合能量最小化原则; (2)高效率——大脑皮层神经网络信号的传输效率符合能量利用率最大化的原则; (3)自组织神经计算——膜电位和能量之间的关系反映了神经信息与脑血流之间的耦合关系. 此外, 利用这个新的神经元模型, 不仅能够模拟神经元的动作电位和对应的能量消耗, 还能够模拟突触前兴奋性电位(EPSP)和突触后抑制性电位(IPSP)的波形以及EPSP和IPSP对应的能量, 模拟结果与实验记录结果完全一致 (Wang et al. 2009, 2015). 这个 原 创性的神经元模型目前已经得到了大量的神经电生理学实验结果的支持. W-Z神经元模型以及神经能量的编码理论, 有可能将各种复杂、耦合、具有高度非线性的膜电位发放模式转化为以能量的发放模式来进行编码研究 (Wang et al. 2009, 2014, 2019; Wang & Zhu 2016, 2017; Wang & Wang 2014; Wang et al. 2015; Zhu et al. 2018; Zhu & Wang 2020). 该理论认为神经信息的编码与神经能量的代谢密切相关, 可以用能量的方法来理解和揭示神经信息编码的机制. 特别有意思的是, 使用W-Z神经元模型计算得到大脑的功耗是45瓦左右, 而实验数据提供的大脑功耗是20 W (Wang et al. 2015). 这也是第一次用定量的方法得到人类自己大脑的功耗.

由此可见, 神经元这个新的重要的工作机制的发现不仅依赖于分析力学的理论在神经科学中的创造性运用, 而且还可以完美的将神经信息与神经能量绑定在一起, 为大脑全局神经编码的研究框架打下厚实的基础.

实验数据表明任务态下大脑所消耗的能量只比静息态高5%左右 (Peppiatt & Attwell 2004). 静息态下的最大能量消耗来自于默认模式网络, 默认模式网络在静息态下消耗的能量几乎占大脑能耗的95%以上 (Fox & Raichle 2007). 过去 对大脑的理解多数来源于对这5%的大脑活性的研究. 由于大脑不同脑区的结构以及它们各个神经活动方式的不同, 神经科学家常常利用fMRI所测得的动态BOLD信号把大脑的活动作为一个整体来观察以便获得大脑活动的全局信息. 但是大脑在被激活的时候其血流在脑内的平均分布以及与耗氧之间的非线性耦合关系, 使得人们很难对脑在各种状态下的神经活动获得定量的准确理解, 同时 也无法了解激活脑区内神经元之间的相互作用 (Clancy et al. 2017). 目前神经科学研究领域还没有一种新的实验技术能够同时把神经电生理记录的精确性和反映大脑功能性活动全局信息的fMRI技术完美地统一起来, 包括光遗传学技术也只是局部的可观察技术. 如果科学技术水平今后在很长一段时间内实现不了这项新技术, 那么 是否可以在理论上提出一种崭新的研究方法, 将研究单个神经元活性的还原论和研究大脑宏观效应的整体论统一起来, 并以此把它作为研究大脑功能性全局神经活动的主要依据 (Wang & Zhu 2016).

这项新的研究方法要求在理论上不仅可以精确地再现神经电生理记录, 利用功能磁共振成像技术(fMRI)所提供的数据大范围重复再现大脑功能性活动的全局信息, 并且还能够预测 还未发现的神经系统活动的新的现象, 就像发现神经元能耗中的负功率成分那样. 要实现这一目标, 涉及到 应当如何深刻理解脑内神经元活动的本质. 为此, 需要将H-H神经元模型与W-Z神经元模型进行比较. 通过对这二类不同神经元模型的比较研究, 阐释神经元复杂膜电位的各种发放模式究竟是由什么因素主导和控制的, 以便理解和掌握神经信息处理和信号传导的本质和变化规律.

2.4 W-Z神经元模型与H-H模型的等效性及其分子生物学基础

为了证实用分析力学方法建立的W-Z神经元模型的有效性, 利用H-H模型来计算动作电位和膜电位的能量特征 (Wang & Wang 2018). 由于此前的几乎所有研究工作都是基于神经活动会引起神经能量怎样的变化. 而这一问题的逆问题是神经能量的变化是否会引起神经元活动的变化, 也就是说神经能量是否可以调控神经活动的状态. 其科学意义在于, 当供能不足, 阈下神经能量的演化与默认模式网络中神经暗能量的变化有何直接联系? 神经能量是否可以调制神经活动的状态? 以及它对于意识的丧失和恢复的研究有何重要的科学意义 (Stender et al. 2016). 就目前的文献来看, 这一问题并没有引起神经科学家的足够重视. 原因在于广泛使用的H-H模型建立在一个基本假设之上, 即离子泵的工作可以保证能斯特电位为恒定值 (Eikenberry & Marmarelis 2015). 此外现代实验技术也难以直接探测单个神经元在发放一个动作电位时所消耗的能量. 因此有必要通过计算模型了解为什么当离子泵无法保证恒定电位时, 即当神经元系统供能不足时, 能量是如何调控神经元活动的. 其科学意义在于当与静息态网络的能量消耗相比, 任务诱导下相关的能耗只增加很小的一部分(小于或等于百分之五). 因此, 迄今为止 大多数关于脑功能的认识和理解只来源于大脑活动中的这很小的一部分. 如果 希望全面了解大脑是如何工作的, 那就必须考虑消耗了大多数能量的部分即固有的自发的神经活动. 为此, 需要进一步考察建立在离子通道水平上的H-H神经元模型, 通过这二类神经元模型的比较研究来探索神经元活动的本质. H-H方程的电路模型如图3所示, 其微分方程描述为

$ C_{\rm m}\dfrac{{\rm d}V_{\rm m}}{{\rm d}t}=g_{\rm l}(E_{\rm l}-V_{\rm m})+g_{\rm Na}m^3 h(E_{\rm Na}-V_{\rm m})+g_{\rm K}n^4(E_{\rm K}-V_{\rm m})+I$

其中$ C_{\rm m}$为神经元细胞膜的膜电容, $V_{\rm m}$为膜电位, $E_{\rm Na}$和$E_{\rm K}$分别是钠离子和钾离子的能斯特电位, $E_{\rm l}$为使漏电流为零时的电位. $\hat{g}_{\rm Na}$和$\hat{g}_{\rm K}$分别是钠离子通道和钾离子通道的可变电导, 其中$\hat{g}_{\rm Na}={g}_{\rm Na}m^3h$, $\hat{g}_{\rm K}={g}_{\rm K}n^4$, $g_{\rm l}$为漏电导. 钠离子通道和钾离子通道的可变电导由下列一组非线性微分方程描述

$ \left. \begin{array}{l} \dfrac{{\rm d}n}{{\rm d}t}=\alpha_n(1-n)-\beta_n n\\ \dfrac{{\rm d}m}{{\rm d}t}=\alpha_m(1-m)-\beta_m m\\ \dfrac{{\rm d}h}{{\rm d}t}=\alpha_h(1-h)-\beta_h h\\ \end{array}\right\}$

上述方程中的各个参数可以在文献 (Wang & Wang 2018)中找到.

在H-H方程的电路模型中, 总能量可表示为

$ W_{\rm all}=C\dfrac{{\rm d}V_{\rm m}}{{\rm d}t}V_{\rm m}+i_{\rm Na}E_{\rm Na}+i_{\rm K}E_{\rm K}+i_{\rm l}E_{\rm l}$

图3

图3   H-H模型的电路图描述


$ C\dfrac{{\rm d}V_{\rm m}}{{\rm d}t}=I- i_{\rm Na}-i_{\rm K}-i_{\rm l}$

由此

$W_{\rm all}=IV_{\rm m} +i_{\rm Na}(E_{\rm Na}-V_{\rm m})+i_{\rm K}(E_{\rm K}-V_{\rm m})+i_{\rm l}(E_{\rm l}-V_{\rm m})$

$W_{\rm all}=IV_{\rm m} +(i_{\rm Na} E_{\rm Na} +i_{\rm K} E_{\rm K} +i_{\rm l} E_{\rm l})-V_{\rm m}(i_{\rm Na} +i_{\rm K} +i_{\rm l})$

其中$IV_{\rm m}$为外界对电路系统提供的能量, $(i_{\rm Na} E_{\rm Na} +i_{\rm K} E_{\rm K} +i_{\rm l} E_{\rm l})$为能斯特电位代表的电压源所提供的能量, 而$V_{\rm m}(i_{\rm Na} +i_{\rm K} +i_{\rm l})$则为膜内外电位差中的能量. 在上述神经元发放动作电位过程中, 若不考虑细胞膜通透性的改变所消耗的能量, 所涉及的能量分别为血流所携带的氧和葡萄糖对神经元所提供 的能量(外界对电路系统提供的能量)、细胞膜内外电位差中的能量(电压源提供的能量)以及离子泵在 逆着浓度梯度差运送离子时所消耗的生物能量ATP (膜内外电位差中的能量). 因为大脑兴奋所造成的葡萄糖消耗量增加主要是由钠钾ATP泵的激活造成的 (Maandag et al. 2007; Sokoloff 2008; Zheng et al. 2014, 2016). 其中前两者描述的是阈下神经元与生物能量的关系, 而离子顺着离子浓度差通过离子通道的协助扩散也并不消耗能量. 然而从动态的角度观察, 阈下神经元转化为功能性神经元过程中, 这三类能量的总和与H-H模型的电路系统中的总能量相等. 而前两类能量(外界提供的能量和电压源提供的能量)与电路中的$IV_{\rm m}$和$V_{\rm m}(i_{\rm Na} +i_{\rm K} +i_{\rm l})$分别对应, 那么能斯特电位所提供的能量$(i_{\rm Na} E_{\rm Na} +i_{\rm K} E_{\rm K} +i_{\rm l} E_{\rm l})$与离子泵消耗的生物能量相等. 实际上在这个过程中, 钠钾泵不断地逆着离子浓度梯度运输离子, 从而直接消耗了生物能量即1个ATP可以泵出3个钠离子和泵入2个钾离子. 这也印证了由于离子泵的存在, 通过不断运输离子提供稳恒的能斯特电位, 从而对神经活动供能. 于是 可以通过图7 所示的电路中, 利用能斯特电位代表的电压源的功率来计算离子泵所消耗的功率, 即神经元活动所消耗的神经能量为

$ P=|i_{\rm K} E_{\rm K} |+|i_{\rm l} E_{\rm l}| - |i_{\rm Na} E_{\rm Na}|$

方程(3)中第3项的负号是指图1所示的电路中, 电压源$E_{\rm Na}$和$i_{\rm Na}$电流的方向与$E_{\rm K}$, $E_{\rm l}$和$i_{\rm K}$, $i_{\rm i}$相反(钠电流朝向细胞内, 而钾电流和漏电流向外). 对于一个动作电位, 可以用上述方程计算其所消耗的神经能量, 如图4所示.

图4

图4   基于H-H模型的神经元动作电位与对应的功率消耗


图4中的计算参数值可以在文献 (Wang & Wang 2018)中找到. 可以看到H-H模型和W-Z模型的动作电位虽然在波形上有些误差(主要是W-Z模型是H-H模型是在不同层次上构造的), 但是H-H模型的神经能量也有负功率的成分, 并且与W-Z神经元模型相比几乎具有相同的动力学特征. 这个结果表明 神经元能量模型与H-H 模型具有深刻的内在联系. 从计算的角度看, 由于H-H神经元模型需要计算多个离子通道的电导和电流, 因此如果用H-H神经元来构造数量庞大的神经元网络, 则需要耗费大量的计算成本; 而如果利用W-Z神经元来构造神经元数量巨大的网络层次模型, 由于其计算复杂度大大降低因而具有更大的优势.

对神经元在开始发放动作电位的初始阶段, 能量的负功率成分做分子生物学解释: 主要是因为神经活动引起的局部充血. 由于血管扩张、血流增加导致动脉流入量增加, 使得流入血管中的氧合血红蛋白增加 (Peppiatt & Attwell 2004). 神经元主要通过氧合血红蛋白来摄取氧, 但是此时O$_{2}$的消耗量并不随血流和O$_{2}$的增加而成比例的增加 (Peppiatt & Attwell 2004). Fox等(2007)通过PET观察到, 事件诱发时氧摄取系数(OEF)从静息时的40%减少到20%, 也就是说, 事件发生期间80%输送的氧并不是被生理代谢掉. 这说明与神经激活相关的能量需求(与静息态所需相比)是很小的, 且脑血流的充血反应受非氧化代谢的产物(如乳酸)的影响 (Lin et al. 2010). 功能性充血对神经元信息处理有直接作用. 由于血流增加, 血量增加以及局部血管压力增加, 引起局部血管的扩张. 由解剖结构可知神经元和胶质细胞位于血管附近, 因此血管的扩张会导致细胞膜的变形. 这些机械力信号如血流、血量、压力和血管的局部扩张与收缩等导致的细胞膜变形可以调节对机械力敏感的离子通道, 从而改变神经活动 (Lin et al. 2010, Moore & Cao 2008, Peppiatt & Attwell 2004). 例如体感皮层区内, 感官刺激传入引发微小动脉的$30\%\sim 40\% $的管径增加, 即平均净增加$10\sim 15 \mu $m, 有些实验数据证明其扩张程度甚至超过了$15 \mu $m (Hughes & Barnes 1980, Koralek et al. 1990, Ngai & Winn 1996). 根据Poiseuille'的理论: 血管直径减少23%可以使血量减少3倍, 而血管的管径增加$30\%\sim 40\% $, 则血流量将增加4至5 倍左右. 另外, 血流对大脑的温度有主导作用. 局部充血会降低大脑温度, 减少由于神经活动产生的热量的影响 (Moore & Cao 2008).

在分子水平上, 作为大脑中数量最多的细胞种类, 胶质细胞一直以来被认为仅仅对神经元起支持和营养作用. 但最近已有证据表明, 胶质细胞在神经活动中起着至关重要的作用. 它不仅仅影响着神经元的生长发育, 更可能直接参与了神经信号的传递过程. 胶质细胞中含量最多的是星形胶质细胞, 大脑中的糖原主要储存在星形胶质细胞中. Pellerin 和 Magistretti (1994)提出的星形胶质细胞——神经元乳酸穿梭假说(astrocyte-neuron lactate shuttle hypothesis, ANLSH) 表明了星形胶质细胞在神经能量代谢和血流动力学中起到了至关重要的作用. 目前对脑糖原的作用还不完全清楚. 但大量的研究表明 (Brown 2004, Brown et al. 2004Dinuzzo et al. 2012, Pellerin & Magistretti 1994),脑糖原是非常重要的脑能量储备和大脑活动的物质基础.

由于Na$^+$, K$^+$和Ca$^{2+}$通道的活性增强, 使得ATP消耗增加, 反而刺激了ATP的生成. 如图5所示, 胶质细胞内葡萄糖的糖酵解过程中, 1分子葡萄糖生成2分子乳酸和2个ATP, 此ATP正好用于谷氨酸的摄取和代谢. 1分子谷氨酸连同3个Na$^+$经由协同转运蛋白被摄入星形胶质细胞内, 随后会激活Na$^+/$K$^+$泵来恢复渗透梯度. 谷氨酸进入星形胶质细胞后转变为谷氨酰胺等物质并传送回相邻的神经元. 而且Na$^+$的摄取是被动过程, Na$^+/$K$^+$泵的激活和谷氨酸转化为谷氨酰胺都是能量消耗过程(各消耗1个ATP) (Figley & Stroman 2011). 而糖酵解的产物乳酸则通过细胞膜上的乳酸穿梭蛋白运输到细胞外, 进而被邻近的神经元吸收, 经氧化代谢后产生36个ATP (Sokoloff 2008). 可知, 虽然血流的增加主要是由于非氧化代谢的产物乳酸浓度的增加, 但能量需求的大部分(98%)来自氧化代谢途径 (Eikenberry & Marmarelis 2015). 所以当脑组织的活动增加时, 相应的能量需求迅速上升, 但脑血流来不及变化, 导致血糖缺乏. 此时, 脑糖原迅速酵解, 以满足脑组织活动的能量需求.

图5

图5   乳酸产物和星形胶质细胞终足内钙波引起细胞/分子和血流动力学变化(Figley & Stroman 2011)


以上是大脑局部充血导致负功率成分的分子机制以及血管扩张导致血流增加的力学机制的解释. 由此可见, 上述关于各种神经化学反应引起的血管平滑肌舒张导致脑血流增加进而调控大脑的神经活动是一个 神经化学、神经信号传导、细胞流变学、血管的非线性黏弹性力学、血液的非牛顿流体力学以及损伤力学的多学科交叉研究, 其中涉及到大量的力学问题有待力学工作者去进一步探索和解决.

从电路的角度观察, 能斯特电位代表的电压源发出的功率为负, 说明电路中的其他元件对电压源做功, 主要由周围的胶质细胞和神经元通过各种机械力做功完成. 此阶段电容放电, 释放电容中的储能(大脑中的脑糖原). H-H模型中的电容对应了神经元的细胞膜, 而钠离子在由膜内外电位差引起的电势梯度的作用下通过离子通道进入神经元, 这可以视作细胞膜的储能为钠离子的内流提供了能量, 这恰好对应了电容的放电. 从以上讨论可以看出离子的运动与电路模型完全对应 (Wang & Wang 2018).

注意, 图6中的左面的上下二图分别对应右面上下二图的放大. 由图6可知, 当钠离子泵不能提供稳定的能斯特电位时, 阈下膜电位的活动是以消耗能量为主的. 当默认模式网络与静息态网络进行耦合运动时就可以解释为什么95%左右的能量消耗致力于大脑内在的、固有的自发活动, 而任务刺激下导致的神经能量消耗通常只占静息状态条件下大脑能耗的5%.

图6

图6   不同能量供给状态下神经元的活动


简而言之, 神经编码研究领域中存在多种编码理论如频率编码、节律编码、时间编码、相位编码等各种编码方法. 然而它们只能适用于各自局部的、单个的或少数的神经元系统以及孤立的、封闭的神经元网络这些状况, 而实际的神经编码必然是大范围、各层次耦合以及各相关脑区相互作用的全局神经编码. 而能量编码从神经元活动的能量特征出发来研究神经编码问题, 能够体现出全局性、经济性和高效率等优势 (Laughlin & Sejnowski 2003, Wang & Zhu 2016, Wang & Xu 2017, 王如彬 和 张志康 2012, 郑锦超 和 王如彬 2012). 客观上, W-Z模型中给出的电感元件不仅在理论上证明了电磁场效应对信号传导和信息编码贡献, 而且为脑内存在一种未知的磁性物质的预测提供了理论基础. 自 2006年 提出神经能量模型的雏形以来 (Wang & Zhang 2006), 经过了10 年, Qin 等 (2016)Nature Material 上发表了一篇重要的学术论文, 该论文通过实验证明了脑内存在一种被称之为MagR的磁蛋白, 用于路径探索中的方向和方位的导航.

动作电位以及阈下膜电位的复杂变化能够呈现神经元放电活动的丰富的动力学性质. 我们的研究不仅揭示了二类不同神经元模型的等效性, 而且还发现了蕴藏在丰富的动力学性质和大量的实验数据背后的神经元放电活动的本质和规律. 从还原论的角度看, 这是对神经科学的一个重要贡献.

2.5 簇发放的神经能量机制与W-Z神经元模型

簇发放也是神经元常见的发放模式之一. 然而, 簇发放是否也具有上述性质呢? 到目前为止, 簇发放的细胞机制及其生物学意义仍然不清楚. 为此, 从能量角度出发, 提出了基于Chay簇发放模型的神经能量计算方法, 分析了有刺激和无刺激二种条件下各离子电流及其单位时间的能量消耗(功率). 研究发现, 在簇发放的去极化过程中功率变为负, 这与W-Z神经能量模型的研究结果一致 (Zhu et al. 2019). 进一步研究还发现, 神经元在簇发放模式下的能量消耗最小, 尤其是在无刺激的自发状态下, 簇发放30 s的总能量消耗相当于单个动作电位所消耗的生物能量. 以上的研究结果表明, 低能耗的簇发放电活动是一种节能的神经信息传递方式, 它遵循能量最小化的大脑运筹方式.

神经信息传输的能量效率被认为是神经信息处理的一个重要制约因素, 它通常以单位信息所消耗的能量来衡量. 以往的大部分研究集中于探讨单个动作电位的能量效率. 然而, 神经信息更可能是由一个spike序列而不是单个spike进行编码. 到目前为止, 能量效率如何依赖于spike序列的发放模式还不清楚. 基于Chay神经元模型模拟了高频、中频和低频发放模式, 并检验它们的能量效率. 研究结果表明, 中频模式比高、低频模式更有效. 其中稀疏簇发放(SBF)模式最有效, 因为它消耗的能量最小, 而传输的神经信息量与消耗更多能量的高频模式相当. SBF模式可以通过平衡消耗离子浓度梯度中存储的势能来最小化能量消耗. 此外, 稀疏的簇发放(SBF)与单个spike结合的方式可以最大化SBF模式所携带的神经信息, 从而提高能量效率. 总之, 神经系统可能优先限制能量成本而不是最大化信息, 以实现更高的能量效率 (Zhu et al. 2020).

3 结构网络中H-H模型与W-Z模型的等效性

大脑的神经活动和脑的运筹方式服从于能量的最小化原则和信号传输效率的最大化原则 (Laughlin & Sejnowski 2003), 大脑的这种严密工作方式已经被大量的实验数据所证明 (Gazzaniga et al. 2002; Laughlin 2001; Levy & Baxter 1996; Wang & Zhu 2016; Zhu et al. 2019, 2020). 这种工作原理支配着整个大脑的活性, 但需要进一步了解其对认知的作用与贡献. 为了在认知行为和能量信息之间找到它们之间的内在关联和本质联系, 首先需要解决的是构造一系列结构与功能性神经网络, 以及结构网络在什么条件下向功能网络的转换, 这涉及到大尺度神经科学的建模与分析.

3.1 源自分析动力学基础上的大尺度神经科学模型的定义

大尺度神经科学模型是建立在神经能量模型的基础之上, 而神经元能量模型的构造源自分析动力学的理论与方法. 其目的在于通过神经能量与膜电位、场电位以及网络发放率之间的对应关系, 从定量的角度获得大脑神经活动的全局信息. 由于大脑的全局信息可以转换为能量来进行研究和分析, 因而神经能量编码构成了大尺度神经科学模型的基石. 其定义如下:

(1) 既可以对大脑的局部神经活动又可以对其全局神经活动进行分析和解释. 同时, 还可用于构建、分析、描述从分子到行为各个层次上的神经科学实验现象, 并能够在各个层次的结合上建立全局脑功能模型, 从而使得各个层次上的计算结果不再是互相不能利用, 互相矛盾和毫无关系的.

(2) 全局脑功能模型可用于解决头皮脑电和皮层电位之间的换算关系. 要描述整个大脑中大尺度神经元的相互作用仍然很困难(指多个脑区的相互作用). 目前很难同时从多个大脑区域的有损伤实验中得到记录. 虽然EEG和MEG可以从脑的各个区域中对神经元活动进行取样, 但是以这些颅外信号为基础来估计皮层交互作用是非常困难的, 主要障碍是缺少一种能够在高维空间上有效分析皮层-皮层之间交互作用的理论工具. 此外, 还缺少一种头皮脑电和皮层电位之间的换算关系. 解决这些极为困难问题的一个极具潜力的方法就是神经能量理论.

(3) 可用于洞察和分析实验数据背后的本质和规律性问题(例如血氧信号和意识状态之间依赖关系的问题; 脑电波的意义和脑电波的内容等).

(4)如果一个全局脑活动模型能够在退化条件下解释默认模式网络和静息态网络的功能、能量消耗以及在任务诱导下能够解释从默认模式过渡到认知网络的形成及对应的能量转化, 这样的模型就是全局神经模型. 而且脑功能全局模型的可调参数必然是少量而且简单的.

3.2 二类神经元模型基础上网络计算结果的比较

在单个神经元水平上, 已经证明了H-H和Z-W神经元模型的等效性, 但还需要在网络水平上证明H-H和Z-W神经元模型是否也等效. 如果是等效的, W-Z神经元模型就可以用来研究认知与行为. 正如以上所叙述的, 在计算方面W-Z模型具有比H-H模型简便得多同时又不丢失主要信息的优点, 因此在研究与认知相关的宏观行为模型的时候,不需要考虑神经元之间突触连接的离子浓度以及离子电流等细节, 而将它们的动态特性聚焦在与认知与行为编码模式的宏观表达方面.

根据大脑皮层功能柱神经元的连接方式,构造了一个简单的结构性神经元网络, 如图7所示.

图7

图7   全连接的结构性网络示意图


图7 所示的全连接神经元网络结构中, 每一个神经元都是由H-H模型组成, 并通过二个不同的指标体系对各种参数条件的编码模式与网络的行为响应进行计算模拟. 其研究目标是探讨结构性神经网络的同步放电活动与网络参数之间的关系, 并考察H-H模型与W-Z模型在图7 所示相同网络结构下的等效性.

根据H-H模型的等效电路(图3),其微分方程以及离子通道的可变电导均由方程(9)和(10)表达.

在H-H方程的电路模型中,根据总能量方程(11)和(15)可以得到全连接网络图7 的总功率, 分别表示为

$ W_{\rm all}=C\dfrac{{\rm d}V_{\rm m}}{{\rm d}t}V_{\rm m}+i_{\rm Na}E_{\rm Na}+i_{\rm K}E_{\rm K}+i_{\rm l}E_{\rm l}$

$ C\dfrac{{\rm d}V_{\rm m}}{{\rm d}t}=I- i_{\rm Na}-i_{\rm K}-i_{\rm l}$

由此可得

$ W_{\rm all}=IV_{\rm m} +(i_{\rm Na}E_{\rm Na}+i_{\rm K} E_{\rm K} +i_{\rm l}E_{\rm l})-V_{\rm m}(i_{\rm Na} +i_{\rm K} +i_{\rm l})$

其中$IV_{\rm m}$为外界对电路系统提供的能量, $(i_{\rm Na} E_{\rm Na} +i_{\rm K} E_{\rm K} +i_{\rm l} E_{\rm l})$为能斯特电位代表的电压源所提供的能量, 而$V_{\rm m}(i_{\rm Na} +i_{\rm K} +i_{\rm l})$则为膜内外电位差中的能量. 在上述神经元发放动作电位的过程中, 若不考虑细胞膜通透性的改变所消耗的能量, 所涉及的能量分别为血流所携带的氧和葡萄糖对神经元所提供的能量、细胞膜内外电位差中的能量以及离子泵在逆着浓度梯度差运送离子时所消耗的生物能量(即为ATP), 因为大脑兴奋所造成的葡萄糖消耗量增加主要是由钠钾ATP泵的激活造成的 (Churchland et al. 2012, Rabinovich et al. 2006, Wang et al. 2018). 其中前两者描述的是阈下神经元与生物能量的关系, 而离子顺着离子浓度差通过离子通道的协助扩散也并不消耗能量. 然而从动态的角度观察, 阈下神经元转化为功能性神经元过程中, 这三类能量的总和与H-H模型的电路系统中的总能量相等. 而前两类能量与电路中的$IV_{\rm m}$和$V_{\rm m}(i_{\rm Na} +i_{\rm K} +i_{\rm l})$分别对应, 那么能斯特电位所提供的能量$(i_{\rm Na} E_{\rm Na} +i_{\rm K} E_{\rm K} +i_{\rm l} E_{\rm l})$与离子泵消耗的生物能量相等. 实际上在这个过程中, 钠钾泵不断地逆着离子浓度梯度运输离子, 从而直接消耗了生物能量即1个ATP可以泵出3个钠离子和泵入2个钾离子. 这也印证了由于离子泵的存在, 通过不断运输离子提供稳恒的能斯特电位, 从而对神经活动供能. 于是 可以通过图7 所示的电路, 利用能斯特电位代表的电压源的功率来计算离子泵所消耗的功率, 即神经元活动所消耗的神经能量为

$ P=|i_{\rm K} E_{\rm K}|+|i_{\rm l} E_{\rm l}| - |i_{\rm Na} E_{\rm Na}|$

其中第3项的负号是指图7 所示的电路中, 电压源$E_{\rm Na}$和电流$i_{\rm Na}$的方向与$E_{\rm K}$, $E_{\rm l}$和$i_{\rm K}$, $i_{\rm l}$相反(钠电流朝向细胞内, 而钾电流和漏电流向外). 对于一个动作电位, 可以用上述方程计算其所消耗的神经能量. 计算的参数值由文献 (Zhu et al. 2018)确定. 在全连接神经网络中, 其中每个神经元的动力学特性都来自于上述的H-H模型, 因此该网络结构被严格地定义在神经生物学的基础之上. 大脑皮层神经元连接的解剖学结构表明, 任意脑区内部的神经网络如果不考虑功能性连接, 那么网络的内部就是一个全连接的结构性神经网络, 例如皮层功能柱 (Gazzaniga et al. 2002). 如果把皮层功能柱看做是一个封闭系统, 为简单起见截取该封闭系统内部的一个局部区域, 那么该区域的网络结构可以由如图7 所示的由20个神经元组成的结构性神经网络来表达. 了解在不同参数条件下皮层神经网络的能量编码模式, 对神经网络的连接做了一定的简化. 图中各个神经元之间的连接线表示它们是相互耦合的, 但任意两个神经元之间的耦合强度都互不相同, 而且神经元两两之间的耦合强度也互不对称. 根据突触可塑性原理, 来自实验的统计数据表明, 神经元之间突触耦合强度的取值范围服从均匀分布 (Rubinov et al. 2011), 即满足如下矩阵

$ \pmb W=\left[\begin{array}{cccc} w_{1,1}&\ w_{1,2}&\ \cdots&\ w_{1,n}\\ w_{2,1}&\ w_{2,2}&\ \cdots&\ w_{2,n}\\ \vdots &\ \vdots&\ \vdots &\ \vdots\\ w_{n,1}&\ w_{n,2}&\ \cdots&\ w_{n,n}\\ \end{array}\right]$

其中, $w_{i,j}$表示第$j$个神经元到第$i$个神经元的耦合强度,$n$表示神经元个数.

网络的运行方式如下

$ \begin{array}{l} \pmb I_{\rm in}(t)=\pmb W\times \pmb Q(t-\tau)'\\ \pmb I (t)=\pmb I_{\rm in}(t)+ \pmb I_{\rm ext}(t) \\ \end{array}$

将$\pmb I (t)$带入方程式(1)求得膜电位$V_{i{\rm m}}(t)$, 并通过式(3)计算出神经元所消耗的功率$ P_i (t)$. 其中$\pmb I (t)$代表$t$时刻神经元受到的电流刺激总和, $I_{\rm in}(t)$表示神经元之间的相互影响, $I_{\rm ext}(t)$表示外界刺激对神经元的影响.

$ \pmb Q(t-\tau)=[Q_1(t-\tau),Q_2(t-\tau),\cdots, Q_j(t-\tau),\cdots,Q_n(t-\tau)]$

代表$t-\tau$时刻各个神经元的动作电位发放状态, 为简单起见将其简化为0或1的脉冲发放, 当处于静息电位时为0, 发放动作电位时时为1, 其中$\tau$表示某个神经元发放一个动作电位后到另一个神经元受到刺激的时间间隔, 也即是兴奋传递时滞, 可令$\tau$的取值范围服从均匀分布.

采用传统的同步性指标均最大相关系数和新颖的负能量比来衡量网络的同步性活动 (Zhu et al. 2018). 均最大相关系数定义如下

$ \rho_{\rm mean}=\dfrac{\sum_{i=1}^N\max (C_{i,1},C_{i,2},\cdots,C_{i,j},\cdots,C_{i,n})}{N},\quad i\neq j$

其中$C_{i,j}$表示第$i$神经元和第$j$个神经元的膜电位之间的皮尔森相关性系数, 若任意两个神经元之间的皮尔森相关性系数越接近1, 则表明这两个神经元之间的同步性越大. 先前有研究发现, 在瞬时刺激下如果网络达到同步, 在稳态时会出现两个或以上的振荡集团. 由此可以看出, 在采用均最大相关系数的指标时, 其值越接近1, 则表明振荡集团内部的神经元同步性越强, 也就是说网络的状态越接近于多个集团共同存在同步现象. 而当其值越接近0, 则表明振荡集团内部的神经元同步性越弱, 也就是说只有少部分神经元是同步的.

负能量比定义如下: 从0时刻到$t$时刻整个神经网络所消耗的负能量的绝对值与其正、负能量的绝对值总和的比值, 即

$ \alpha(t)=\dfrac{E_{\rm negtive}}{E_{\rm positive}+E_{\rm negtive}}\times 100\%$
$ E_{\rm negtive}=\sum_{i=1}^n\int_o^tP_i(t)\cdot {\rm sgn}(-P_i(t)){\rm d}t$
$ E_{\rm positive}=\sum_{i=1}^n\int_o^tP_i(t)\cdot {\rm sgn}(P_i(t)){\rm d}t$

其中$P_i (t)$表示神经元$i$在$t$时刻所消耗的功率, 在$[0,t ]$上对$P_i (t)$积分即表示神经元$i$在$[0,t]$这段时间内所消耗的能量. ${\rm sgn}(x)=\left\{\!\! \begin{array}{ll} 1,&\ x>0\\ 0, &\ x\leq 0 \\ \end{array}\right.$为符号函数. $E_{\rm negtive}$和$E_{\rm positive}$分别表示整个神经网络在$[0,t]$内所消耗的负能量和正能量.

通过均最大相关系数和负能量比这两个指标来衡量网络活动的同步性,这两个指标越大则表明网络的同步性活动越强烈.

(1) 图8是通过神经元的数量和神经能量之间的变化关系来比较H-H模型和W-Z模型的等效性.

图8

图8   基于(a) W-Z模型(Wang & Wang 2014)和(b) H-H模型(Zhu et al. 2018)得到的负能量比和均最大相关系数关于神经元数量的变化曲线


图8表明, 网络中神经元的数量越多, 则网络的同步性振荡对能量的需求越大, 也即需要更多的能量储备, 而负能量比正好反映了网络活动中所储存的能量. 与传统的相关系数方法一样, 负能量比也可以揭示网络的同步性状况, 且两种模型都表明了神经元数量与网络同步性以及负能量比的正相关关系. 另一方面负能量比随着神经元数量的增加并没有快速地饱和从而可以更有效地区分网络中神经元的数量, 这也是能量编码的优势之一. 需要特别强调的是, 通过图8(a)和图8(b)的比较可以清晰看到, 对于一个相同的全连接神经元网络, 随着神经元数量的不断增加, H-H模型与W-Z模型的均最大相关系数和负能量比几乎都是相同的.

(2) 图9是通过神经元耦合强度和神经能量之间的变化关系来比较H-H模型和W-Z模型的等效性.

图9

图9   基于(a) W-Z模型 (Wang & Wang 2014)和(b) H-H模型 (Zhu et al. 2018)得到的负能量比和均最大相关系数关于耦合强度的变化曲线


由于神经元间的耦合强度影响着它们的信息交互作用, 而这一过程需要依赖于能量来完成, 耦合强度越大, 则网络的同步性活动就越剧烈, 神经元间的信息交互作用就越强, 对能量的需求就越高, 因此需要较高的能量储备, 即反映为较高的负能量比. 两种模型都表明了耦合强度与网络同步性以及负能量比的正相关关系. 通过对图9(a)和图9(b)的比较发现, H-H模型与W-Z模型对于一个相同的全连接神经元网络随着神经元之间耦合强度的不断增加, 它们的负能量比虽有一些误差, 但都是递增的且增长趋势也几乎是相同的, 并且均最大相关系数则是完全相同的.

(3) 图10是通过神经元兴奋传递时滞和神经能量之间的变化关系来比较H-H模型和W-Z模型的等效性.

图10

图10   基于(a) W-Z模型 (Wang & Wang 2014) 和(b) H-H模型 (Zhu et al. 2018) 得到的负能量比和均最大相关系数关于兴奋传递时滞的变化曲线


突触前神经元将兴奋性神经递质释放到突触后神经元的延迟时间越久, 则突触前、后神经元的活动相关性越弱, 进而整个网络的同步性活动越弱, 对能量的需求量较低, 从而网络活动中储存的能量较少, 相应的负能量比则越低. 基于两种不同模型得到的结果都呈现出随兴奋传递时滞的增加而相似的下降曲线. 通过图10(a)和图10(b)的比较可以清晰地看到, 对于一个相同的全连接神经元网络, 随着信号延迟时间的不断增加, H-H模型与W-Z模型的均最大相关系数和负能量比也几乎都是相同的.

除此以外, 文献 (Wang & Wang 2014, Zhu et al. 2018) 还通过H-H模型与W-Z模型分别对上述3种情况下的网络神经编码进行了大量的研究, 发现在不同的参数条件下其编码模式几乎都是相同的. 结合以上2种不同的同步性指标, 在神经元数量、耦合强度以及信号延迟时间增加的3种情况下, 其同步的动力学特性也完全相同. 这就证明了H-H模型与W-Z模型在结构性神经网络水平上也是等效的.

研究结果表明H-H模型适用于数量少的简单、局部的神经元网络的建模、分析与计算, 而W-Z模型适用于神经元数量巨大的复杂网络的建模、分析与计算. 特别是由于神经信息与神经能量之间有对应关系, 同时又具有计算简单而主要信息又不会丢失等优点, 因此神经能量理论和Z-W神经元模型是可以用来构建大尺度神经科学模型的极具潜力的研究方法 (Wang & Zhu 2016).

4 W-Z模型及神经能量方法在功能性神经网络中的应用

实际上, 用神经能量方法研究功能性神经网络不仅十分有效,而且能够从定量的角度对于一些神经科学至今无法搞清楚的实验现象,给予科学的解释.

4.1 大脑血液动力学现象的神经机制

大脑的血液动力学现象一直以来困扰着神经科学家. 所谓的血液动力学现象是神经系统的血流量总是在大脑皮层受到刺激大约$6\sim 7$ s后才会显著增加 (Fox & Raichle 2007, Peppiatt & Attwell 2004). 根据所提供的文献资料, 目前神经科学界并没有给出一个有效的理论对这一现象的神经机制给出科学合理的解释 (Maandag et al. 2007, Moore & Cao 2008), 也没有看到相关的从神经建模到计算这两个方面对这一实验现象进行计算机模拟并再现血液动力学现象的研究报道. 为了模拟fMRI磁共振成像中的血流延迟现象, 以W-Z神经元模型为基础, 通过构造一个多层次结构的神经网络, 用能量编码的方法给出产生血液动力学现象的神经能量变化, 从定量的角度再现了功能性磁共振成像(fMRI)技术中脑血流的大幅增加滞后神经元激活区$6\sim 7$ s的血液动力学现象. 由于这个研究是建立在神经元活动的负能量机制的基础之上 (Wang et al. 2015), 预测大脑血液动力学现象的本质是神经活动过程中负能量机制的存在 (彭俊 & 王如彬 2019). 最近, 根据视觉神经系统的解剖结构, 使用神经元能量模型构造了用于视觉信息处理的、由各个视觉区构成的大尺度神经元网络模型, 利用这个模型 成功模拟了功能磁共振成像技术(fMRI)中视觉系统的血液动力学现象 (Peng et al. 2020).

上述这项研究的重要意义在于能够为今后探究血液动力学现象的动力学机制提供新的视野, 从而为今后建立脑理论研究框架提供重要的科学支撑 (Wang et al. 2008, 2009, 2014, 2015, 2019; Wang & Wang 2014, 2018; Wang & Zhang 2006; Wang & Zhu 2016, 2017; Wang & Xu 2017; Zheng et al. 2014, 2016; Zhu et al. 2018, 2019, 2020; 贾祥宇 & 吴禹 2017; 彭俊 & 王如彬 2019; 王如彬 2020).

4.2 神经能量编码在智力探索中的应用

在智力探索的研究方面, 空间认知是动物大脑最重要的功能之一. 位置细胞是大脑空间认知系统的重要组成部分, 这个领域的研究积累了大量的实验数据和经典模型. 然而, 这些研究通常都在一维管道或二维平面上进行 (Wang & Zhu 2017), 一个更重要的问题尚未得到解决, 即位置细胞是如何编码三维空间信息的? 动物实际的活动空间往往是三维的. 大脑在三维的环境下如何执行空间认知, 如何学习三维环境, 如何进行三维空间的定位和导航, 这些都是非常重要并且贴合实际应用的问题. 延续能量编码的思想方法, 在三维空间的背景下探究大脑的空间认知功能, 而神经能量跨尺度可叠加的性质为神经建模与计算分析提供了极大的方便. 采用神经能量的方法建立了一个位置细胞的网络模型来表示三维的空间信息, 并且基于神经能量定义了位置细胞的位置野、位置野中心, 并分析了该模型的定位功能和能耗特性. 从计算结果来看, 这个模型很好地模拟了位置细胞的特点, 每个位置细胞具有各不相同的空间选择性, 具有大小、能耗都不同的位置野, 并且能够将误差限制在一定的范围内. 因此, 这个模型既是低维空间位置细胞模型在三维空间的推广, 也是发放率模型在能量层面的推广, 同时也是能量编码的思想直接用来建立功能性神经网络系统的一个新的结果. 研究验证了大脑在编码三维空间位置信息时的能量经济性原则, 这项工作能够为完整构建生物体大脑的三维空间编码系统打下基础, 进而反映出大脑是如何在能量经济性原则的指导下进行定位、导航和路径规划的, 这将 对大脑的空间认知的研究提供基于物理和能量的新视野 (Wang et al. 2018a). 研究表明将能量编码的思想运用于智力探索与大脑的导航, 可以成功的将传统的智力探索效率提高近35%, 显示了能量神经编码的强大优势 (Wang & Zhu 2017).

然而, 需要解决的一个重要的科学问题是, 关于不同空间维度的信息是如何被编码的, 目前还没有统一的解释. 位置细胞为了编码和表达空间信息会呈现出独特的活动模式. 基于信息论和神经能量方法建立了一个约束优化模型, 用来统一解释不同物种在不同空间维度中的位置编码模式. 需要解决的主要科学问题是: 仅仅使用有限的神经能量, 如何在空间中安排电脉冲发放的位置(位置野)以获得最高效的空间信息表达? 为此, 使用变分原理建立了欧拉-拉格朗日方程, 求解了这个泛函的条件极值问题. 结果表明, 为了能够用单位数量的电脉冲来编码最多的空间信息, 位置细胞的活动模式会自动呈现出一个高斯分布的形式. 同时, 还发现动物的自然栖息特征和运动模式的统计信息会影响在不同空间维度中位置编码的对称性. 这些结果不仅解决了位置细胞的空间编码在二维和三维空间是否对称的争议, 使得具有不同空间活动模式的不同物种的位置编码都能纳入到统一的框架中来, 而且进一步通过信 息-能量关系从理论的角度解释了位置野的形成模式. 此外, 本研究进一步揭示了在自然选择的进化压力下, 大脑的空间编码系统内在的能量经济性和信息传输高效性的特点 (Wang et al. 2019).

4.3 记忆切换的神经能量特征

对于短期记忆是如何过渡到长期记忆的问题, 神经科学通过神经解剖学实验数据给出了定性的说明. 然而, 在实验数据基础上, 从定量分析的角度给出不同刺激条件下短期记忆是如何过渡到长期记忆的, 似乎没有看到相关的研究报道. 基于一个双稳态的工作记忆模型, 从能量编码的视角探究了工作记忆和长期记忆之间的相互作用. 使用了在实验中能够诱导LTP的theta簇状刺激(TBS)和高频刺激(HFS)作用于工作记忆模型来诱导长期记忆 (Zhu et al. 2016). 基于神经系统电刺激的物理本质, 发展了一套定量的方法来确定刺激对神经系统的能量输入和系统对应的能量消耗, 同时进一步研究了两种不同刺激诱导下长期记忆的最小能量消耗, 并定义了能量比来定量描述这些刺激的能量效率. 结果表明, 基于双稳态的动力学模型, 这两种常用的诱导LTP的刺激都能成功地激发长期记忆. 但通过对最小能量消耗和能量比例的分析, 发现相比于HFS, TBS是一种能量效率更高的刺激模式, 这也与实验结果相符 (Wang et al. 2019). 其原因可能在于TBS可以节律性地推高系统响应, 使其逐渐提升到高的稳态. 本研究通过神经能量和动力学结合的方法, 通过考察记忆系统对两种实验中常用刺激模式的响应特点, 找到了记忆模型动力学切换的能量特征 (Wang et al. 2019). 为 理解工作记忆是如何转化为长期记忆提供了一个有力的动力学证据, 它反映了长期记忆形成过程中神经系统能量利用率的高效性.

4.4 能量演化是大脑全局神经编码的核心

神经能量方法不仅可以编码不同的刺激信息, 而且可以编码单个神经元的发放以及编码神经网络水平上不同频率的神经振荡. 这是因为(1)神经能量模型作为一种全局脑功能模型可用于分析、描述各个层次上的神经科学实验现象, 使得各个层次上的计算结果不再是互相不能利用、 互相矛盾和毫无关系的. 也就是说, 神经信息可以在分子、神经元、网络、认知以及行为的各个层次以及各个层次的结合上用能量来表达, 能量是可以用来统一各个层次之间的神经模型; (2)神经能量可以和膜电位的发放模式一起共同来解析神经信息处理; (3)神经能量可以描述整个大脑中大尺度神经元的相互作用(在分子、神经元和网络多层次的结合上), 除此以外任何传统的神经编码理论都是不可能做到的; (4)目前很难同时从多个大脑区域的有损伤实验中得到记录. 虽然EEG 和MEG 可以从脑的各个区域中对神经元活动进行取样, 但是以这些颅外信号为基础来估计皮层交互作用是非常困难的. 主要障碍是缺少一种理论工具能够在高维空间上有效地分析皮层-皮层之间的交互作用. 此外目前也没有头皮脑电和皮层电位之间的换算关系. 而神经能量对于解决上述问题提供了一个有效的解决方案; (5)由于能量是一个标量, 无论是单个的还是集群的神经元, 也无论是网络的还是行为的, 线性的还是非线性的神经模型, 它们的动力学响应都可以通过神经能量叠加的方法来描述神经编码的模式. 由此可以获得大脑功能性神经活动的全局信息, 而其他传统的编码理论都无法做到这一点; (6)网络耦合振荡的模式可以是千变万化的, 而神经网络的耦合振荡与网络能量的振荡又有对应的关系, 因此当大尺度神经网络的建模和数值分析因高维非线性耦合的极其复杂而变得不可能处理时, 可以使用神经能量编码来研究神经信息处理, 从而使得复杂的神经信息学研究变得简单、容易处理而又不会丢失信息.

5 动力学与控制理论基础上构建感知觉神经网络模型

大脑高、低态切换是一种重要的自发的神经活动. 单个神经元的高、低状态和持续性高状态反映了大脑皮层不同的整体状态. 实验表明受到刺激的神经元膜电位由慢的高低振荡切换为持续性的高(频发放)状态, 或与之相反的同时, 在所记录的神经元几毫米以外处, 则可记录到皮层局部场电位的模式也随时间发生变化. 这些结果表明单个皮层神经元也能对动物的行为状态起调制作用. 动物不同的行为状态反映了大脑整体活动的不同模式 (Li et al. 2009). 这个有趣的实验现象驱使我们从定量化角度去研究大脑自发的高、低态的振荡活动, 用动力学理论给出了高、低两态神经模型中物理能量的计算方法, 以及电流功率能耗的不同特征.

5.1 大脑神经系统在自发活动时的能量特征及其科学意义

在这个研究中, 给出了3种定量化指标来刻画高、低态切换的网络行为、平均发放率、平均同步率和平均能量消耗. 结果表明, 相比于其他传统指标, 能量指标在不同网络规模下具有更好的稳健性, 并且能够实现兴奋和抑制两类神经元的区分. 同时, 能量消耗的整体分布也能显示出高、低两态的动力学特征, 说明能量指标能够编码高、低态的神经活动. 同时还进一步研究了高、低态神经活动中能量消耗的特征, 发现从耗能集中的时间阶段看, 能量消耗集中在膜电位高态阶段, 而低态甚至是神经发放的能量消耗都不高. 从能量消耗的空间位置看, 能量消耗集中在神经元内部而不是神经元之间的突触传递. 如果 对神经网络施加一段时间的刺激后, 发现能量消耗的增长相比于自发活动的能量消耗不足5%, 这个结论和脑成像结论完全一致, 说明自发活动相比于任务状态消耗了绝大多数能量 (Wang et al. 2020 ). 上述结论证明了自发高、低态网络模型的有效性和可靠性, 丰富了自发脑活动能量研究的理论成果, 揭示了能量指标的鲁棒性和有效性, 说明能量方法是研究大脑自发活动的有效方法, 并为研究大脑皮层自发活动提供了一个崭新的研究视野.

神经科学电生理实验揭示了大脑自发活动与行为之间的关系, 但是却难以通过实验给出行为与大脑能耗之间的定量关系. 而这二者之间定量关系的研究, 其重要性在于今后在类脑智能体的计算研究中, 如果能够掌握智能体的行为与能耗之间的关系, 就可以在智能体神经芯片的设计中通过能量的约束, 找到智能体的行为与网络参数之间优化关系的准则. 因此使用神经能量理论与计算方法不仅可以更深刻地了解宏观行为与大脑神经活动之间的依赖关系, 更重要的是可以通过分析大脑神经能量的消耗, 掌握脑内神经信息动态变化的全局信息, 以便为智能体行为的设计提供参数依据.

5.2 触觉神经系统的力学耦合模型及应用

神经系统作用与控制下的行为反应不仅表现在行为状态的变化, 更多的是表现在感知觉神经系统的响应方面. 例如, 触觉系统中存在大量的力学问题.

图11简要说明手指拿一个鸡蛋, 涉及几个手指对鸡蛋的握持力. 既不能把鸡蛋捏碎, 又不能使握持力不够而使鸡蛋掉下来. 鸡蛋对指尖的压力以及指尖表面的变形, 触发指尖表皮下感觉神经元的电位发放, 传导到大脑的体感皮层神经元而导致触觉的产生. 而触觉产生的神经电位发放以神经编码的方式呈现,所以它是一个典型的力学作用与神经响应的耦合过程.

图11

图11   触觉形成的非线性动力学


在指尖皮肤触觉系统研究中, 机械感受体主要包括皮肤表皮下梅克尔氏体、帕西尼体、迈斯纳体和鲁菲尼体四类感受体细胞. 而肌梭和肌腱是典型的本体感受体, 负责肌、腱、关节等运动器官本身在不同状态(运动或静止)时产生的感觉. 在感知物体时, 前者主要参与被动接触感知觉过程, 但二者均参与主动触摸物体的感知过程. 最近10年以来, 越来越多的学者和工程师关注研究触觉的生物机理. 但是这些研究集中探讨躯体感觉系统如何处理触觉信息, 特别强调开发新型触觉传感器的功能仿生关联性. 尽管关于触觉的神经编码机理方面的实验、理论和神经计算的研究已经有了很多的成果, 然而大多数应用仍远离相关的生物学来源(Lumpkin & Caterina 2007). 从文献来看, 迄今尚未提出一个统一的框架, 描绘触知觉从周围神经至中枢神经的信息传递涉及多层次神经编码机理, 并应用于主动触觉探索. 在建立从周围神经活动开始的模型时, 所面临的主要挑战有一个基本特点——人体触觉系统中感官输入信号具有双用途, 也就是说源于皮肤变形的神经信号不仅用于确定物体的属性, 也用作运动控制系统实现有效操控的输入. 在许多情况下, 诸多功能如基于物体重量、表面纹理和柔软性来用恰当的力抓取物体同时工作. 在这个领域的当前研究涉及到哪类传入神经群被高级神经系统用作所测行为的基础, 相继的行为与该神经群的神经活动之间有什么关系. 目前躯体感觉实验研究方法存在局限性表现在, 所有的刺激参数中仅一个改变, 然而初级触觉传入神经的响应已公认是多个变量的调制函数, 如感受野内的刺激位置、皮肤表面的刺激方向和接触力等. 特别是神经和感知觉响应间的相关变化对确定参与感觉判断的具体神经元非常重要, 然而在实验中同样刺激的重复呈现通常是不可行的. 为了解释具体的触觉感知, 如纹理、形状和振动, 已经建立了许多触觉-力学耦合模型 (Bergmann Tiest & Kappers 2009, Guclu et al. 2008). 为了确定神经响应的哪些特征与心理物理数据相关, 在这些模型中所采用的一般方法是探索周围神经或躯体感觉皮层神经元的集群响应. 许多研究关注纹理触觉感知, 尝试确定触摸感受材料表面属性所涉及的生理机制. 以研究较多的表面粗糙性为例, 最近研究发现时间和空间编码的结合可用于预测感受到的粗糙感, 但仍需要确定用振动功率谱、摩擦的瞬态变化率、皮肤应变的相对时间变化或这3个量的组合来模拟这种关系是否更为有效. 此外, 皮肤力学在触觉刺激转换为神经响应的过程中具有决定性作用,指尖与不同材料接触过程涉及大量的力学问题 (Hu et al. 2009, 2010; Yao & Wang 2019; 胡吉永等 2009).

来自皮肤触觉感受体的传入神经信号不仅参与触觉感知, 且对控制和调节在熟练操控中的作用力也很重要. 这些信号在编码指尖力的具体时间、大小、方向和空间分布方面具有决定性作用. 在主动触摸物体表面时, 所用力的大小通过优化以获取感兴趣的信息, 甚至在极小作用力下大多数指尖均参与物体表面信息的获取, 涉及指尖力的最优调度. 如果这些触觉信息缺乏或没有, 在物体表面的法向和切向作用力之间的平衡将被中断, 以致物体在指尖开始滑移时不能被迅速补偿. 由于在操控中指尖和物体之间复杂的相互作用, 在接触域内及一定邻近范围内产生的皮肤应力应变均影响皮肤传入神经的诱发活动, 以被动接触为基础的触觉刺激神经编码模型不能预测在操控中的触觉信号. 而且, 迄今这些模型主要存在一个缺陷, 即忽视了在被动施加滑动刺激时切向力的重要性 (Jiyong et al. 2011). 越来越多的研究结果表明, 在皮肤中已发现的四类触觉感受体(梅克尔氏体、帕西尼体、迈斯纳体和鲁菲尼体)对感受野内的表面微滑响应活跃, 且即使是没有微滑, 切向刺激对触觉感受体的兴奋也比皮肤表面的法向压入刺激更有效. 因此, 在手的感觉运动控制模型中, 为了预测人的心理物理估测能力, 需要包括四类皮肤触觉感受体的诱发响应. 触觉刺激信息的时空特征在大脑皮层中被进一步编码, 主要是初级体感皮层的3b区, 1区和2区. 在体感皮层有许多神经元对皮肤变形的空间和时间信息敏感. 这些神经元的感受野由兴奋性和抑制性子感受野组成, 类似于在初级视觉皮层观察到的现象. 例如, 体感皮层慢适应性I型神经元神经信号的空间模式编码了刺激物的边和粗糙的纹理特征, 另外体感皮层神经元用时变发放率编码皮肤振动的时变幅度信息, 且这些发放模式的精细结构能够编码振动刺激的频率成分 (Harvey et al. 2013, Johansson & Flanagan 2009), 这些发放模式的谱成分分析可以揭示感知振动的刺激方式. 然而, 对具有复杂谱系结构的自然振动刺激而言, 目前尚未了解其皮层编码机制.

最近的一个重要研究是皮肤Merkel细胞受到球形物体挤压作用下的换能及神经动力学规律. 对于外部刺激进行编码时, 不仅要考虑到外部施力物体的曲率、压入深度, 还要考虑到距离施力点不同位置处的Merkel细胞数量的影响, 以及研究分析指尖皮肤受到持续的法向挤压刺激时的响应. 因此, 在前人研究工作基础上 (Gerling & Thomas 2008, Holt & Corey 2000, Kim et al. 2010, Maksimovic et al. 2014), 提出了一个由接触力学模型、改进的电流转换模型、单个Merkel细胞的H-H模型以及Merkel细胞神经突起复合体集群的网络结构这四类构成的组合模型, 用以模拟SAI感受器网络的神经活动模式. 研究结果发现 (Yao & Wang 2019): (1)由于指尖皮肤的弹性性质, 数值计算得到的能量密度曲线符合由测量得到的皮肤发生形变的曲线模式. 通过对比发现, 在不同的刺激作用下半径较小的施力球体与半径较大的施力球体作用于相同的压入深度时, Merkel细胞的能量密度的幅值会相应的增加; (2)使用同一球体挤压皮肤时, 当挤压指尖皮肤的深度以及施力点的位置不变时, 神经元的发放率取决于该神经元所连接的感受器数量和该神经元与施力点之间距离的协同影响; (3)使用同一球体挤压皮肤时, 当挤压指尖皮肤的深度不变而施力点的位置发生改变时, SAI感受器神经元的整体发放频率会随着施力点所在区域的SAI感受器数量的增大而增大.

在触觉产生的力学模型和神经机制方面,所获得的科研成果主要体现在以下4个方面:

(1)建立了手指触摸织物表面的接触力学模型, 对应于心理物理实验的触摸方式以及仿真模拟触摸过程 (Hu et al. 2009, 2011; Yang et al. 2014; 胡吉永等 2009, 2012).

(2)相应于不同皮肤机械刺激感受器的解剖学空间位置和敏感的力学刺激分量, 计算皮肤软组织的应力/应变量或导出量 (Hu et al. 2007, 2016; Jiang et al. 2016).

(3)根据已知的电生理实验结果, 计算了不同皮肤的机械刺激感受器细胞膜的感应电流, 并以此作为外刺激电流输入到细胞膜的动力学模型中去(H-H方程) (Hu et al. 2012, 2013; Jiyong et al. 2011).

(4)计算单个皮肤机械刺激感受器细胞膜的动力学特征, 或皮肤机械刺激感受器网络的动力学特征, 讨论动力学特征与感知觉阈值的关系 (Yao & Wang 2019).

5.3 听觉系统中的力学耦合模型及应用

听觉感知系统中也存在许多力学问题需要解决. 例如, 为了深入理解耳蜗的工作机制, 研究了耳蜗中基底膜运动对不同频率和强度分辨能力的影响. 针对原有的基底膜振动模型没有考虑外毛细胞在运动过程中自身运动速度对基底膜频率响应的影响, 使得原有模型无法全面阐述外毛细胞的主动共振作用. 为此 根据耳蜗的解剖结构, 引入了外毛细胞在淋巴液的环境下通过增加基底膜频率选择性的流-固耦合中的延时特性. 仿真计算结果表明, 修正后的模型完全符合外毛细胞自身作用机制的生理特征. 从一个新的角度诠释了外毛细胞运动对基底膜振动作用的贡献 (王如彬等 2011).

为了更深刻地了解耳蜗毛细胞活动的神经动力学和生理学机制, 基于H-H方程的毛细胞模型, 通过数值模拟对不同声音频率刺激时毛细胞膜的电位、功率和能量消耗进行了数值分析. 研究结果表明, 声音频率在$0.1\sim 20$ kHz范围内, 外毛细胞膜电位的衰减低于内毛细胞, 而外毛细胞功率和能量消耗的增益远高于内毛细胞.外毛细胞膜电位的低衰减、功率和能量消耗的高增益支持了外毛细胞的放大作用是由电致运动驱动的. 内毛细胞和外毛细胞的差异反映了两者不同的功能, 内毛细胞是作为感受细胞存在的, 而外毛细胞在声音放大中起着重要的作用. 对耳蜗毛细胞膜电位、功率和能量消耗的研究结果将有助于深刻了解耳蜗毛细胞活动的神经动力学性质 (戎伟峰 & 王如彬 2019).

除此以外, 还对人体步态运动和手臂运动以及昆虫爬行运动的力学模型以及神经控制机制做了一系列的研究, 数值计算结果与实验数据匹配高度一致 (Dong & Wang 2011, Wang & Wang 2016, Zheng & Wang 2017, 董玮等 2008, 张健鹏 & 王如彬 2009, 张健鹏等 2009).

6 神经细胞中蛋白质分子机器的经典力学分析

大脑为了正确地执行传递和加工信息的功能, 神经系统中神经元之间以及神经元与周围靶向组织之间需要建立高度特异的相互连接. 显然, 这种高度特异性连接需要神经元在发育期间从极其复杂的周围组织环境中精确选择它们的靶向目标. 在发育初期, 当神经元找到了自己合适的位置后就开始精密地构筑它们的轴突、树突和突触. 不同形态的神经元同时会根据它们自己的功能特性在大脑内部建立各自的神经回路, 而这些回路以及回路之间的相互作用都是通过轴突和它们生长过程中轴突所接触到的其他神经元的树突和突触联系起来的. 而神经轴突和树突的生长是一种被称之为生长锥的执行机构来操作的. 生长锥位于轴突和树突的末端呈扁平掌型结构, 其内部由大量的肌动蛋白组成了分布有序的微丝(F-action)与微管(Microtubule), 它们之间相互作用形成了一个称之为细胞骨架的分子动力学结构. 这种非常活跃的动力学结构使得生长锥外部伸出的那些细长的称之为丝状伪足的延伸部分, 与周围环境如ATP酶分子和肌球蛋白分子相互作用和随机碰撞下构成了一个非线性的随机动力学系统. 在这个动力学系统中生长锥不断地伸长, 最后促成了生长锥的延伸部分到达靶向目标, 从而实现神经元与其他神经元的连接以及回路网络的构建. 因此生长锥是神经系统形态学和可塑性的基础(从分子到网络). 而可塑性是认知神经科学与智能行为的核心, 可以说可塑性构成了现代认知神经科学的根基, 那么力学对于神经可塑性的作用在哪里呢? 力学对于建立在可塑性基础上的认知与行为的贡献又在哪里呢?

6.1 蛋白质分子机器的振动力学模型

下面通过由文献 (Baker et al. 1998)给出的关于生长锥中肌动蛋白-肌球蛋白系统与接触催化之间相关的X光衍射(图12)加以说明, 并以此建立一个对应的振动力学模型.

图12

图12   肌球-肌动蛋白复合系统的X光衍射 (Baker et al. 1998)


引用文献 (Baker et al. 1998)对肌动蛋白-肌球蛋白系统进行解释. 图12中的肌动蛋白微丝用左边的紫色表示. 肌球蛋白头部的接触区域用红色表示并且和肌动蛋白微丝固定地黏附在一起. 在这里ATP酶分子用来表示红色的肌球蛋白头部的接触结构与肌动蛋白丝紧密相连, 其轻链域以约45$^\circ$角向下延伸. 白色和青色用来表示这两个轻链所形成的区域. 蓝色区域中的第2个方位也用该轻链区域表示, 并且向上转动大约36$^\circ$来模拟Baker等(1998)所提出的动力碰撞的开始. 而动力碰撞是由这个来自上、下区域的旋转组成的. 而组合的位置是由厚厚的黑色垂直线 (Cooke 1998)来构成的. 实际上, F-肌动蛋白和肌球蛋白头的相互作用是可以通过3个步骤观察到:(1)在ATP缺失情况下得到僵尸状态, 即所有肌球蛋白的头部在碰撞结束的状态中被硬性地约束在肌动蛋白微丝上; (2)在松弛的情况下, 肌球蛋白头部很大程度上脱离了肌动蛋白并且被绑定在一个有螺旋阵列围绕的粗纤维上; (3) (在周期性力的碰撞下)肌球蛋白头与肌动蛋白相互作用产生力的循环.

为了解生长锥运动的机制, 给出了肌动-肌球蛋白系统的振动力学模型(图13). 这个富有想象力的力学模拟图的绘制来源于肌动蛋白-肌球蛋白系统分子结构的X-光衍射(图12).

图13

图13   肌球-肌动蛋白系统的想象图


图13中, 黄色球体代表肌动蛋白所构成的微丝. 弹性体结构表示ATP酶分子的头部和肌球蛋白分子中阿尔法螺旋状杆的组成 (Baker et al. 1998, Cooke 1998).图13 只描述了肌动蛋白-肌球蛋白系统是一个结构对称的分子系统的力学模型的半个方面. 没有任何证据可以表明肌球蛋白头的分布 (Cooke 1998), 故而 不能 给出一个推断来解释肌球蛋白的头是随机分布的, 因此肌球蛋白头和肌动蛋白丝之间产生的碰撞力是可以相互抵消的. 虽然 假设对肌动蛋白微丝而言肌球蛋白的旋转位移在这里被模拟为随机弹性的碰撞力来诱导肌动蛋白微丝的运动, 但在这个模型中, 获得的螺旋肌球蛋白旋转运动力学效果与文献 (Baker et al. 1998, Cooke 1998, Yanagida & Iwane 2000)是完全一致. 相反, X射线晶体学表明 肌球蛋白头与肌动蛋白微丝之间的接触反应的角度在45$^\circ$角左右(见图12). 此外, 在随机噪声作用下, 即使接触催化角能引起随机扩散, 催化角也在45$^\circ$左右作小幅波动. 随着在45$^\circ$角方向上产生的碰撞力引起肌动蛋白微丝运动, 而 这一点正是 建立力学模型的基础.

在这个力学模型中, 为了方便起见, 肌动蛋白和肌球蛋白系统分别被简化为两个球, 每个球具有一个质量中心如图14所示. 其中参数$a$和$k$是黏滞系数和弹簧常数, 而$m_1$, $m_2$是肌球蛋白头部和肌动蛋白微丝的质量, $G$和$g$是重力和重力加速度, $\theta $是肌球蛋白头部运动方向和重力之间的夹角, $\alpha $是肌球蛋白头部的重力和X轴的夹角, $d$表示两个质量中心的距离. 那么, 为什么在一个复杂的分子结构系统中可以使用经典的重力和重力加速度概念? 这是因为具有复杂大分子蛋白质结构的肌球蛋白和肌动蛋白网络系统已经被分别集中简化为2个具有一定尺度的球, 其质量效应要远远大于经典的引力和时空失效所产生的量子效应, 而量子效应只有在普朗克常数条件下才会发生.

图14

图14   肌球-肌动蛋白系统的力分析. (a)碰撞前肌动蛋白微丝$m_2$的受力分析, (b) 碰撞前肌球蛋白头部$m_1$的受力分析


图14中, 考虑碰撞中的方位轴作为基准轴, 沿该基准轴的方位作平行的转动, 在平衡点的位置可以得到与肌球蛋白和F-肌动蛋白有关的坐标轴. 特别是, 在肌球蛋白头部碰撞作用下, 肌动蛋白微丝质量中心的运动是与肌动蛋白微丝的一步运动有关. 换言之, 在随机力和合成力的共同作用下, 肌动蛋白微丝的质量中心在碰撞作用下一步一步地连续运动. 为了简单起见, 在上述模型中不考虑由肌球蛋白头部碰撞肌动蛋白微丝所造成的旋转. 换句话说, 在图14中力的分析只显示系统中两个质量之间的碰撞. 根据图14, 给出了两个质量块碰撞前的运动方程和碰撞的作用时间如下

$\begin{array}{l} m_1\ddot{X}+a\dot{X} +k\cdot X-G\dfrac{m_1m_2}{d^2}\left(\dfrac{X}{r}\cos\theta-\dfrac{Y}{r}\sin\theta\right)-m_1 g\cos\alpha=\lambda F_1(t)\\ m_1\ddot{Y}+a\dot{Y} +k\cdot Y-G\dfrac{m_1m_2}{d^2}\left(\dfrac{Y}{r}\cos\theta+\dfrac{X}{r}\sin\theta\right)+m_1\cdot g\sin\alpha=\sqrt{1-\lambda^2} F_1(t)\\ \end{array}$

在碰撞的作用时间内, 肌球蛋白头部质心运动方程由下式给出

$ m_1\ddot{X}+b\dot{x} -G\dfrac{m_1m_2}{d^2_0} -m_2 g\cos\alpha=\beta F_2(t)$
$ m_1\ddot{Y}+a\dot{Y} +k\cdot Y +m_1 g\sin\alpha=\sqrt{1-\lambda^2} F_1(t)$

其中$F_1 (t)$是高斯白噪声所表示的随机力,可表示为

$\begin{array}{c} \langle F_1(t)\rangle=0\\ \langle F_1(t) F_1(t+\tau)\rangle=\delta (\tau)\\ \end{array}$

碰撞前肌动蛋白微丝质量中心的运动方程可由下列方程表达

$ m_2\ddot{x}+b\dot{x} + G\dfrac{m_1m_2}{d^2}\left(\dfrac{X}{r}\cos\theta-\dfrac{Y}{r}\sin\theta\right)-m_2 g\cos\alpha=\beta\cdot F_2(t)$
$ m_2\ddot{y}+b\dot{y} -G\dfrac{m_1m_2}{d^2}\left(\dfrac{Y}{r}\cos\theta+\dfrac{X}{r}\sin\theta\right)+m_2 g\sin\alpha=\sqrt{1-\beta^2}\cdot F_2(t)$

其中$F_2 (t)$是高斯白噪声所表示的随机力, 可表示为

$\begin{array}{c} \langle F_2(t)\rangle=0\\ \langle F_2(t) F_2(t+\tau)\rangle=\delta (\tau)\\ \end{array}$

$F_1(t)$和$F_2(t)$是两个独立的随机力, 所以$\langle F_1(t) F_2(t')\rangle=0$. 肌动蛋白微丝的质量中心在碰撞的作用时间内的运动方程是

$ m_2\ddot{x}+a\dot{X} +k X-G\dfrac{m_1m_2}{d^2_0} -m_1 g\cos\alpha=\lambda\cdot F_1(t)$
$ m_2\ddot{y}+b\dot{Y} + m_2 g\sin\alpha=\sqrt{1-\lambda^2}\cdot F_2(t)$

上述所有方程中的参数可以在文献 (Wang et al. 2003)中找到.

这个工作的创新点在于提出了一种新的肌动蛋白-肌球蛋白系统运动的非线性动力学模型, 可用于解释肌动蛋白-肌球蛋白系统运动的动力学机制. 由于在随机热噪声环境中肌动蛋白-肌球蛋白系统的运动状态可以用概率密度函数来描述动态系统的行为过程, 所以 在文献 (Wang et al. 2003)中完整的给出了肌动蛋白和肌球蛋白系统的统计模型和系统碰撞的运动方程$(27)\sim (33)$.

设碰撞的联合概率密度函数

$ P=P(x,y,X,Y,\dot{x},\dot{y},\dot{X},\dot{Y},t)$

则FPK方程为

$\begin{array}{l} \dfrac{\partial P}{\partial t}=\bigg\{\dot{x}\dfrac{\partial P}{\partial x}+\dot{y}\dfrac{\partial P}{\partial y}+\dot{X}\dfrac{\partial P}{\partial X}+\dot{Y}\dfrac{\partial P}{\partial Y}+ \dfrac{\partial }{\partial \dot{x}}\bigg[\bigg(-\dfrac{a}{m_2}\dot{X}-\dfrac{k} {m_2} X-\\ \hskip 1.1cm G\dfrac{m_1}{d_0^2}+\dfrac{m_1}{m_2}g\cos\alpha \bigg)P\bigg]+ \dfrac{\partial }{\partial \dot{y}}\bigg[\bigg(-\dfrac{b}{m_2}\dot{y}- g\sin\alpha \bigg)P\bigg]+\\ \hskip 1.1cm \dfrac{\partial }{\partial \dot{X}}\bigg[\bigg(-\dfrac{b}{m_1}\dot{x}+ G\dfrac{m_2}{d_0^2}+\dfrac{m_2}{m_1}g\cos\alpha \bigg)P\bigg]+\\ \hskip 1.1cm \dfrac{\partial }{\partial \dot{Y}}\bigg[\bigg(-\dfrac{a}{m_1}\dot{Y}-\dfrac{k}{m_1} {Y}- g\sin\alpha \bigg)P\bigg]\bigg\}+\\ \hskip 1.1cm \dfrac{1}{2} \bigg(\dfrac{\lambda^2}{m_2^2}\dfrac{\partial^2P}{\partial \dot{x}^2}+\dfrac{1-\beta^2}{m_2^2}\dfrac{\partial^2P}{\partial \dot{y}^2}+\dfrac{\beta^2}{m_1^2}\dfrac{\partial^2P}{\partial \dot{X}^2}+\dfrac{1-\lambda^2}{m_1^2}\dfrac{\partial^2P}{\partial \dot{Y}^2} \bigg) + \\ \hskip 1.1cm \dfrac{\lambda\sqrt{1-\lambda^2}}{m_1 m_2 } \dfrac{\partial^2P}{\partial \dot{x}\partial \dot{y}}+ \dfrac{\beta\sqrt{1-\beta^2}}{m_1 m_2 } \dfrac{\partial^2P}{\partial \dot{y}\partial \dot{X}}\end{array}$

上述FPK方程的解, 能够用来描述随机弹性碰撞下系统运动状态的改变以及碰撞前和碰撞后F-肌动蛋白微丝的运动趋势.

6.2 与X光衍射观察结果的比较

根据图3的受力分析, 准确模拟了肌球、肌动蛋白系统在各种力作用下生长锥的运动和运动方向, 如图15所示.

图15

图15   肌球-肌动蛋白系统碰撞的状态


受力结果分析再现了X光衍射的结果. 图15清晰地显示了碰撞中F-肌动蛋白运动方向的变化. 沿力的方向运动, 在F-线上用红线表示. 红线和水平线之间的夹角正好是F-肌动蛋白与肌球蛋白头部之间的催化夹角. 也就是说在随机噪声的影响下, 碰撞的催化角几乎以45$^\circ$角左右作小幅度波动. 沿力的这一方向产生的运动变化引起肌动蛋白微丝的运动. 结果表明, 由图13给出的振动力学模型以及由图14给出的力学分析是有效的和令人满意的.

由于肌动蛋白微丝的运动能够主导生长锥的运动, 而且生长锥片状伪足的存在是由许多肌动蛋白微丝所构成的蛋白质网络. 如果再考虑肌动蛋白行为过程中各种生物化学过程的解聚与聚合运动, 那么运动协调的力学机制就是随机碰撞力和热噪声所产生的随机力. 由此 可以得出神经细胞轴突生长过程中生长锥到达靶向目标是一个具有确定性方向的随机过程.

上述研究成果的科学意义: (1)在蛋白质水平上, 神经细胞的动态过程并不仅仅只是生物化学反应, 力学的作用与贡献也是不可或缺的重要因素; (2)生长锥的运动过程表明, 力学对神经系统的发育和网络的形成其影响无时不在, 不可估量; (3)在构造人工蛋白质机器时应当考虑力学的规律与影响.

运用力学的原理和方法成功地解释和再现了细胞骨架为何能定向移至相应靶位以外, 在蛋白质水平上还有大量的科学问题需要从力学或动力学的角度加以探索. 例如 (Byrne & Roberts 2009), 离子通道的开放和关闭是如何决定的? 细胞是如何控制膜表面通道数量的? 离子通道在神经元胞体、树突和轴突的极性分布是如何实现的? 神经末梢如何感受胞内钙离子浓度的升高的? 神经递质的量子释放是如何进行的? 突触囊泡依靠哪些有效机制来满足神经末梢释放的需求等等都含有大量的力学问题等待人们去探索、去解决.

7 神经动力学对力学各分支学科提出的挑战

用力学的思想、理论与方法探索神经能量与脑信息处理之间的联系, 并以此为基础提出了大尺度神经科学模型的定义, 通过构建神经能量编码的研究框架开启了将神经科学中的还原论与整体论统一来研究大脑功能性全局神经活动的先例. 这不仅是认知神经科学研究领域内具有原始创新的研究内容、具有强烈的独创新, 而且也是实验神经科学与理论神经科学最终走向融合交汇的必由之路. 目前 还没有看到国际上有哪些学者用力学的理论与方法, 通过构建神经能量与脑信息处理之间的联系来研究神经科学的研究报道.

国外虽然有些发表涉及到神经能量, 但主要与大脑的生理代谢和神经化学有关, 很多的研究聚焦在病灶脑区神经活动的异常发放和对应的能量代谢过程 (Hoyer 1992, Ma et al. 2018, Malarkey & Parpura 2008, Retamal et al. 2007, Seyfried et al. 2008, Talhouk et al. 2008). 这些研究既与力学的理论和思想没有直接关系, 也不涉及神经信息处理. 如果 用力学的思想研究神经科学, 将会有更多的科学发现. 例如, 到目前为止, 脑科学和计算神经科学领域内所有的脑功能数学模型都未考虑到机械力信号的作用. 并且神经生理学家也没有将这些作为重要因素来解释脑模型数据中的偏差和实验数据中存在的问题. 实际上, 神经科学中许多问题的解决都涉及到力学科学的理论与方法. 因此神经科学和生命科学对固体力学、流体力学和动力学与控制提出了强大的挑战, 主要表现在以下方面.

7.1 建立脑动脉血管动力学、血流变化与神经元网络耦合的神经动力学模型

这类新的模型是对神经元与耦合神经元网络系统放电模式动力学分析的深度拓展(见引言中的研究方向(1)). 构建脑血流动力学与皮层神经网络活动的耦合模型, 是一种精确的神经生理学系统模型, 可用于描述和预测血流动力学变化引起脑功能回路的改变.

7.2 皮肤接触力学中的本构关系

这类本构关系模型隶属于脑神经网络系统建模和认知功能动力学分析中的其中一类(见引言中的研究方向(2)). 由于皮肤接触力学中的本构关系并不多见, 因此研究皮肤及皮下组织多层结构及与各种不同材料、不同形状物体接触耦合的神经力学模型以及皮肤各向异性的非线性弹性和黏弹性材料的大变形以及热力耦合等问题具有重要的应用价值.

7.3 建立大脑的微循环力学模型

这类微循环力学模型的生理学基础涉及与神经元活动有关的蛋白质分子生物网络动力学建模与分析(见引言中的研究方向(3)). 它应当是神经元、胶质细胞、毛细血管力学三者耦合的神经元发放模型.

7.4 神经系统中机械力信号对神经信息处理的反馈机制

这种反馈机制对于神经信息的动力学编码至关重要(见引言中的研究方向(4)). 因为神经系统中的机械力信号包括脑血流分布与温度场的关系、各个脑区的血流压力分布、脑区血管压力分布、温度应力分布与神经信息处理之间的关系等均对大脑的全局神经编码产生重要影响. 遗憾的是到目前为止, 实验神经科学家们并没有意识到或者至少没有对这样重大的科学问题有足够的重视.

7.5 建立大脑皮层血管的疲劳与损伤力学模型可用于对多类认知功能障碍的预测、预报和诊断

这一类力学模型的构建因为与神经功能调控与退行性神经疾病的建模与诊断密切相关(见引言中的研究方向(5)), 是从力学的角度探索脑血管病变与认知功能障碍的新思维, 是非常前沿的研究课题. 由于血管疲劳可使血流动力异常从而诱发神经组织的兴奋度增加. 当血流量减少意味着氧气和葡萄糖减少, 而神经元要维持正常的活动又需要有正常的氧气和葡萄糖补充, 这使得神经元长期处于疲劳状态即超负荷工作, 并且这种对神经的抑制性机制的丧失可能会导致神经性损伤的发生, 从而诱发各种认知功能障碍.

(责任编委: 丁千)

致谢

国家自然科学基金资助项目(11232005, 10872068, 11472104, 11872180).

参考文献

董玮, 王如彬, 沈恩华 , . 2008.

节律性步态运动中CPG对肌肉的控制模式的仿真研究

动力学与控制学报, 12:327-331

URL     [本文引用: 1]

( Dong W, Wang R B, Shen E H , et al. 2008.

The simulation study on the pattern of muscles controlled by CPG in rhythm gait movement

Journal of Dynamics and Control, 12: 327-331).

URL     [本文引用: 1]

顾凡及, 梁培基 . 2007. 神经信息处理. 北京: 北京工业大学出版社

[本文引用: 1]

( Gu F J, Liang P J. 2007. Neural Information Processing. Beijing: Beijing University of Technology Press).

[本文引用: 1]

胡吉永, 丁辛, 王如彬 , . 2009.

触摸法评价织物柔软性的感知觉力学原理分析

力学学报, 41:761-768

URL     [本文引用: 2]

( Hu J Y, Ding X, Wang R B , et al. 2009.

Mechanictic principles of sensory analysis on fabric softness by touch means

Chinese Journal of Theoretical and Applied Mechanics, 41: 761-768).

URL     [本文引用: 2]

胡吉永, 丁辛, 王如彬 , . 2012.

单纤维刺扎人体皮肤的弯曲力学行为分析

动力学与控制学报, 10:162-167

URL     [本文引用: 1]

( Hu J Y, Ding X, Wang R B , et al. 2012.

Bending mechanical behavior of single fiber prickling human skin

Journal of Dynamics and Control, 10: 162-167).

URL     [本文引用: 1]

贾祥宇, 吴禹 . 2017.

动力学与生命科学的交叉研究进展综述

动力学与控制学报, 15:279-288

URL     [本文引用: 1]

( Jia X Y, Wu Y . 2017.

An overview on progress of interdisciplinary studies of dynamics and life sciences

Journal of Dynamics and Control, 15: 279-288).

URL     [本文引用: 1]

刘亚宁 . 2002. 电磁生物效应. 北京: 北京邮电大学出版社

[本文引用: 1]

( Liu Y N. 2002. Bioelectromagnetic Effects. Beijing: Beijing University of Posts and Telecommunications Press).

[本文引用: 1]

陆启韶, 刘深泉, 刘锋 , . 2008.

生物神经网络系统动力学与功能研究

力学进展, 38:766-793

URL     [本文引用: 1]

生物神经系统是由数量极其巨大的神经元相互联结的信息网络系统,在生物体的感觉、认知和运动控制中发挥关键性的作用.首先介绍神经元、大脑和一些生物神经网络的生理结构和理论模型,然后分别介绍其放电活动和网络动态特性的一些重要问题,包括神经元的复杂放电模式、耦合神经元网络系统的同步活动和时空动力学、大脑联合皮层神经微回路的网络结构特征,以及工作记忆和抉择过程的动力学机制等. 最后对今后研究给出一些展望.

( Lu Q S, Liu S Q, Liu F , et al. 2008.

Research on dynamics and function of biological neural network systems

Advances in Mechanics, 38: 766-793).

URL     [本文引用: 1]

生物神经系统是由数量极其巨大的神经元相互联结的信息网络系统,在生物体的感觉、认知和运动控制中发挥关键性的作用.首先介绍神经元、大脑和一些生物神经网络的生理结构和理论模型,然后分别介绍其放电活动和网络动态特性的一些重要问题,包括神经元的复杂放电模式、耦合神经元网络系统的同步活动和时空动力学、大脑联合皮层神经微回路的网络结构特征,以及工作记忆和抉择过程的动力学机制等. 最后对今后研究给出一些展望.

陆启韶 . 2020.

神经动力学与力学

动力学与控制学报, 18:6-10

URL     [本文引用: 1]

( Lu Q S . 2020.

Neurodynamics and mechanics

Journal of Dynamics and Control, 18: 6-10).

URL     [本文引用: 1]

彭俊, 王如彬 . 2019.

大脑血液动力学中的神经能量编码

力学学报, 51:1202-1209

[本文引用: 2]

( Peng J, Wang R B . 2019.

Energy coding of hemodynamic phenomena in the brain

Chinese Journal of Theoretical and Applied Mechanics, 51: 1202-1209).

[本文引用: 2]

彭俊, 王如彬 . 2020.

神经元膜电位对信息的编码

动力学与控制学报, 18:24-32

URL     [本文引用: 2]

( Peng J, Wang R B . 2020.

Information coding of neuronal membrane potential

Journal of Dynamics and Control, 18: 24-32).

URL     [本文引用: 2]

戎伟峰, 王如彬 . 2019.

耳蜗毛细胞活动的神经动力学分析

应用数学和力学, 40:139-149

URL     [本文引用: 1]

( Rong W F, Wang R B . 2019.

Neurodynamics analysis of cochlear hair cell activity

Applied Mathematics and Mechanics, 40: 139-149).

URL     [本文引用: 1]

汪云九 . 2006. 神经信息学. 北京: 高等教育出版社

[本文引用: 1]

( Wang Y J. 2006. Neuroninformatics. Beijing: Higher Education Press).

[本文引用: 1]

王如彬, 张志康 . 2012.

基于信息编码的神经能量计算

力学学报, 44:779-786

[本文引用: 3]

( Wang R B, Zhang Z K . 2012.

Computation of neuronal energy based on information coding

Chinese Journal of Theoretical and Applied Mechanics, 44: 779-786).

[本文引用: 3]

王如彬, 周轶, 张志康 . 2011.

具有延时作用的基底膜主动耦合模型

振动与冲击, 30:49-53, 73

URL     [本文引用: 1]

摘要:采用动力有限元方法,参照爆区现场的一实际三层砌体房屋结构,建立三维空间实体模型,并将底层的爆破地震波监测信号加载到砌体结构模型的基底,求解出有限元模拟的砌体结构其它各层的爆破振动响应值,并与监测结果进行了比较分析。对常见的2~4层砌体结构房屋,各取一种典型结构在底部节点垂直方向上施加不同主频的爆破地震波进行动力有限元建模并模拟开裂过程,通过定义结构单元的临界失效状态来寻求典型砌体结构房屋的爆破振动安全标准值,并给出了2~4层典型砌体结构房屋在各主频段爆破地震波作用下的爆破振动安全标准。结果表明,现行的《爆破安全规程》中基于工程经验及宏观调查资料基础上制定出的爆破振动安全标准过于粗糙和笼统,对于同类建筑,没有考虑到结构个体的振动特性差异,并不能保证所有结构物的安全,不具有普适性。



( Wang R B, Zhou Y, Zhang Z K . 2011.

An active coupling model for basilar membrane with time-delay action

Journal of Vibration and Shock, 30: 49-53, 73).

URL     [本文引用: 1]

摘要:采用动力有限元方法,参照爆区现场的一实际三层砌体房屋结构,建立三维空间实体模型,并将底层的爆破地震波监测信号加载到砌体结构模型的基底,求解出有限元模拟的砌体结构其它各层的爆破振动响应值,并与监测结果进行了比较分析。对常见的2~4层砌体结构房屋,各取一种典型结构在底部节点垂直方向上施加不同主频的爆破地震波进行动力有限元建模并模拟开裂过程,通过定义结构单元的临界失效状态来寻求典型砌体结构房屋的爆破振动安全标准值,并给出了2~4层典型砌体结构房屋在各主频段爆破地震波作用下的爆破振动安全标准。结果表明,现行的《爆破安全规程》中基于工程经验及宏观调查资料基础上制定出的爆破振动安全标准过于粗糙和笼统,对于同类建筑,没有考虑到结构个体的振动特性差异,并不能保证所有结构物的安全,不具有普适性。



王如彬, 张志康 . 2008.

耦合条件下大脑坡层神经振子群的能量函数

力学学报, 40:238-249

URL    

探讨了局部脑皮层网络活动中,耦合条件下的大规模神经振子群的能量消耗与神经信号编码之间的内禀关系,得到了神经元集群在阈下和阈上互相耦合时神经元膜电位变化的函数. 这个能量函数能够精确地再现神经电生理学实验中的EPSP,IPSP,动作电位以及动作电流. 最近功能性核磁共振实验证明了神经信号的编码是与能量的消耗紧密地耦合在一起的,因此研究结果表明利用能量原理研究大脑在神经网络层次上是如何进行编码的这一重大科学问题的讨论是十分有益的. 可以预计得到的能量函数将是生物学神经网络动力学稳定性计算的基础.

( Wang R B, Zhang Z K . 2008.

Energy funation of population of neural oscillators in cerebral cortex under coupling condition

Chinese Journal of Theoretical and Applied Mechanics, 40: 238-249).

URL    

探讨了局部脑皮层网络活动中,耦合条件下的大规模神经振子群的能量消耗与神经信号编码之间的内禀关系,得到了神经元集群在阈下和阈上互相耦合时神经元膜电位变化的函数. 这个能量函数能够精确地再现神经电生理学实验中的EPSP,IPSP,动作电位以及动作电流. 最近功能性核磁共振实验证明了神经信号的编码是与能量的消耗紧密地耦合在一起的,因此研究结果表明利用能量原理研究大脑在神经网络层次上是如何进行编码的这一重大科学问题的讨论是十分有益的. 可以预计得到的能量函数将是生物学神经网络动力学稳定性计算的基础.

王如彬 . 2020.

神经动力学研究进展

动力学与控制学报, 18:1-5

URL     [本文引用: 2]

( Wang R B . 2020.

Research advances in neurodynamics

Journal of Dynamics and Control, 18: 1-5).

URL     [本文引用: 2]

武田晓 . 1999.

脑和物理学

东京: 裳华房株式会社

[本文引用: 1]

( Takata G . 1999.

Brain and Physics

Tokyo: Shokabo Company).

[本文引用: 1]

张健鹏, 王如彬, 沈恩华 , . 2009.

关于昆虫步态运动时神经控制机理的动力学分析

动力学与控制学报, 7:29-34

URL     [本文引用: 1]

( Zhang J P, Wang R B, Shen E H , et al. 2009.

An exploration of dynamics on neural control mechanism of insect locomotion

Journal of Dynamics and Control, 7: 29-34).

URL     [本文引用: 1]

张健鹏, 王如彬 . 2009.

基于被动力学的昆虫运动动力学的建模与分析

力学季刊, 1:39-43

URL     [本文引用: 1]

在John Schmitt和Philip Holmes等人工作的基础上,基于被动力学建立了一个考虑阻尼效应的昆虫LLS(lateral leg-spring)爬行模型.通过在Matlab环境下对模型进行数值仿真,发现引入阻尼后的模型更加符合实际情况,并表现出较好的稳定性.证明在施加的控制作用十分有限的情况下,昆虫本身身体结构及其爬行姿态在维持运动的稳定性方面发挥着重要作用,事实上这样的控制策略具有重要的生物学意义,通过被动力学的机械反馈,生物体可以在有限的神经控制作用下保持稳定运动,从而在受到地面扰动时及时做出反馈,并提高能效性.同时,我们考虑了引入偏摆角扰动时系统的响应,发现相对于其他变量扰动,偏摆角可以有效地改变模型的前进方向,并具有较好的鲁棒性,提出了可能的方向控制策略.

( Zhang J P, Wang R B . 2009.

Modeling and dynamic analysis of insect locomotion based on passive dynamics

Chinese Quarterly of Mechanics, 1: 39-43).

URL     [本文引用: 1]

在John Schmitt和Philip Holmes等人工作的基础上,基于被动力学建立了一个考虑阻尼效应的昆虫LLS(lateral leg-spring)爬行模型.通过在Matlab环境下对模型进行数值仿真,发现引入阻尼后的模型更加符合实际情况,并表现出较好的稳定性.证明在施加的控制作用十分有限的情况下,昆虫本身身体结构及其爬行姿态在维持运动的稳定性方面发挥着重要作用,事实上这样的控制策略具有重要的生物学意义,通过被动力学的机械反馈,生物体可以在有限的神经控制作用下保持稳定运动,从而在受到地面扰动时及时做出反馈,并提高能效性.同时,我们考虑了引入偏摆角扰动时系统的响应,发现相对于其他变量扰动,偏摆角可以有效地改变模型的前进方向,并具有较好的鲁棒性,提出了可能的方向控制策略.

郑锦超, 王如彬 . 2012.

神经能量与神经信息之间内在动力学初探

力学学报, 44:919-927

DOI      URL     [本文引用: 4]

根据信息论的基本原理和方法,运用最小互信息和最大熵原理对神经编码进行研究和分析.通过对两个原理的基本介绍,描述了最小互信息和最大熵原理是如何用于评估神经反应中的信息量.研究结果表明神经信息的表达和神经能量的利用率密切相关,并发现高度进化的神经系统在能量的消耗和利用上严格遵循着经济性和高效性两个基本原则.为了验证神经信息处理与能量利用率的关系,提出了信能比的新概念,用于衡量最大熵原理对应神经系统在能量利用率上的经济性和高效性.并通过数值计算证实了一个猜想,即神经系统所消耗的能量反映了神经信息处理的内在规律,这为进一步研究一种崭新的神经信息处理原理&mdash;&mdash;能量神经编码奠定了重要的理论基础.

( Zheng J C, Wang R B . 2012.

The first exploration of the dynamic relation between nervous energy and neueal information

Chinese Journal of Theoretical and Applied Mechanics, 44: 919-927).

DOI      URL     [本文引用: 4]

根据信息论的基本原理和方法,运用最小互信息和最大熵原理对神经编码进行研究和分析.通过对两个原理的基本介绍,描述了最小互信息和最大熵原理是如何用于评估神经反应中的信息量.研究结果表明神经信息的表达和神经能量的利用率密切相关,并发现高度进化的神经系统在能量的消耗和利用上严格遵循着经济性和高效性两个基本原则.为了验证神经信息处理与能量利用率的关系,提出了信能比的新概念,用于衡量最大熵原理对应神经系统在能量利用率上的经济性和高效性.并通过数值计算证实了一个猜想,即神经系统所消耗的能量反映了神经信息处理的内在规律,这为进一步研究一种崭新的神经信息处理原理&mdash;&mdash;能量神经编码奠定了重要的理论基础.

Abbasi S, Maran S, Jaeger D. 2020.

A general method to generate artificial spike train populations matching recorded neurons

Journal of Computational Neuroscience, 48:47-63.

DOI      URL     PMID      [本文引用: 1]

We developed a general method to generate populations of artificial spike trains (ASTs) that match the statistics of recorded neurons. The method is based on computing a Gaussian local rate function of the recorded spike trains, which results in rate templates from which ASTs are drawn as gamma distributed processes with a refractory period. Multiple instances of spike trains can be sampled from the same rate templates. Importantly, we can manipulate rate-covariances between spike trains by performing simple algorithmic transformations on the rate templates, such as filtering or amplifying specific frequency bands, and adding behavior related rate modulations. The method was examined for accuracy and limitations using surrogate data such as sine wave rate templates, and was then verified for recorded spike trains from cerebellum and cerebral cortex. We found that ASTs generated with this method can closely follow the firing rate and local as well as global spike time variance and power spectrum. The method is primarily intended to generate well-controlled spike train populations as inputs for dynamic clamp studies or biophysically realistic multicompartmental models. Such inputs are essential to study detailed properties of synaptic integration with well-controlled input patterns that mimic the in vivo situation while allowing manipulation of input rate covariances at different time scales.

Baker J E, Brust-Mascher I, Ramachandran S , et al. 1998.

A large and distinct rotation of the myosin light chain domain occurs upon muscle contraction

Proceedings of the National Academy of Sciences of the United States of America, 95:2944-2949.

DOI      URL     PMID      [本文引用: 7]

For more than 30 years, the fundamental goal in molecular motility has been to resolve force-generating motor protein structural changes. Although low-resolution structural studies have provided evidence for force-generating myosin rotations upon muscle activation, these studies did not resolve structural states of myosin in contracting muscle. Using electron paramagnetic resonance, we observed two distinct orientations of a spin label attached specifically to a single site on the light chain domain of myosin in relaxed scallop muscle fibers. The two probe orientations, separated by a 36 degrees +/- 5 degrees axial rotation, did not change upon muscle activation, but the distribution between them changed substantially, indicating that a fraction (17% +/- 2%) of myosin heads undergoes a large (at least 30 degrees) axial rotation of the myosin light chain domain upon force generation and muscle contraction. The resulting model helps explain why this observation has remained so elusive and provides insight into the mechanisms by which motor protein structural transitions drive molecular motility.

Basar E. 1998.

Brain Function and Oscillations

Berlin: Springer.

[本文引用: 1]

Basar E. 2011.

Brain-Body-Mind in the Nebulous Cartesian System: A Holistic Approach by Oscillations

Berlin:Springer.

[本文引用: 1]

Bergmann Tiest W M, Kappers A. 2009.

Cues for haptic perception of compliance

IEEE Transactions on Haptics, 2:189-199.

DOI      URL     PMID      [本文引用: 1]

For the perception of the hardness of compliant materials, several cues are available. In this paper, the relative roles of force/displacement and surface deformation cues are investigated. We have measured discrimination thresholds with silicone rubber stimuli of differing thickness and compliance. Also, the influence of the finger span is assessed. When compliance is expressed as the Young's modulus, the thresholds in the different conditions follow Weber's law with a Weber fraction of 15 percent. When the surface deformation cue was removed, thresholds more than trebled. Under the assumption of optimal cue combination, this suggests that a large fraction of the information comes from the surface deformation cue. Using a matching experiment, we found that differences in object thickness are correctly taken into account. When cues appear to contradict each other, the conflict is resolved by means of a compromise.

Betz T, Lim D, Kas J A. 2006.

Neuronal growth: A bistable stochastic process

Physical Review Letters, 96:098103.

DOI      URL     PMID      [本文引用: 1]

The fundamentally stochastic nature of neuronal growth has hardly been addressed in neuroscience. We report on the stochastic fluctuations of a neuronal growth cone's leading edge movement, the basic step in neuronal growth. Describing the edge movement as a stochastic bistable process leads to an isotropic noise parameter that is successfully used to test the model. An analysis of growth cone motility confirms the model, and predicts that linear changes of the bistable potential, as known from stochastic filtering, result in directed growth cone translocation.

Bonzon P. 2017.

Towards neuro-inspired symbolic models of cognition: Linking neural dynamics to behaviors through asynchronous communications

Cognitive Neurodynamics, 11:327-353.

DOI      URL     PMID      [本文引用: 1]

A computational architecture modeling the relation between perception and action is proposed. Basic brain processes representing synaptic plasticity are first abstracted through asynchronous communication protocols and implemented as virtual microcircuits. These are used in turn to build mesoscale circuits embodying parallel cognitive processes. Encoding these circuits into symbolic expressions gives finally rise to neuro-inspired programs that are compiled into pseudo-code to be interpreted by a virtual machine. Quantitative evaluation measures are given by the modification of synapse weights over time. This approach is illustrated by models of simple forms of behaviors exhibiting cognition up to the third level of animal awareness. As a potential benefit, symbolic models of emergent psychological mechanisms could lead to the discovery of the learning processes involved in the development of cognition. The executable specifications of an experimental platform allowing for the reproduction of simulated experiments are given in

Brown A M. 2004.

Brain glycogen re-awakened

Journal of Neurochemistry, 89:537-552.

DOI      URL     PMID      [本文引用: 1]

The mammalian brain contains glycogen, which is located predominantly in astrocytes, but its function is unclear. A principal role for brain glycogen as an energy reserve, analogous to its role in the periphery, had been universally dismissed based on its relatively low concentration, an assumption apparently reinforced by the limited duration that the brain can function in the absence of glucose. However, during insulin-induced hypoglycaemia, where brain glucose availability is limited, glycogen content falls first in areas with the highest metabolic rate, suggesting that glycogen provides fuel to support brain function during pathological hypoglycaemia. General anaesthesia results in elevated brain glycogen suggesting quiescent neurones allow glycogen accumulation, and as long ago as the 1950s it was shown that brain glycogen accumulates during sleep, is mobilized upon waking, and that sleep deprivation results in region-specific decreases in brain glycogen, implying a supportive functional role for brain glycogen in the conscious, awake brain. Interest in brain glycogen has recently been re-awakened by the first continuous in vivo measurements using NMR spectroscopy, by the general acceptance of metabolic coupling between glia and neurones involving intercellular transfer of energy substrate, and by studies supporting a prominent physiological role for brain glycogen as a provider of supplemental energy substrate during periods of increased tissue energy demand, when ambient normoglycaemic glucose is unable to meet immediate energy requirements.

Brown A M, Baltan Tekkok S, Ransom B R. 2004.

Energy transfer from astrocytes to axons: The role of CNS glycogen

Neurochemistry International, 45:529-536.

DOI      URL     [本文引用: 1]

Abstract

We tested the hypothesis that astrocytic glycogen supports axon function under both pathological and physiological conditions. Functional activity of the rat (RON) or mouse optic nerve (MON), representative central white matter tracts, was assessed electrophysiologically as the area under the supramaximal compound action potential (CAP). During aglycaemia the CAP area of rodent optic nerve persisted for up to 30 min, after which the CAP rapidly failed. Glycogen content measured biochemically during the aglycaemic insult fell with a time course compatible with its rapid degradation in the absence of glucose. Pharmacological up-regulation of glycogen content prior to the aglycaemic insult with incubation in hyperglycaemic ambient glucose delayed CAP failure, whereas down-regulation of glycogen content induced by nor-adrenaline accelerated CAP failure. Inhibiting lactate transfer between astrocytes and axons during aglycaemia, where glycogen is the only utilisable energy reserve, resulted in accelerated CAP failure, implying that glycogen-derived lactate supports function when exogenous energy metabolites are withdrawn. Under normoglycaemic conditions glycogen content decreased during high frequency axon discharge, although CAP function was fully maintained. Both prior depletion of glycogen content, or blocking axonal lactate uptake rendered nerves incapable of fully supporting CAP function during high frequency firing in the presence of normoglycaemic glucose. These results indicated that during aglycaemia and increased metabolic demand, astrocytic glycogen was degraded to form lactate, which was used as a supplemental energy source when ambient normoglycaemic glucose was incapable of meeting immediate tissue energy demands.

Bullmore E, Sporns O. 2009.

Complex brain networks: Graph theoretical analysis of structural and functional systems

Nature Reviews. Neuroscience, 10:186-198.

DOI      URL     PMID      [本文引用: 1]

Recent developments in the quantitative analysis of complex networks, based largely on graph theory, have been rapidly translated to studies of brain network organization. The brain's structural and functional systems have features of complex networks--such as small-world topology, highly connected hubs and modularity--both at the whole-brain scale of human neuroimaging and at a cellular scale in non-human animals. In this article, we review studies investigating complex brain networks in diverse experimental modalities (including structural and functional MRI, diffusion tensor imaging, magnetoencephalography and electroencephalography in humans) and provide an accessible introduction to the basic principles of graph theory. We also highlight some of the technical challenges and key questions to be addressed by future developments in this rapidly moving field.

Buxton R B. 2012.

Dynamic models of BOLD contrast

NeuroImage, 62:953-961.

DOI      URL     [本文引用: 1]

This personal recollection looks at the evolution of ideas about the dynamics of the blood oxygenation level dependent (BOLD) signal, with an emphasis on the balloon model. From the first detection of the BOLD response it has been clear that the signal exhibits interesting dynamics, such as a pronounced and long-lasting post-stimulus undershoot. The BOLD response, reflecting a change in local deoxyhemoglobin, is a combination of a hemodynamic response, related to changes in blood flow and venous blood volume, and a metabolic response related to oxygen metabolism. Modeling is potentially a way to understand the complex path from changes in neural activity to the BOLD signal. In the early days of fMRI it was hoped that the hemodynamic/metabolic response could be modeled in a unitary way, with blood flow, oxygen metabolism, and venous blood volume the physiological factors that affect local deoxyhemoglobin all tightly linked. The balloon model was an attempt to do this, based on the physiological ideas of limited oxygen delivery at baseline and a slow recovery of venous blood volume after the stimulus (the balloon effect), and this simple model of the physiology worked well to simulate the BOLD response. However, subsequent experiments suggest a more complicated picture of the underlying physiology, with blood flow and oxygen metabolism driven in parallel, possibly by different aspects of neural activity. In addition, it is still not clear whether the post-stimulus undershoot is a hemodynamic or a metabolic phenomenon. although the original venous balloon effect is unlikely to be the full explanation, and a flow undershoot is likely to be important. Although our understanding of the physics of the BOLD response is now reasonably solid, our understanding of the underlying physiological relationships is still relatively poor, and this is the primary hurdle for future models of BOLD dynamics. (C) 2012 Elsevier Inc.

Byrne J H, Roberts J L. 2009.

From Molecules to Networks.

Amsterdam: Elsevier.

[本文引用: 4]

Chen M, Guo D, Li M , et al. 2015.

Critical roles of the direct gabaergic pallido-cortical pathway in controlling absence seizures

PLoS Computational Biology, 11:e1004539.

DOI      URL     PMID      [本文引用: 1]

The basal ganglia (BG), serving as an intermediate bridge between the cerebral cortex and thalamus, are believed to play crucial roles in controlling absence seizure activities generated by the pathological corticothalamic system. Inspired by recent experiments, here we systematically investigate the contribution of a novel identified GABAergic pallido-cortical pathway, projecting from the globus pallidus externa (GPe) in the BG to the cerebral cortex, to the control of absence seizures. By computational modelling, we find that both increasing the activation of GPe neurons and enhancing the coupling strength of the inhibitory pallido-cortical pathway can suppress the bilaterally synchronous 2-4 Hz spike and wave discharges (SWDs) during absence seizures. Appropriate tuning of several GPe-related pathways may also trigger the SWD suppression, through modulating the activation level of GPe neurons. Furthermore, we show that the previously discovered bidirectional control of absence seizures due to the competition between other two BG output pathways also exists in our established model. Importantly, such bidirectional control is shaped by the coupling strength of this direct GABAergic pallido-cortical pathway. Our work suggests that the novel identified pallido-cortical pathway has a functional role in controlling absence seizures and the presented results might provide testable hypotheses for future experimental studies.

Chen M, Guo D, Wang T , et al. 2014.

Bidirectional control of absence seizures by the basal ganglia: A computational evidence

PLoS Computational Biology, 10:e1003495.

DOI      URL     PMID      [本文引用: 1]

Absence epilepsy is believed to be associated with the abnormal interactions between the cerebral cortex and thalamus. Besides the direct coupling, anatomical evidence indicates that the cerebral cortex and thalamus also communicate indirectly through an important intermediate bridge-basal ganglia. It has been thus postulated that the basal ganglia might play key roles in the modulation of absence seizures, but the relevant biophysical mechanisms are still not completely established. Using a biophysically based model, we demonstrate here that the typical absence seizure activities can be controlled and modulated by the direct GABAergic projections from the substantia nigra pars reticulata (SNr) to either the thalamic reticular nucleus (TRN) or the specific relay nuclei (SRN) of thalamus, through different biophysical mechanisms. Under certain conditions, these two types of seizure control are observed to coexist in the same network. More importantly, due to the competition between the inhibitory SNr-TRN and SNr-SRN pathways, we find that both decreasing and increasing the activation of SNr neurons from the normal level may considerably suppress the generation of spike-and-slow wave discharges in the coexistence region. Overall, these results highlight the bidirectional functional roles of basal ganglia in controlling and modulating absence seizures, and might provide novel insights into the therapeutic treatments of this brain disorder.

Churchland M M, Cunningham J P, Kaufman M T , et al. 2012.

Neural population dynamics during reaching

Nature, 487:51-56.

DOI      URL     [本文引用: 2]

Most theories of motor cortex have assumed that neural activity represents movement parameters. This view derives from what is known about primary visual cortex, where neural activity represents patterns of light. Yet it is unclear how well the analogy between motor and visual cortex holds. Single-neuron responses in motor cortex are complex, and there is marked disagreement regarding which movement parameters are represented. A better analogy might be with other motor systems, where a common principle is rhythmic neural activity. Here we find that motor cortex responses during reaching contain a brief but strong oscillatory component, something quite unexpected for a non-periodic behaviour. Oscillation amplitude and phase followed naturally from the preparatory state, suggesting a mechanistic role for preparatory neural activity. These results demonstrate an unexpected yet surprisingly simple structure in the population response. This underlying structure explains many of the confusing features of individual neural responses.

Clancy K, Ding M, Bernat E , et al. 2017.

Restless "rest": Intrinsic sensory hyperactivity and disinhibition in post-traumatic stress disorder

Brain: A Journal of Neurology, 140:2041-2050.

DOI      URL     [本文引用: 2]

Cooke R. 1998.

New angle on myosin

Proceedings of the National Academy of Sciences of the United States of America, 95:2720-2722.

DOI      URL     PMID      [本文引用: 4]

Deco G, Jirsa V, McIntosh A R , et al. 2009.

Key role of coupling, delay, and noise in resting brain fluctuations

Proceedings of the National Academy of Sciences of the United States of America, 106:10302-10307.

URL     PMID      [本文引用: 1]

Dinuzzo M, Mangia S, Maraviglia B , et al. 2012.

The role of astrocytic glycogen in supporting the energetics of neuronal activity

Neurochemical Research, 37:2432-2438.

DOI      URL     [本文引用: 1]

Energy homeostasis in the brain is maintained by oxidative metabolism of glucose, primarily to fulfil the energy demand associated with ionic movements in neurons and astrocytes. In this contribution we review the experimental evidence that grounds a specific role of glycogen metabolism in supporting the functional energetic needs of astrocytes during the removal of extracellular potassium. Based on theoretical considerations, we further discuss the hypothesis that the mobilization of glycogen in astrocytes serves the purpose to enhance the availability of glucose for neuronal glycolytic and oxidative metabolism at the onset of stimulation. Finally, we provide an evolutionary perspective for explaining the selection of glycogen as carbohydrate reserve in the energy-sensing machinery of cell metabolism.

Dong W, Wang R. 2011.

Exploring human rhythmic gait movement in the role of cerebral cortex signal

Applied Mathematics and Mechanics, 32:223-230.

[本文引用: 1]

Du Y, Wang R, Han F , et al. 2015.

The parameter-dependent synchronization of coupled neurons in cold receptor model.

International Journal of Non-Linear Mechanics, 70:95-104.

[本文引用: 1]

Eikenberry S E, Marmarelis V Z. 2015.

Principal dynamic mode analysis of the Hodgkin-Huxley equations

International Journal of Neural Systems, 25:1550001.

URL     PMID      [本文引用: 2]

Epstein R. 2016.

The empty brain

AEON Essays, 2016-05-25.

[本文引用: 1]

Erdogdu E, Kurt E, Duru A D , et al. 2019.

Measurement of cognitive dynamics during video watching through event-related potentials (ERPs) and oscillations (EROs)

Cognitive Neurodynamics, 13:503-512.

DOI      URL     PMID      [本文引用: 1]

Event-related potentials (ERPs) and oscillations (EROs) are reliable measures of cognition, but they require time-locked electroencephalographic (EEG) data to repetitive triggers that are not available in continuous sensory input streams. However, such real-life-like stimulation by videos or virtual-reality environments may serve as powerful means of creating specific cognitive or affective states and help to investigate dysfunctions in psychiatric and neurological disorders more efficiently. This study aims to develop a method to generate ERPs and EROs during watching videos. Repeated luminance changes were introduced on short video segments, while EEGs of 10 subjects were recorded. The ERP/EROs time-locked to these distortions were analyzed in time and time-frequency domains and tested for their cognitive significance through a long term memory test that included frames from the watched videos. For each subject, ERPs and EROs corresponding to video segments of recalled images with 25% shortest and 25% longest reaction times were compared. ERPs produced by transient luminance changes displayed statistically significant fluctuations both in time and time-frequency domains. Statistical analyses showed that a positivity around 450 ms, a negativity around 500 ms and delta and theta EROs correlated with memory performance. Few studies mixed video streams with simultaneous ERP/ERO experiments with discrete task-relevant or passively presented auditory or somatosensory stimuli, while the present study, by obtaining ERPs and EROs to task-irrelevant events in the same sensory modality as that of the continuous sensory input, produces minimal interference with the main focus of attention on the video stream.

Ermentrout G B, Galan R F, Urban N N. 2007.

Relating neural dynamics to neural coding

Physical Review Letters, 99:248103.

[本文引用: 1]

Evans E A, Hochmuth R M. 1976.

Membrane viscoelasticity

Biophysical Journal, 16:1-11.

DOI      URL     PMID      [本文引用: 1]

In this paper, we develop a theory for viscoelastic behavior of large membrane deformations and apply the analysis to the relaxation of projections produced by small micropipette aspiration of red cell discocytes. We show that this relaxation is dominated by the membrane viscosity and that the cytoplasmic and extracellular fluid flow have negligible influence on the relaxation time and can be neglected. From preliminary data, we estimate the total membrane

Fan D, Wang Q. 2018.

Improved control effect of absence seizures by autaptic connections to the subthalamic nucleus

Physical Review E, 98:052414.

[本文引用: 2]

Fan D, Wang Q, Su J , et al. 2017.

Stimulus-induced transitions between spike-wave discharges and spindles with the modulation of thalamic reticular nucleus

Journal of Computational Neuroscience, 43:203-225.

DOI      URL     PMID      [本文引用: 2]

It is believed that thalamic reticular nucleus (TRN) controls spindles and spike-wave discharges (SWD) in seizure or sleeping processes. The dynamical mechanisms of spatiotemporal evolutions between these two types of activity, however, are not well understood. In light of this, we first use a single-compartment thalamocortical neural field model to investigate the effects of TRN on occurrence of SWD and its transition. Results show that the increasing inhibition from TRN to specific relay nuclei (SRN) can lead to the transition of system from SWD to slow-wave oscillation. Specially, it is shown that stimulations applied in the cortical neuronal populations can also initiate the SWD and slow-wave oscillation from the resting states under the typical inhibitory intensity from TRN to SRN. Then, we expand into a 3-compartment coupled thalamocortical model network in linear and circular structures, respectively, to explore the spatiotemporal evolutions of wave states in different compartments. The main results are: (i) for the open-ended model network, SWD induced by stimulus in the first compartment can be transformed into sleep-like slow UP-DOWN and spindle states as it propagates into the downstream compartments; (ii) for the close-ended model network, weak stimulations performed in the first compartment can result in the consistent experimentally observed spindle oscillations in all three compartments; in contrast, stronger periodic single-pulse stimulations applied in the first compartment can induce periodic transitions between SWD and spindle oscillations. Detailed investigations reveal that multi-attractor coexistence mechanism composed of SWD, spindles and background state underlies these state evolutions. What's more, in order to demonstrate the state evolution stability with respect to the topological structures of neural network, we further expand the 3-compartment coupled network into 10-compartment coupled one, with linear and circular structures, and nearest-neighbor (NN) coupled network as well as its realization of small-world (SW) topology via random rewiring, respectively. Interestingly, for the cases of linear and circular connetivities, qualitatively similar results were obtained in addition to the more irregularity of firings. However, SWD can be eventually transformed into the consistent low-amplitude oscillations for both NN and SW networks. In particular, SWD evolves into the slow spindling oscillations and background tonic oscillations within the NN and SW network, respectively. Our modeling and simulation studies highlight the effect of network topology in the evolutions of SWD and spindling oscillations, which provides new insights into the mechanisms of cortical seizures development.

Fan D, Wang Z, Wang Q. 2016.

Optimal control of directional deep brain stimulation in the parkinsonian neuronal network

Communications in Nonlinear Science and Numerical Simulation, 36:219-237

[本文引用: 1]

Fan D, Zhang L, Wang Q. 2018.

Transition dynamics and adaptive synchronization of time-delay interconnected corticothalamic systems via nonlinear control

Nonlinear Dynamics, 94:2807-2825.

Fan H, Pan X, Wang R , et al. 2017.

Differences in reward processing between putative cell types in primate prefrontal cortex

PloS One, 12:e0189771.

DOI      URL     PMID     

Single-unit studies in monkeys have demonstrated that neurons in the prefrontal cortex predict the reward type, reward amount or reward availability associated with a stimulus. To examine contributions of pyramidal cells and interneurons in reward processing, single-unit activity was extracellularly recorded in prefrontal cortices of four monkeys performing a reward prediction task. Based on their shapes of spike waveforms, prefrontal neurons were classified into broad-spike and narrow-spike units that represented putative pyramidal cells and interneurons, respectively. We mainly observed that narrow-spike neurons showed higher firing rates but less bursty discharges than did broad-spike neurons. Both narrow-spike and broad-spike cells selectively responded to the stimulus, reward and their interaction, and the proportions of each type of selective neurons were similar between the two cell classes. Moreover, the two types of cells displayed equal reliability of reward or stimulus discrimination. Furthermore, we found that broad-spike and narrow-spike cells showed distinct mechanisms for encoding reward or stimulus information. Broad-spike neurons raised their firing rate relative to the baseline rate to represent the preferred reward or stimulus information, whereas narrow-spike neurons inhibited their firing rate lower than the baseline rate to encode the non-preferred reward or stimulus information. Our results suggest that narrow-spike and broad-spike cells were equally involved in reward and stimulus processing in the prefrontal cortex. They utilized a binary strategy to complementarily represent reward or stimulus information, which was consistent with the task structure in which the monkeys were required to remember two reward conditions and two visual stimuli.

Figley C R, Stroman P W. 2011.

The role(s) of astrocytes and astrocyte activity in neurometabolism, neurovascular coupling, and the production of functional neuroimaging signals

The European Journal of Neuroscience, 33:577-588.

[本文引用: 2]

Fox M D, Raichle M E. 2007.

Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews

Neuroscience, 8:700-711.

DOI      URL     PMID      [本文引用: 3]

The majority of functional neuroscience studies have focused on the brain's response to a task or stimulus. However, the brain is very active even in the absence of explicit input or output. In this Article we review recent studies examining spontaneous fluctuations in the blood oxygen level dependent (BOLD) signal of functional magnetic resonance imaging as a potentially important and revealing manifestation of spontaneous neuronal activity. Although several challenges remain, these studies have provided insight into the intrinsic functional architecture of the brain, variability in behaviour and potential physiological correlates of neurological and psychiatric disease.

Freeman W. 2000.

Neurodynamics

Berlin: Springer.

[本文引用: 1]

Gazzaniga M S, Ivry R B, Mangun G R. 2002.

Cognitive Neuroscience

London: W. W. Norton & Company.

[本文引用: 2]

Gazzaniga M S, Ivry R B, Mangun G R. 2009.

Cognitive Neuroscience

London: W. W. Norton & Company.

[本文引用: 1]

Gerling G J, Thomas G W. 2008.

Fingerprint lines may not directly affect SA-I mechanoreceptor response

Somatosensory & Motor Research, 25:61-76.

DOI      URL     PMID      [本文引用: 1]

Understanding how skin microstructure affects slowly adapting type I (SA-I) mechanoreceptors in encoding edge discontinuities is fundamental to understanding our sense of touch. Skin microstructure, in particular papillary ridges, has been thought to contribute to edge and gap sensation. Cauna's 1954 model of touch sensibility describes a functional relationship between papillary ridges and edge sensation. His lever arm model proposes that the papillary ridge (exterior fingerprint line) and underlying intermediate ridge operate as a single unit, with the intermediate ridge acting as a lever which magnifies indentation imposed at the papillary ridge. This paper contests the validity of the lever arm model. While correctly representing the anatomy, this mechanism inaccurately characterizes the function of the papillary ridges. Finite element analysis and assessment of the critical anatomy indicate that papillary ridges have little direct effect on how SA-I receptors respond to the indentation of static edges. Our analysis supports a revised (stiff shell-elastic bending support) interpretation where the epidermis is split into two major layers with a stiff, deformable shell over an elastic bending support. Recent physiological, electrophysiological, and psychophysical findings support our conclusion that the function of the intermediate ridge is distinct from the function of the papillary ridge.

Guclu B, Mahoney G K, Pawson L J , et al. 2008.

Localization of Merkel cells in the monkey skin: An anatomical model

Somatosensory & Motor Research, 25:123-138.

[本文引用: 1]

Guo D, Wang Q, Perc M. 2012.

Complex synchronous behavior in interneuronal networks with delayed inhibitory and fast electrical synapses

Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 85:061905.

URL     PMID      [本文引用: 1]

Haken H. 1996.

Principles of Brain Functioning

Berlin: Springer.

[本文引用: 2]

Harvey M A, Saal H P, Dammann J F , et al. 2013.

Multiplexing stimulus information through rate and temporal codes in primate somatosensory cortex

PLoS Biology, 11:e1001558.

DOI      URL     PMID      [本文引用: 1]

Our ability to perceive and discriminate textures relies on the transduction and processing of complex, high-frequency vibrations elicited in the fingertip as it is scanned across a surface. How naturalistic vibrations, and by extension texture, are encoded in the responses of neurons in primary somatosensory cortex (S1) is unknown. Combining single unit recordings in awake macaques and perceptual judgments obtained from human subjects, we show that vibratory amplitude is encoded in the strength of the response evoked in S1 neurons. In contrast, the frequency composition of the vibrations, up to 800 Hz, is not encoded in neuronal firing rates, but rather in the phase-locked responses of a subpopulation of neurons. Moreover, analysis of perceptual judgments suggests that spike timing not only conveys stimulus information but also shapes tactile perception. We conclude that information about the amplitude and frequency of natural vibrations is multiplexed at different time scales in S1, and encoded in the rate and temporal patterning of the response, respectively.

Hayashi H. 1998. Nonlinear Phenomenon of Neural Systems: Kolona Press (in Japanese).

[本文引用: 1]

Hipp J F, Engel A K, Siegel M. 2011.

Oscillatory synchronization in large-scale cortical networks predicts perception

Neuron, 69:387-396.

[本文引用: 1]

Holt J R, Corey D P. 2000.

Two mechanisms for transducer adaptation in vertebrate hair cells

Proceedings of the National Academy of Sciences of the United States of America, 97:11730-11735.

DOI      URL     PMID      [本文引用: 1]

Deflection of the hair bundle atop a sensory hair cell modulates the open probability of mechanosensitive ion channels. In response to sustained deflections, hair cells adapt. Two fundamentally distinct models have been proposed to explain transducer adaptation. Both models support the notion that channel open probability is modulated by calcium that enters via the transduction channels. Both also suggest that the primary effect of adaptation is to shift the deflection-response [I(X)] relationship in the direction of the applied stimulus, thus maintaining hair bundle sensitivity. The models differ in several respects. They operate on different time scales: the faster on the order of a few milliseconds or less and the slower on the order of 10 ms or more. The model proposed to explain fast adaptation suggests that calcium enters and binds at or near the transduction channels to stabilize a closed conformation. The model proposed to explain the slower adaptation suggests that adaptation is mediated by an active, force-generating process that regulates the effective stimulus applied to the transduction channels. Here we discuss the evidence in support of each model and consider the possibility that both may function to varying degrees in hair cells of different species and sensory organs.

Hopfield J J. 2010.

Neurodynamics of mental exploration

Proceedings of the National Academy of Sciences of the United States of America, 107:1648-1653.

URL     PMID      [本文引用: 1]

Hoyer S. 1992.

Oxidative energy metabolism in Alzheimer brain. Studies in early-onset and late-onset cases

Molecular and Chemical Neuropathology, 16:207-224.

DOI      URL     PMID      [本文引用: 1]

Reduction of the cerebral metabolic rate of glucose is one of the most predominant abnormalities generally found in the Alzheimer brain, whereas the cerebral metabolic rate of oxygen is only slightly diminished or not at all the beginning of this dementive disorder. This metabolic abnormality may induce severe functional disturbances, obviously preceding morphobiological changes. From the cerebral metabolic rates of oxidized glucose and oxygen, the cerebral ATP formation rate was calculated in incipient early-onset, incipient late-onset and stable advanced dementia of Alzheimer type. A reduction of ATP formation was found from at least 7% in incipient early-onset, to around 20% in incipient late-onset DAT, and from 35% to more than 50% in stable advanced dementia. This approximation was adjusted to findings demonstrating diminished activities of enzymes active in glucose metabolism and formation of oxidation equivalents for ATP production from substrates other than glucose. A reduction for energy formation to the same range was found, as was also recently reported, in vivo in Alzheimer patients. From this rather theoretical point of view, a permanent loss of energy by at least 7-20% in incipient and progressively advancing dementia of the Alzheimer type may be assumed, with an increasing tendency in stable advanced dementia to around 50% energy loss. This energy deficit may have drastic impacts on brain function.

Hu J, Ding X, Wang R. 2007.

Biomechanical mechanism of fabric softness discrimination

Fibers and Polymers, 8:372-376.

[本文引用: 1]

Hu J, Ding X, Wang R. 2009.

Intrinsic differences of sensory analysis from instrumental evaluation on fabric softness by lateral compression

Fibers and Polymers, 10:371-378.

[本文引用: 2]

Hu J, Li Y, Ding X , et al. 2011.

The mechanics of buckling fiber in relation to fabric-evoked prickliness-a theory model of single fiber prickling human skin

Journal of The Textile Institute, 102:1003-1018.

URL     [本文引用: 1]

Hu J, Li Y, Hu J. 2010.

Neuromechanical representation of fabric-evoked prickle: Spatial and probability integration

Fibers and Polymers, 11:790-797.

[本文引用: 1]

Hu J, Yang X, Ding X. 2012.

Probability of prickliness detection in a model of populations of fiber ends prickling human skin

Fibers and Polymers, 13:79-86.

[本文引用: 1]

Hu J, Zhang X, Yang X , et al. 2016.

Analysis of fingertip/fabric friction-induced vibration signals toward vibrotactile rendering

The Journal of The Textile Institute, 107:967-975.

[本文引用: 1]

Hu J, Zhao Q, Jiang R , et al. 2013.

Responses of cutaneous mechanoreceptors within fingerpad to stimulus information for tactile softness sensation of materials

Cognitive Neurodynamics, 7:441-447.

URL     PMID      [本文引用: 1]

Iribarren J L, Moro E. 2009.

Impact of human activity patterns on the dynamics of information diffusion

Physical Review Letters, 103:038702.

DOI      URL     PMID      [本文引用: 1]

We study the impact of human activity patterns on information diffusion. To this end we ran a viral email experiment involving 31,183 individuals in which we were able to track a specific piece of information through the social network. We found that, contrary to traditional models, information travels at an unexpectedly slow pace. By using a branching model which accurately describes the experiment, we show that the large heterogeneity found in the response time is responsible for the slow dynamics of information at the collective level. Given the generality of our result, we discuss the important implications of this finding while modeling human dynamical collective phenomena.

Ji X, Hu X, Zhou Y , et al. 2019.

Adaptive sparse coding based on memristive neural network with applications

Cognitive Neurodynamics, 13:475-488.

URL     PMID      [本文引用: 1]

Jia B, Gu H. 2017.

Dynamics and physiological roles of stochastic neural firing patterns near bifurcation points

International Journal of Bifurcation and Chaos, 27:1750113.

[本文引用: 1]

Jia B, Gu H, Xue L. 2017.

A basic bifurcation structure from bursting to spiking of injured nerve fibers in a two-dimensional parameter space

Cognitive Neurodynamics, 11:189-200.

DOI      URL     PMID      [本文引用: 1]

Two different bifurcation scenarios of firing patterns with decreasing extracellular calcium concentrations were observed in identical sciatic nerve fibers of a chronic constriction injury (CCI) model when the extracellular 4-aminopyridine concentrations were fixed at two different levels. Both processes proceeded from period-1 bursting to period-1 spiking via complex or simple processes. Multiple typical experimental examples manifested dynamics closely matching those simulated in a recently proposed 4-dimensional model to describe the nonlinear dynamics of the CCI model, which included most cases of the bifurcation scenarios. As the extracellular 4-aminopyridine concentrations is increased, the structure of the bifurcation scenario becomes more complex. The results provide a basic framework for identifying the relationships between different neural firing patterns and different bifurcation scenarios and for revealing the complex nonlinear dynamics of neural firing patterns. The potential roles of the basic bifurcation structures in identifying the information process mechanism are discussed.

Jiang J, Bramao I, Khazenzon A , et al. 2020.

Temporal dynamics of memory-guided cognitive control and generalization of control via overlapping associative memories

The Journal of Neuroscience: The official Journal of the Society for Neuroscience, 40:2343-2356.

URL     PMID      [本文引用: 1]

Jiang R, Hu J, Ding X. 2016.

Analysis of fingertip textile friction induced vibration by time-frequency method

Fibers and Polymers, 17:430-436.

[本文引用: 1]

Jiyong H, Yi L, Xin D , et al. 2011.

Neuromechanical representation of fabric-evoked prickliness: A fiber-skin-neuron model

Cognitive Neurodynamics, 5:161-170.

URL     PMID      [本文引用: 2]

Johansson R S, Flanagan J R. 2009.

Coding and use of tactile signals from the fingertips in object manipulation tasks. Nature Reviews

Neuroscience, 10:345-359.

DOI      URL     PMID      [本文引用: 1]

During object manipulation tasks, the brain selects and implements action-phase controllers that use sensory predictions and afferent signals to tailor motor output to the physical properties of the objects involved. Analysis of signals in tactile afferent neurons and central processes in humans reveals how contact events are encoded and used to monitor and update task performance.

Kim S S, Sripati A P, Bensmaia S J. 2010.

Predicting the timing of spikes evoked by tactile stimulation of the hand

Journal of Neurophysiology, 104:1484-1496.

[本文引用: 1]

Kim S Y, Lim W. 2018.

Effect of spike-timing-dependent plasticity on stochastic burst synchronization in a scale-free neuronal network

Cognitive Neurodynamics, 12:315-342.

DOI      URL     PMID      [本文引用: 1]

We consider an excitatory population of subthreshold Izhikevich neurons which cannot fire spontaneously without noise. As the coupling strength passes a threshold, individual neurons exhibit noise-induced burstings. This neuronal population has adaptive dynamic synaptic strengths governed by the spike-timing-dependent plasticity (STDP). However, STDP was not considered in previous works on stochastic burst synchronization (SBS) between noise-induced burstings of sub-threshold neurons. Here, we study the effect of additive STDP on SBS by varying the noise intensity D in the Barabasi-Albert scale-free network (SFN). One of our main findings is a Matthew effect in synaptic plasticity which occurs due to a positive feedback process. Good burst synchronization (with higher bursting measure) gets better via long-term potentiation (LTP) of synaptic strengths, while bad burst synchronization (with lower bursting measure) gets worse via long-term depression (LTD). Consequently, a step-like rapid transition to SBS occurs by changing D, in contrast to a relatively smooth transition in the absence of STDP. We also investigate the effects of network architecture on SBS by varying the symmetric attachment degree [Formula: see text] and the asymmetry parameter [Formula: see text] in the SFN, and Matthew effects are also found to occur by varying [Formula: see text] and [Formula: see text]. Furthermore, emergences of LTP and LTD of synaptic strengths are investigated in details via our own microscopic methods based on both the distributions of time delays between the burst onset times of the pre- and the post-synaptic neurons and the pair-correlations between the pre- and the post-synaptic instantaneous individual burst rates (IIBRs). Finally, a multiplicative STDP case (depending on states) with soft bounds is also investigated in comparison with the additive STDP case (independent of states) with hard bounds. Due to the soft bounds, a Matthew effect with some quantitative differences is also found to occur for the case of multiplicative STDP.

Kim S Y, Lim W. 2019.

Burst synchronization in a scale-free neuronal network with inhibitory spike-timing-dependent plasticity

Cognitive Neurodynamics, 13:53-73.

DOI      URL     PMID      [本文引用: 1]

We are concerned about burst synchronization (BS), related to neural information processes in health and disease, in the Barabasi-Albert scale-free network (SFN) composed of inhibitory bursting Hindmarsh-Rose neurons. This inhibitory neuronal population has adaptive dynamic synaptic strengths governed by the inhibitory spike-timing-dependent plasticity (iSTDP). In previous works without considering iSTDP, BS was found to appear in a range of noise intensities for fixed synaptic inhibition strengths. In contrast, in our present work, we take into consideration iSTDP and investigate its effect on BS by varying the noise intensity. Our new main result is to find occurrence of a Matthew effect in inhibitory synaptic plasticity: good BS gets better via LTD, while bad BS get worse via LTP. This kind of Matthew effect in inhibitory synaptic plasticity is in contrast to that in excitatory synaptic plasticity where good (bad) synchronization gets better (worse) via LTP (LTD). We note that, due to inhibition, the roles of LTD and LTP in inhibitory synaptic plasticity are reversed in comparison with those in excitatory synaptic plasticity. Moreover, emergences of LTD and LTP of synaptic inhibition strengths are intensively investigated via a microscopic method based on the distributions of time delays between the pre- and the post-synaptic burst onset times. Finally, in the presence of iSTDP we investigate the effects of network architecture on BS by varying the symmetric attachment degree l * and the asymmetry parameter Delta l in the SFN.

Lakatos P, Karmos G, Mehta A D , et al. 2008.

Entrainment of neuronal oscillations as a mechanism of attentional selection

Science, 320:110-113.

URL     PMID      [本文引用: 1]

Laughlin S, Sejnowski T. 2003.

Communication in neural networks

Science China Technological Sciences, 301:1870.

[本文引用: 3]

Laughlin S B. 2001.

Energy as a constraint on the coding and processing of sensory information

Current Opinion in Neurobiology, 11:475-480.

DOI      URL     PMID      [本文引用: 1]

Neurons use significant amounts of energy to generate signals. Recent studies of retina and brain connect this energy usage to the ability to transmit information. The identification of energy-efficient neural circuits and codes suggests new ways of understanding the function, design and evolution of nervous systems.

Levy W B, Baxter R A. 1996.

Energy efficient neural codes

Neural Computation, 8:531-543.

DOI      URL     PMID      [本文引用: 1]

In 1969 Barlow introduced the phrase

Li C Y, Poo M M, Dan Y. 2009.

Burst spiking of a single cortical neuron modifies global brain state

Science, 324:643-646.

DOI      URL     PMID      [本文引用: 1]

Different global patterns of brain activity are associated with distinct arousal and behavioral states of an animal, but how the brain rapidly switches between different states remains unclear. We here report that repetitive high-frequency burst spiking of a single rat cortical neuron could trigger a switch between the cortical states resembling slow-wave and rapid-eye-movement sleep. This is reflected in the switching of the membrane potential of the stimulated neuron from slow UP/DOWN oscillations to a persistent-UP state or vice versa, with concurrent changes in the temporal pattern of cortical local field potential (LFP) recorded several millimeters away. These results point to the power of single cortical neurons in modulating the behavioral state of an animal.

Li H, Sun X, Xiao J. 2018.

Stochastic multiresonance in coupled excitable FHN neurons

Chaos, 28:043113.

[本文引用: 1]

Li X, Luo S, Xue F. 2020.

Effects of synaptic integration on the dynamics and computational performance of spiking neural network

Cognitive Neurodynamics, 14:347-357.

URL     PMID      [本文引用: 1]

Lin A L, Fox P T, Hardies J , et al. 2010.

Nonlinear coupling between cerebral blood flow, oxygen consumption, and ATP production in human visual cortex

Proceedings of the National Academy of Sciences of the United States of America, 107:8446-8451.

DOI      URL     PMID      [本文引用: 4]

The purpose of this study was to investigate activation-induced hypermetabolism and hyperemia by using a multifrequency (4, 8, and 16 Hz) reversing-checkerboard visual stimulation paradigm. Specifically, we sought to (i) quantify the relative contributions of the oxidative and nonoxidative metabolic pathways in meeting the increased energy demands [i.e., ATP production (J(ATP))] of task-induced neuronal activation and (ii) determine whether task-induced cerebral blood flow (CBF) augmentation was driven by oxidative or nonoxidative metabolic pathways. Focal increases in CBF, cerebral metabolic rate of oxygen (CMRO(2); i.e., index of aerobic metabolism), and lactate production (J(Lac); i.e., index of anaerobic metabolism) were measured by using physiologically quantitative MRI and spectroscopy methods. Task-induced increases in J(ATP) were small (12.2-16.7%) at all stimulation frequencies and were generated by aerobic metabolism (approximately 98%), with %DeltaJ(ATP) being linearly correlated with the percentage change in CMRO(2) (r = 1.00, P < 0.001). In contrast, task-induced increases in CBF were large (51.7-65.1%) and negatively correlated with the percentage change in CMRO(2) (r = -0.64, P = 0.024), but positively correlated with %DeltaJ(Lac) (r = 0.91, P < 0.001). These results indicate that (i) the energy demand of task-induced brain activation is small (approximately 15%) relative to the hyperemic response (approximately 60%), (ii) this energy demand is met through oxidative metabolism, and (iii) the CBF response is mediated by factors other than oxygen demand.

Lu Q, Gu H, Yang Z , et al. 2008.

Dynamics of firing patterns, synchronization and resonances in neuronal electrical activities: Experiments and analysis

Acta Mech Sinica, 24:593-628.

[本文引用: 1]

Lumpkin E A, Caterina M J. 2007.

Mechanisms of sensory transduction in the skin

Nature, 445:858-865.

DOI      URL     PMID      [本文引用: 1]

Sensory neurons innervating the skin encode the familiar sensations of temperature, touch and pain. An explosion of progress has revealed unanticipated cellular and molecular complexity in these senses. It is now clear that perception of a single stimulus, such as heat, requires several transduction mechanisms. Conversely, a given protein may contribute to multiple senses, such as heat and touch. Recent studies have also led to the surprising insight that skin cells might transduce temperature and touch. To break the code underlying somatosensation, we must therefore understand how the skin's sensory functions are divided among signalling molecules and cell types.

Lv M, Wang C, Ren G , et al. 2016 a.

Model of electrical activity in a neuron under magnetic flow effect

Nonlinear Dynamics, 85:1479-1490.

[本文引用: 1]

Lv M, Wang C, Ren G , et al. 2016 b.

Model of electrical activity in a neuron under magnetic flow effect

Nonlinear Dynamics, 85:1479-1490.

[本文引用: 2]

Ma D, Feng L, Cheng Y , et al. 2018.

Astrocytic gap junction inhibition by carbenoxolone enhances the protective effects of ischemic preconditioning following cerebral ischemia

Journal of Neuroinflammation, 15:198.

DOI      URL     PMID      [本文引用: 1]

BACKGROUND: Stroke is the second leading cause of death worldwide and the most common cause of adult-acquired disability in many nations. Thus, attenuating the damage after ischemic injury and improving patient prognosis are of great importance. We have indicated that ischemic preconditioning (IP) can effectively reduce the damage of ischemia reperfusion and that inhibition of gap junctions may further reduce this damage. Although we confirmed that the function of gap junctions is closely associated with glutamate, we did not investigate the mechanism. In the present study, we aimed to clarify whether the blockade of cellular communication at gap junctions leads to significant reductions in the levels of glutamate released by astrocytes following cerebral ischemia. METHODS: To explore this hypothesis, we utilized the specific blocking agent carbenoxolone (CBX) to inhibit the opening and internalization of connexin 43 channels in an in vitro model of oxygen-glucose deprivation/re-oxygenation (OGD/R), following IP. RESULTS: OGD/R resulted in extensive astrocytic glutamate release following upregulation of hemichannel activity, thus increasing reactive oxygen species (ROS) generation and subsequent cell death. However, we observed significant increases in neuronal survival in neuron-astrocyte co-cultures that were subjected to IP prior to OGD/R. Moreover, the addition of CBX enhanced the protective effects of IP during the re-oxygenation period following OGD, by means of blocking the release of glutamate, increasing the level of the excitatory amino acid transporter 1, and downregulating glutamine expression. CONCLUSIONS: Our results suggest that combined use of IP and CBX represents a novel therapeutic strategy to attenuate damage from cerebral ischemia with minimal adverse side effects.

Ma J, Tang J. 2017.

A review for dynamics in neuron and neuronal network

Nonlinear Dynamics, 89:1569-1578.

[本文引用: 1]

Ma J, Wu F, Hayat T. 2017.

Electromagnetic induction and radiation-induced abnormality of wave propagation in excitable media

Physica A Statistical Mechanics & Its Applications, 486:508-516.

[本文引用: 1]

Ma J, Yang Z Q, Yang L J , et al. 2019.

A physical view of computational neurodynamics

Journal of Zhejiang University—Science A, 20:639-659.

[本文引用: 2]

Maandag N J, Coman D, Sanganahalli B G , et al. 2007.

Energetics of neuronal signaling and fMRI activity

Proceedings of the National Academy of Sciences of the United States of America, 104:20546-20551.

URL     PMID      [本文引用: 3]

Maksimovic S, Nakatani M, Baba Y , et al. 2014.

Epidermal Merkel cells are mechanosensory cells that tune mammalian touch receptors

Nature, 509:617-621.

DOI      URL     PMID      [本文引用: 1]

Touch submodalities, such as flutter and pressure, are mediated by somatosensory afferents whose terminal specializations extract tactile features and encode them as action potential trains with unique activity patterns. Whether non-neuronal cells tune touch receptors through active or passive mechanisms is debated. Terminal specializations are thought to function as passive mechanical filters analogous to the cochlea's basilar membrane, which deconstructs complex sounds into tones that are transduced by mechanosensory hair cells. The model that cutaneous specializations are merely passive has been recently challenged because epidermal cells express sensory ion channels and neurotransmitters; however, direct evidence that epidermal cells excite tactile afferents is lacking. Epidermal Merkel cells display features of sensory receptor cells and make 'synapse-like' contacts with slowly adapting type I (SAI) afferents. These complexes, which encode spatial features such as edges and texture, localize to skin regions with high tactile acuity, including whisker follicles, fingertips and touch domes. Here we show that Merkel cells actively participate in touch reception in mice. Merkel cells display fast, touch-evoked mechanotransduction currents. Optogenetic approaches in intact skin show that Merkel cells are both necessary and sufficient for sustained action-potential firing in tactile afferents. Recordings from touch-dome afferents lacking Merkel cells demonstrate that Merkel cells confer high-frequency responses to dynamic stimuli and enable sustained firing. These data are the first, to our knowledge, to directly demonstrate a functional, excitatory connection between epidermal cells and sensory neurons. Together, these findings indicate that Merkel cells actively tune mechanosensory responses to facilitate high spatio-temporal acuity. Moreover, our results indicate a division of labour in the Merkel cell-neurite complex: Merkel cells signal static stimuli, such as pressure, whereas sensory afferents transduce dynamic stimuli, such as moving gratings. Thus, the Merkel cell-neurite complex is an unique sensory structure composed of two different receptor cell types specialized for distinct elements of discriminative touch.

Malarkey E B, Parpura V. 2008.

Mechanisms of glutamate release from astrocytes

Neurochemistry International, 52:142-154.

DOI      URL     PMID      [本文引用: 1]

Astrocytes can release the excitatory transmitter glutamate which is capable of modulating activity in nearby neurons. This astrocytic glutamate release can occur through six known mechanisms: (i) reversal of uptake by glutamate transporters (ii) anion channel opening induced by cell swelling, (iii) Ca2+-dependent exocytosis, (iv) glutamate exchange via the cystine-glutamate antiporter, (v) release through ionotropic purinergic receptors and (vi) functional unpaired connexons,

McIntyre J, Zago M, Berthoz A , et al. 2001.

Does the brain model Newton's laws?

Nature Neuroscience, 4:693-694.

URL     PMID      [本文引用: 1]

Memmesheimer R M, Timme M. 2006.

Designing the dynamics of spiking neural networks

Physical Review Letters, 97:188101.

DOI      URL     PMID      [本文引用: 1]

Precise timing of spikes and temporal locking are key elements of neural computation. Here we demonstrate how even strongly heterogeneous, deterministic neural networks with delayed interactions and complex topology can exhibit periodic patterns of spikes that are precisely timed. We develop an analytical method to find the set of all networks exhibiting a predefined pattern dynamics. Such patterns may be arbitrarily long and of complicated temporal structure. We point out that the same pattern can exist in very different networks and have different stability properties.

Mitrossilis D, Fouchard J, Guiroy A , et al. 2009.

Single-cell response to stiffness exhibits muscle-like behavior

Proceedings of the National Academy of Sciences of the United States of America, 106:18243-18248.

DOI      URL     PMID      [本文引用: 1]

Living cells sense the rigidity of their environment and adapt their activity to it. In particular, cells cultured on elastic substrates align their shape and their traction forces along the direction of highest stiffness and preferably migrate towards stiffer regions. Although numerous studies investigated the role of adhesion complexes in rigidity sensing, less is known about the specific contribution of acto-myosin based contractility. Here we used a custom-made single-cell technique to measure the traction force as well as the speed of shortening of isolated myoblasts deflecting microplates of variable stiffness. The rate of force generation increased with increasing stiffness and followed a Hill force-velocity relationship. Hence, cell response to stiffness was similar to muscle adaptation to load, reflecting the force-dependent kinetics of myosin binding to actin. These results reveal an unexpected mechanism of rigidity sensing, whereby the contractile acto-myosin units themselves can act as sensors. This mechanism may translate anisotropy in substrate rigidity into anisotropy in cytoskeletal tension, and could thus coordinate local activity of adhesion complexes and guide cell migration along rigidity gradients.

Mondal A, Upadhyay R K, Ma J , et al. 2019.

Bifurcation analysis and diverse firing activities of a modified excitable neuron model

Cognitive Neurodynamics, 13:393-407.

DOI      URL     PMID      [本文引用: 1]

Electrical activities of excitable cells produce diverse spiking-bursting patterns. The dynamics of the neuronal responses can be changed due to the variations of ionic concentrations between outside and inside the cell membrane. We investigate such type of spiking-bursting patterns under the effect of an electromagnetic induction on an excitable neuron model. The effect of electromagnetic induction across the membrane potential can be considered to analyze the collective behavior for signal processing. The paper addresses the issue of the electromagnetic flow on a modified Hindmarsh-Rose model (H-R) which preserves biophysical neurocomputational properties of a class of neuron models. The different types of firing activities such as square wave bursting, chattering, fast spiking, periodic spiking, mixed-mode oscillations etc. can be observed using different injected current stimulus. The improved version of the model includes more parameter sets and the multiple electrical activities are exhibited in different parameter regimes. We perform the bifurcation analysis analytically and numerically with respect to the key parameters which reveals the properties of the fast-slow system for neuronal responses. The firing activities can be suppressed/enhanced using the different external stimulus current and by allowing a noise induced current. To study the electrical activities of neural computation, the improved neuron model is suitable for further investigation.

Moore C I, Cao R. 2008.

The hemo-neural hypothesis: On the role of blood flow in information processing

Journal of Neurophysiology, 99:2035-2047.

URL     PMID      [本文引用: 4]

Mora-Sanchez A, Dreyfus G, Vialatte F B. 2019.

Scale-free behaviour and metastable brain-state switching driven by human cognition, an empirical approach

Cognitive Neurodynamics, 13:437-452.

DOI      URL     PMID      [本文引用: 1]

We developed a framework to study brain dynamics under cognition. In particular, we investigated the spatiotemporal properties of brain state switches under cognition. The lack of electroencephalography stationarity is exploited as one of the signatures of the metastability of brain states. We correlated power law exponents in the variables that we proposed to describe brain states, and dynamical properties of non-stationarities with cognitive conditions. This framework was successfully tested with three different datasets: a working memory dataset, an Alzheimer disease dataset, and an emotions dataset. We discuss the temporal organization of switches between states, providing evidence suggesting the need to reconsider the piecewise model, in which switches appear at discrete times. Instead, we propose a more dynamically rich view, in which besides the seemingly discrete switches, switches between neighbouring states occur all the time. These micro switches are not (physical) noise, as their properties are also affected by cognition.

Nimmy John T, Subha D P, Menon R. 2018.

Analysis of long range dependence in the EEG signals of Alzheimer patients

Cognitive Neurodynamics, 12:183-199.

DOI      URL     PMID      [本文引用: 1]

Alzheimer's disease (AD), a cognitive disability is analysed using a long range dependence parameter, hurst exponent (HE), calculated based on the time domain analysis of the measured electrical activity of brain. The electroencephalogram (EEG) signals of controls and mild cognitive impairment (MCI)-AD patients are evaluated under normal resting and mental arithmetic conditions. Simultaneous low pass filtering and total variation denoising algorithm is employed for preprocessing. Larger values of HE observed in the right hemisphere of the brain for AD patients indicated a decrease in irregularity of the EEG signal under cognitive task conditions. Correlations between HE and the neuropsychological indices are analysed using bivariate correlation analysis. The observed reduction in the values of Auto mutual information and cross mutual information in the local antero-frontal and distant regions in the brain hemisphere indicates the loss of information transmission in MCI-AD patients.

Oprea L, Pack C C, Khadra A. 2020.

Machine classification of spatiotemporal patterns: Automated parameter search in a rebounding spiking network

Cognitive Neurodynamics, 14:267-280.

[本文引用: 1]

Pan X, Fan H, Sawa K , et al. 2014.

Reward inference by primate prefrontal and striatal neurons

The Journal of Neuroscience: The official Journal of the Society for Neuroscience, 34:1380-1396.

DOI      URL     PMID      [本文引用: 1]

The brain contains multiple yet distinct systems involved in reward prediction. To understand the nature of these processes, we recorded single-unit activity from the lateral prefrontal cortex (LPFC) and the striatum in monkeys performing a reward inference task using an asymmetric reward schedule. We found that neurons both in the LPFC and in the striatum predicted reward values for stimuli that had been previously well experienced with set reward quantities in the asymmetric reward task. Importantly, these LPFC neurons could predict the reward value of a stimulus using transitive inference even when the monkeys had not yet learned the stimulus-reward association directly; whereas these striatal neurons did not show such an ability. Nevertheless, because there were two set amounts of reward (large and small), the selected striatal neurons were able to exclusively infer the reward value (e.g., large) of one novel stimulus from a pair after directly experiencing the alternative stimulus with the other reward value (e.g., small). Our results suggest that although neurons that predict reward value for old stimuli in the LPFC could also do so for new stimuli via transitive inference, those in the striatum could only predict reward for new stimuli via exclusive inference. Moreover, the striatum showed more complex functions than was surmised previously for model-free learning.

Parastesh F, Rajagopal K, Karthikeyan A , et al. 2018.

Complex dynamics of a neuron model with discontinuous magnetic induction and exposed to external radiation

Cognitive Neurodynamics, 12:607-614.

URL     PMID      [本文引用: 2]

Pellerin L, Magistretti P J. 1994.

Glutamate uptake into astrocytes stimulates aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization

Proceedings of the National Academy of Sciences of the United States of America, 91:10625-10629.

DOI      URL     PMID      [本文引用: 2]

Glutamate, released at a majority of excitatory synapses in the central nervous system, depolarizes neurons by acting at specific receptors. Its action is terminated by removal from the synaptic cleft mostly via Na(+)-dependent uptake systems located on both neurons and astrocytes. Here we report that glutamate, in addition to its receptor-mediated actions on neuronal excitability, stimulates glycolysis--i.e., glucose utilization and lactate production--in astrocytes. This metabolic action is mediated by activation of a Na(+)-dependent uptake system and not by interaction with receptors. The mechanism involves the Na+/K(+)-ATPase, which is activated by an increase in the intracellular concentration of Na+ cotransported with glutamate by the electrogenic uptake system. Thus, when glutamate is released from active synapses and taken up by astrocytes, the newly identified signaling pathway described here would provide a simple and direct mechanism to tightly couple neuronal activity to glucose utilization. In addition, glutamate-stimulated glycolysis is consistent with data obtained from functional brain imaging studies indicating local nonoxidative glucose utilization during physiological activation.

Peng J, Wang Y, Wang R , et al. 2020.

Neural coupling mechanism in fMRI hemodynamics

Nonlinear Dynamics.

DOI      URL     PMID      [本文引用: 2]

In the end of 2019, a new type of coronavirus first appeared in Wuhan. Through the real-data of COVID-19 from January 23 to March 18, 2020, this paper proposes a fractional SEIHDR model based on the coupling effect of inter-city networks. At the same time, the proposed model considers the mortality rates (exposure, infection and hospitalization) and the infectivity of individuals during the incubation period. By applying the least squares method and prediction-correction method, the proposed system is fitted and predicted based on the real-data from January 23 to March 18 - m where m represents predict days. Compared with the integer system, the non-network fractional model has been verified and can better fit the data of Beijing, Shanghai, Wuhan and Huanggang. Compared with the no-network case, results show that the proposed system with inter-city network may not be able to better describe the spread of disease in China due to the lock and isolation measures, but this may have a significant impact on countries that has no closure measures. Meanwhile, the proposed model is more suitable for the data of Japan, the USA from January 22 and February 1 to April 16 and Italy from February 24 to March 31. Then, the proposed fractional model can also predict the peak of diagnosis. Furthermore, the existence, uniqueness and boundedness of a nonnegative solution are considered in the proposed system. Afterward, the disease-free equilibrium point is locally asymptotically stable when the basic reproduction number R 0

Peppiatt C, Attwell D. 2004.

Neurobiology: Feeding the brain

Nature, 431:137-138.

[本文引用: 5]

Pouget A, Latham P. 2002.

Digitized neural networks: Long-term stability from forgetful neurons

Nature Neuroscience, 5:709-710.

DOI      URL     PMID      [本文引用: 1]

Qin S, Yin H, Yang C , et al. 2016.

A magnetic protein biocompass

Nature materials, 15:217-226.

DOI      URL     PMID      [本文引用: 1]

The notion that animals can detect the Earth's magnetic field was once ridiculed, but is now well established. Yet the biological nature of such magnetosensing phenomenon remains unknown. Here, we report a putative magnetic receptor (Drosophila CG8198, here named MagR) and a multimeric magnetosensing rod-like protein complex, identified by theoretical postulation and genome-wide screening, and validated with cellular, biochemical, structural and biophysical methods. The magnetosensing complex consists of the identified putative magnetoreceptor and known magnetoreception-related photoreceptor cryptochromes (Cry), has the attributes of both Cry- and iron-based systems, and exhibits spontaneous alignment in magnetic fields, including that of the Earth. Such a protein complex may form the basis of magnetoreception in animals, and may lead to applications across multiple fields.

Qu J, Wang R. 2017.

Collective behavior of large-scale neural networks with GPU acceleration

Cognitive Neurodynamics, 11:553-563.

[本文引用: 1]

Qu J, Wang R, Yan C , et al. 2017.

Spatiotemporal behavior of small-world neuronal networks using a map-based model

Neural Processing Letters, 45:689-701.

[本文引用: 1]

Rabinovich M I, Huerta R, Afraimovich V. 2006.

Dynamics of sequential decision making

Physical Review Letters, 97:188103.

URL     PMID      [本文引用: 2]

Raichle M E, Gusnard D A. 2002.

Appraising the brain's energy budget

Proceedings of the National Academy of Sciences of the United States of America, 99:10237-10239.

DOI      URL     PMID      [本文引用: 1]

Rangan A V, Cai D, McLaughlin D W. 2008.

Quantifying neuronal network dynamics through coarse-grained event trees

Proceedings of the National Academy of Sciences of the United States of America, 105:10990-10995.

[本文引用: 1]

Rao A R. 2018.

An oscillatory neural network model that demonstrates the benefits of multisensory learning

Cognitive Neurodynamics, 12:481-499.

DOI      URL     PMID      [本文引用: 1]

Since the world consists of objects that stimulate multiple senses, it is advantageous for a vertebrate to integrate all the sensory information available. However, the precise mechanisms governing the temporal dynamics of multisensory processing are not well understood. We develop a computational modeling approach to investigate these mechanisms. We present an oscillatory neural network model for multisensory learning based on sparse spatio-temporal encoding. Recently published results in cognitive science show that multisensory integration produces greater and more efficient learning. We apply our computational model to qualitatively replicate these results. We vary learning protocols and system dynamics, and measure the rate at which our model learns to distinguish superposed presentations of multisensory objects. We show that the use of multiple channels accelerates learning and recall by up to 80%. When a sensory channel becomes disabled, the performance degradation is less than that experienced during the presentation of non-congruent stimuli. This research furthers our understanding of fundamental brain processes, paving the way for multiple advances including the building of machines with more human-like capabilities.

Rauzi M, Verant P, Lecuit T , et al. 2008.

Nature and anisotropy of cortical forces orienting Drosophila tissue morphogenesis

Nature Cell Biology, 10:1401-1410.

[本文引用: 1]

Retamal M A, Schalper K A, Shoji K F , et al. 2007.

Possible involvement of different connexin43 domains in plasma membrane permeabilization induced by ischemia-reperfusion

The Journal of Membrane Biology, 218:49-63.

DOI      URL     PMID      [本文引用: 1]

In vitro and in vivo studies support the involvement of connexin 43-based cell-cell channels and hemichannels in cell death propagation induced by ischemia-reperfusion. In this context, open connexin hemichannels in the plasma membrane have been proposed to act as accelerators of cell death. Progress on the mechanisms underlying the cell permeabilization induced by ischemia-reperfusion reveals the involvement of several factors leading to an augmented open probability and increased number of hemichannels on the cell surface. While open probability can be increased by a reduction in extracellular concentration of divalent cations and changes in covalent modifications of connexin 43 (oxidation and phosphorylation), increase in number of hemichannels requires an elevation of the intracellular free Ca(2+) concentration. Reversal of connexin 43 redox changes and membrane permeabilization can be induced by intracellular, but not extracellular, reducing agents, suggesting a cytoplasmic localization of the redox sensor(s). In agreement, hemichannels formed by connexin 45, which lacks cytoplasmic cysteines, or by connexin 43 with its C-terminal domain truncated to remove its cysteines are insensitive to reducing agents. Although further studies are required for a precise localization of the redox sensor of connexin 43 hemichannels, modulation of the redox potential is proposed as a target for the design of pharmacological tools to reduce cell death induced by ischemia-reperfusion in connexin 43-expressing cells.

Rong W, Wang R, Zhang J , et al. 2020.

Neurodynamics analysis of cochlear cell activity

Theoretical & Applied Mechanics Letters, 18:1-5.

[本文引用: 1]

Rubinov M, Sporns O, Thivierge J P , et al. 2011.

Neurobiologically realistic determinants of self-organized criticality in networks of spiking neurons

PLoS Computational Biology, 7:e1002038.

DOI      URL     PMID      [本文引用: 1]

Self-organized criticality refers to the spontaneous emergence of self-similar dynamics in complex systems poised between order and randomness. The presence of self-organized critical dynamics in the brain is theoretically appealing and is supported by recent neurophysiological studies. Despite this, the neurobiological determinants of these dynamics have not been previously sought. Here, we systematically examined the influence of such determinants in hierarchically modular networks of leaky integrate-and-fire neurons with spike-timing-dependent synaptic plasticity and axonal conduction delays. We characterized emergent dynamics in our networks by distributions of active neuronal ensemble modules (neuronal avalanches) and rigorously assessed these distributions for power-law scaling. We found that spike-timing-dependent synaptic plasticity enabled a rapid phase transition from random subcritical dynamics to ordered supercritical dynamics. Importantly, modular connectivity and low wiring cost broadened this transition, and enabled a regime indicative of self-organized criticality. The regime only occurred when modular connectivity, low wiring cost and synaptic plasticity were simultaneously present, and the regime was most evident when between-module connection density scaled as a power-law. The regime was robust to variations in other neurobiologically relevant parameters and favored systems with low external drive and strong internal interactions. Increases in system size and connectivity facilitated internal interactions, permitting reductions in external drive and facilitating convergence of postsynaptic-response magnitude and synaptic-plasticity learning rate parameter values towards neurobiologically realistic levels. We hence infer a novel association between self-organized critical neuronal dynamics and several neurobiologically realistic features of structural connectivity. The central role of these features in our model may reflect their importance for neuronal information processing.

Sandrini M, Cohen L G, Censor N. 2015.

Modulating reconsolidation: A link to causal systems-level dynamics of human memories

Trends in Cognitive Sciences, 19:475-482.

[本文引用: 1]

Schwarz Henriques S, Sandmann R, Strate A , et al. 2012.

Force field evolution during human blood platelet activation

Journal of Cell Science, 125:3914-3920.

DOI      URL     PMID      [本文引用: 1]

Contraction at the cellular level is vital for living organisms. The most prominent type of contractile cells are heart muscle cells, a less-well-known example is blood platelets. Blood platelets activate and interlink at injured blood vessel sites, finally contracting to form a compact blood clot. They are ideal model cells to study the mechanisms of cellular contraction, as they are simple, having no nucleus, and their activation can be triggered and synchronized by the addition of thrombin. We have studied contraction using human blood platelets, employing traction force microscopy, a single-cell technique that enables time-resolved measurements of cellular forces on soft substrates with elasticities in the physiological range ( approximately 4 kPa). We found that platelet contraction reaches a steady state after 25 min with total forces of approximately 34 nN. These forces are considerably larger than what was previously reported for platelets in aggregates, demonstrating the importance of a single-cell approach for studies of platelet contraction. Compared with other contractile cells, we find that platelets are unique, because force fields are nearly isotropic, with forces pointing toward the center of the cell area.

Seyfried T N, Kiebish M, Mukherjee P , et al. 2008.

Targeting energy metabolism in brain cancer with calorically restricted ketogenic diets

Epilepsia, 49 Suppl 8: 114-116.

[本文引用: 1]

Sokoloff L. 2008.

The physiological and biochemical bases of functional brain imaging

Cognitive Neurodynamics, 2:1-5.

DOI      URL     PMID      [本文引用: 2]

Functional brain imaging is based on the display of computer-derived images of changes in physiological and/or biochemical functions altered by activation or depression of local functional activities in the brain. This article reviews the physiological and biochemical mechanisms involved.

Stender J, Mortensen K N, Thibaut A , et al. 2016.

The minimal energetic requirement of sustained awareness after brain injury

Current Biology: CB, 26:1494-1499.

DOI      URL     PMID      [本文引用: 1]

Differentiation of the minimally conscious state (MCS) and the unresponsive wakefulness syndrome (UWS) is a persistent clinical challenge [1]. Based on positron emission tomography (PET) studies with [(18)F]-fluorodeoxyglucose (FDG) during sleep and anesthesia, the global cerebral metabolic rate of glucose has been proposed as an indicator of consciousness [2, 3]. Likewise, FDG-PET may contribute to the clinical diagnosis of disorders of consciousness (DOCs) [4, 5]. However, current methods are non-quantitative and have important drawbacks deriving from visually guided assessment of relative changes in brain metabolism [4]. We here used FDG-PET to measure resting state brain glucose metabolism in 131 DOC patients to identify objective quantitative metabolic indicators and predictors of awareness. Quantitation of images was performed by normalizing to extracerebral tissue. We show that 42% of normal cortical activity represents the minimal energetic requirement for the presence of conscious awareness. Overall, the cerebral metabolic rate accounted for the current level, or imminent return, of awareness in 94% of the patient population, suggesting a global energetic threshold effect, associated with the reemergence of consciousness after brain injury. Our data further revealed that regional variations relative to the global resting metabolic level reflect preservation of specific cognitive or sensory modules, such as vision and language comprehension. These findings provide a simple and objective metabolic marker of consciousness, which can readily be implemented clinically. The direct correlation between brain metabolism and behavior further suggests that DOCs can fundamentally be understood as pathological neuroenergetic conditions and provide a unifying physiological basis for these syndromes.

Sun X, Lei J, Perc M , et al. 2011.

Burst synchronization transitions in a neuronal network of subnetworks

Chaos, 21:016110.

DOI      URL     PMID      [本文引用: 1]

In this paper, the transitions of burst synchronization are explored in a neuronal network consisting of subnetworks. The studied network is composed of electrically coupled bursting Hindmarsh-Rose neurons. Numerical results show that two types of burst synchronization transitions can be induced not only by the variations of intra- and intercoupling strengths but also by changing the probability of random links between different subnetworks and the number of subnetworks. Furthermore, we find that the underlying mechanisms for these two bursting synchronization transitions are different: one is due to the change of spike numbers per burst, while the other is caused by the change of the bursting type. Considering that changes in the coupling strengths and neuronal connections are closely interlaced with brain plasticity, the presented results could have important implications for the role of the brain plasticity in some functional behavior that are associated with synchronization.

Sun X, Perc M, Kurths J , et al. 2018.

Fast regular firings induced by intra- and inter-time delays in two clustered neuronal networks

Chaos, 28:106310.

URL     PMID      [本文引用: 1]

Talebi N, Nasrabadi A M, Mohammad-Rezazadeh I. 2018.

Estimation of effective connectivity using multi-layer perceptron artificial neural network

Cognitive Neurodynamics, 12:21-42.

DOI      URL     PMID      [本文引用: 1]

Studies on interactions between brain regions estimate effective connectivity, (usually) based on the causality inferences made on the basis of temporal precedence. In this study, the causal relationship is modeled by a multi-layer perceptron feed-forward artificial neural network, because of the ANN's ability to generate appropriate input-output mapping and to learn from training examples without the need of detailed knowledge of the underlying system. At any time instant, the past samples of data are placed in the network input, and the subsequent values are predicted at its output. To estimate the strength of interactions, the measure of

Talhouk R S, Zeinieh M P, Mikati M A , et al. 2008.

Gap junctional intercellular communication in hypoxia-ischemia-induced neuronal injury

Progress in Neurobiology, 84:57-76.

DOI      URL     PMID      [本文引用: 1]

Brain hypoxia-ischemia is a relatively common and serious problem in neonates and in adults. Its consequences include long-term histological and behavioral changes and reduction in seizure threshold. Gap junction intercellular communication is pivotal in the spread of hypoxia-ischemia related injury and in mediating its long-term effects. This review provides a comprehensive and critical review of hypoxia-ischemia and hypoxia in the brain and the potential role of gap junctions in the spread of the neuronal injury induced by these insults. It also presents the effects of hypoxia-ischemia and of hypoxia on the state of gap junctions in vitro and in vivo. Understanding the mechanisms involved in gap junction-mediated neuronal injury due to hypoxia will lead to the development of novel therapeutic strategies.

Tass P A. 1999.

Phase Resetting in Medicine and Biology.

Berlin: Springer.

[本文引用: 1]

Tejo M, Araya H, Niklitschek-Soto S , et al. 2019.

Theoretical models of reaction times arising from simple-choice tasks

Cognitive Neurodynamics, 13:409-416.

Videbech P. 2000.

PET measurements of brain glucose metabolism and blood flow in major depressive disorder: A critical review

Acta Psychiatrica Scandinavica, 101:11-20.

DOI      URL     PMID      [本文引用: 1]

OBJECTIVE: To show that PET investigations of brain function in patients with major depression can contribute with valuable pathophysiological knowledge about brain function of these states. METHODS: PET studies of cerebral blood flow or glucose metabolism in patients with unipolar or bipolar depression were reviewed. RESULTS: The studies have great discrepancies related to sample size, subject selection, imaging protocol and image analysis. In spite of this shortcoming, there is evidence that patients with major depression have reduced blood flow and metabolism in the prefrontal cortex, particularly when they exhibit psychomotor retardation. Abnormalities are also found in the anterior cingulate gyrus and the basal ganglia. A few studies point to the possibility that response to antidepressant treatment can be predicted from PET scans. CONCLUSION: This evidence is consistent with the hypothesis that depressive symptoms are caused by dysfunction of regions of the limbic system and the frontal lobes in close connection with the basal ganglia.

Wang D, Wang C, Liu L , et al. 2018.

Protective effects of evodiamine in experimental paradigm of Alzheimer's disease

Cognitive Neurodynamics, 12:303-313.

URL     PMID      [本文引用: 3]

Wang G, Wang R. 2017.

Sparse coding network model based on fast independent component analysis

Neural Computing & Applications, 13:1-7.

Wang G, Wang R, Kong W , et al. 2018.

Simulation of retinal ganglion cell response using fast independent component analysis

Cognitive Neurodynamics, 12:615-624.

DOI      URL     PMID     

Advances in neurobiology suggest that neuronal response of the primary visual cortex to natural stimuli may be attributed to sparse approximation of images, encoding stimuli to activate specific neurons although the underlying mechanisms are still unclear. The responses of retinal ganglion cells (RGCs) to natural and random checkerboard stimuli were simulated using fast independent component analysis. The neuronal response to stimuli was measured using kurtosis and Treves-Rolls sparseness, and the kurtosis, lifetime and population sparseness were analyzed. RGCs exhibited significant lifetime sparseness in response to natural stimuli and random checkerboard stimuli. About 65 and 72% of RGCs do not fire all the time in response to natural and random checkerboard stimuli, respectively. Both kurtosis of single neurons and lifetime response of single neurons values were larger in the case of natural than in random checkerboard stimuli. The population of RGCs fire much less in response to random checkerboard stimuli than natural stimuli. However, kurtosis of population sparseness and population response of the entire neurons were larger with natural than random checkerboard stimuli. RGCs fire more sparsely in response to natural stimuli. Individual neurons fire at a low rate, while the occasional

Wang J, Yang X, Sun Z. 2018.

Suppressing bursting synchronization in a modular neuronal network with synaptic plasticity

Cognitive Neurodynamics, 12:625-636.

DOI      URL     PMID     

Excessive synchronization of neurons in cerebral cortex is believed to play a crucial role in the emergence of neuropsychological disorders such as Parkinson's disease, epilepsy and essential tremor. This study, by constructing a modular neuronal network with modified Oja's learning rule, explores how to eliminate the pathological synchronized rhythm of interacted busting neurons numerically. When all neurons in the modular neuronal network are strongly synchronous within a specific range of coupling strength, the result reveals that synaptic plasticity with large learning rate can suppress bursting synchronization effectively. For the relative small learning rate not capable of suppressing synchronization, the technique of nonlinear delayed feedback control including differential feedback control and direct feedback control is further proposed to reduce the synchronized bursting state of coupled neurons. It is demonstrated that the two kinds of nonlinear feedback control can eliminate bursting synchronization significantly when the control parameters of feedback strength and feedback delay are appropriately tuned. For the former control technique, the control domain of effective synchronization suppression is similar to a semi-elliptical domain in the simulated parameter space of feedback strength and feedback delay, while for the latter one, the effective control domain is similar to a fan-shaped domain in the simulated parameter space.

Wang R, Hayashi H, Zhang Z , et al. 2003.

An exploration of dynamics on moving mechanism of the growth cone

Molecules, 8:127-138.

[本文引用: 4]

Wang R, Tsuda I, Zhang Z. 2015.

A new work mechanism on neuronal activity

International Journal of Neural Systems, 25:1450037.

DOI      URL     PMID      [本文引用: 12]

By re-examining the neuronal activity energy model, we show the inadequacies in the current understanding of the energy consumption associated with neuron activity. Specifically, we show computationally that a neuron first absorbs and then consumes energy during firing action potential, and this result cannot be produced from any current neuron models or biological neural networks. Based on this finding, we provide an explanation for the observation that when neurons are excited in the brain, blood flow increases significantly while the incremental oxygen consumption is very small. We can also explain why external stimulation and perception emergence are synchronized. We also show that negative energy presence in neurons at the sub-threshold state is an essential reason that leads to blood flow incremental response time in the brain rather than neural excitation to delay.

Wang R, Wang G, Zheng J. 2014.

An exploration of the range of noise intensity that affects the membrane potential of neurons

Abstract and Applied Analysis, 801642.

[本文引用: 2]

Wang R, Wang Z. 2018.

The essence of neuronal activity from the consistency of two different neuron models

Nonlinear Dynamics, 92:973-982.

[本文引用: 6]

Wang R, Zhang Z. 2006.

Mechanism on brain information processing: Energy coding

Applied Physical Letters, 89:123903.

[本文引用: 4]

Wang R, Zhang Z, Chen G. 2008.

Energy function and energy evolution on neuronal populations

IEEE Transactions on Neural Networks, 19:535-538.

DOI      URL     PMID      [本文引用: 3]

Based on the principle of energy coding, an energy function of a variety of electric potentials of a neural population in cerebral cortex is formulated. The energy function is used to describe the energy evolution of the neuronal population with time and the coupled relationship between neurons at the subthreshold and the suprathreshold states. The Hamiltonian motion equation with the membrane potential is obtained from the neuroelectrophysiological data contaminated by Gaussian white noise. The results of this research show that the mean membrane potential is the exact solution of the motion equation of the membrane potential developed in a previously published paper. It also shows that the Hamiltonian energy function derived in this brief is not only correct but also effective. Particularly, based on the principle of energy coding, an interesting finding is that in some subsets of neurons, firing action potentials at the suprathreshold and some others simultaneously perform activities at the subthreshold level in neural ensembles. Notably, this kind of coupling has not been found in other models of biological neural networks.

Wang R, Zhang Z, Chen G. 2009.

Energy coding and energy functions for local activities of brain

Neurocomputing, 73:139-150

[本文引用: 5]

Wang R, Zhang Z, Qu J , et al. 2011.

Phase synchronization motion and neural coding in dynamic transmission of neural information

IEEE Transactions on Neural Networks, 22:1097-1106.

URL     PMID      [本文引用: 1]

Wang R, Zhang Z, Tee C K. 2009.

Neurodynamics analysis on transmission of brain information

Applied Mathematics and Mechanics, 30:1415-1428

[本文引用: 1]

Wang R, Zhu Y. 2016.

Can the activities of the large scale cortical network be expressed by neural energy? A brief review

Cognitive Neurodynamics, 10:1-5.

DOI      URL     PMID      [本文引用: 8]

This paper mainly discusses and summarize that the changes of biological energy in the brain can be expressed by the biophysical energy we constructed. Different from the electrochemical energy, the biophysical energy proposed in the paper not only can be used to simulate the activity of neurons but also be used to simulate the neural activity of large scale cortical networks, so that the scientific nature of the neural energy coding was discussed.

Wang W, Wang R. 2016.

Control strategy of CPG gait movement under the condition of attention selection

Applied Mathematics and Mechanics, 37:957-966.

[本文引用: 1]

Wang Y, Wang R. 2018.

An improved neuronal energy model that better captures of dynamic property of neuronal activity

Nonlinear Dynamics, 91:319-327.

[本文引用: 9]

Wang Y, Wang R, Xu X.

2017. Neural energy supply-consumption properties based on Hodgkin-Huxley model

Neural Plasticity, 2017: 6207141.

[本文引用: 3]

Wang Y, Wang R, Zhu Y. 2017.

Optimal path-finding through mental exploration based on neural energy field gradients

Cognitive Neurodynamics, 11:99-111.

DOI      URL     PMID      [本文引用: 6]

Rodent animal can accomplish self-locating and path-finding task by forming a cognitive map in the hippocampus representing the environment. In the classical model of the cognitive map, the system (artificial animal) needs large amounts of physical exploration to study spatial environment to solve path-finding problems, which costs too much time and energy. Although Hopfield's mental exploration model makes up for the deficiency mentioned above, the path is still not efficient enough. Moreover, his model mainly focused on the artificial neural network, and clear physiological meanings has not been addressed. In this work, based on the concept of mental exploration, neural energy coding theory has been applied to the novel calculation model to solve the path-finding problem. Energy field is constructed on the basis of the firing power of place cell clusters, and the energy field gradient can be used in mental exploration to solve path-finding problems. The study shows that the new mental exploration model can efficiently find the optimal path, and present the learning process with biophysical meaning as well. We also analyzed the parameters of the model which affect the path efficiency. This new idea verifies the importance of place cell and synapse in spatial memory and proves that energy coding is effective to study cognitive activities. This may provide the theoretical basis for the neural dynamics mechanism of spatial memory.

Wang Y, Xu X, Wang R. 2018 a.

An energy model of place cell network in three dimensional space

Frontiers in Neuroscience, 12:264.

DOI      URL     PMID      [本文引用: 1]

Place cells are important elements in the spatial representation system of the brain. A considerable amount of experimental data and classical models are achieved in this area. However, an important question has not been addressed, which is how the three dimensional space is represented by the place cells. This question is preliminarily surveyed by energy coding method in this research. Energy coding method argues that neural information can be expressed by neural energy and it is convenient to model and compute for neural systems due to the global and linearly addable properties of neural energy. Nevertheless, the models of functional neural networks based on energy coding method have not been established. In this work, we construct a place cell network model to represent three dimensional space on an energy level. Then we define the place field and place field center and test the locating performance in three dimensional space. The results imply that the model successfully simulates the basic properties of place cells. The individual place cell obtains unique spatial selectivity. The place fields in three dimensional space vary in size and energy consumption. Furthermore, the locating error is limited to a certain level and the simulated place field agrees to the experimental results. In conclusion, this is an effective model to represent three dimensional space by energy method. The research verifies the energy efficiency principle of the brain during the neural coding for three dimensional spatial information. It is the first step to complete the three dimensional spatial representing system of the brain, and helps us further understand how the energy efficiency principle directs the locating, navigating, and path planning function of the brain.

Wang Y, Xu X, Wang R. 2018 b.

Intrinsic sodium currents and excitatory synaptic transmission influence spontaneous firing in up and down activities

Neural Networks: The Official Journal of the International Neural Network Society, 98:42-50.

URL     PMID      [本文引用: 1]

Wang Y, Xu X, Wang R. 2019.

The place cell activity is information-efficient constrained by energy

Neural Networks: The Official Journal of the International Neural Network Society, 116:110-118.

DOI      URL     PMID      [本文引用: 1]

Spatial representation is a crucial function of animal's brain. However, there is still no uniform explanation of how the spatial code is formed in different dimensional spaces to date. The main reason why place cell exhibits unique activity pattern is that the animal needs to retrieve and process spatial information. In this paper, we constructed a constrained optimization model based on information theory to explain the place field formation across species in different dimensional spaces. We proposed the following question that, using only limited amount of neural energy, how to organize the spiking locations (place field) in the available environment to obtain the most efficient spatial information representation? We solved this conditional functional extremum problem by variational techniques. The results showed that on the condition of limited neural energy, the place field will comply with a Gaussian-form distribution automatically to convey the largest amount information per spike. We also found that the animal's natural habitat property and locomotion experience statistics affected the symmetry of spatial representation in different dimensions. These findings not only reconcile the argument of whether the spatial codes of place cell are isotropic, but also provide an explanation of place field formation by an information-theoretic approach. Furtherly, this research revealed the energy economical and information efficient properties underlie the spatial representation system of the brain.

Wang Y, Xu X, Wang R. 2020.

Energy features in spontaneous up and down oscillations

Cognitive Neurodynamics, https://doi.org/10.1007/s11571-020-09597-3.

DOI      URL     PMID      [本文引用: 1]

Reliable diagnosis of depressive disorder is essential for both optimal treatment and prevention of fatal outcomes. This study aimed to elucidate the effectiveness of two non-linear measures, Higuchi's Fractal Dimension (HFD) and Sample Entropy (SampEn), in detecting depressive disorders when applied on EEG. HFD and SampEn of EEG signals were used as features for seven machine learning algorithms including Multilayer Perceptron, Logistic Regression, Support Vector Machines with the linear and polynomial kernel, Decision Tree, Random Forest, and Naive Bayes classifier, discriminating EEG between healthy control subjects and patients diagnosed with depression. This study confirmed earlier observations that both non-linear measures can discriminate EEG signals of patients from healthy control subjects. The results suggest that good classification is possible even with a small number of principal components. Average accuracy among classifiers ranged from 90.24 to 97.56%. Among the two measures, SampEn had better performance. Using HFD and SampEn and a variety of machine learning techniques we can accurately discriminate patients diagnosed with depression vs controls which can serve as a highly sensitive, clinically relevant marker for the diagnosis of depressive disorders.

Wang Y, Xu X, Zhu Y , et al. 2019.

Neural energy mechanism and neurodynamics of memory transformation

Nonlinear Dynamics, 97:697-714.

[本文引用: 5]

Wang Z, Kai L, Day M , et al. 2006.

Dopaminergic control of corticostriatal long-term synaptic depression in medium spiny neurons is mediated by cholinergic interneurons

Neuron, 50:443-452.

Wang Z, Wang R. 2014.

Energy distribution property and energy coding of a structural neural network

Frontiers in Computational Neuroscience, 8:14.

DOI      URL     PMID      [本文引用: 8]

Studying neural coding through neural energy is a novel view. In this paper, based on previously proposed single neuron model, the correlation between the energy consumption and the parameters of the cortex networks (amount of neurons, coupling strength, and transform delay) under an oscillational condition were researched. We found that energy distribution varies orderly as these parameters change, and it is closely related to the synchronous oscillation of the neural network. Besides, we compared this method with traditional method of relative coefficient, which shows energy method works equal to or better than the traditional one. It is novel that the synchronous activity and neural network parameters could be researched by assessing energy distribution and consumption. Therefore, the conclusion of this paper will refine the framework of neural coding theory and contribute to our understanding of the coding mechanism of the cerebral cortex. It provides a strong theoretical foundation of a novel neural coding theory-energy coding.

Wang Z, Wang R, Fang R. 2015.

Energy coding in neural network with inhibitory neurons

Cognitive Neurodynamics, 9:129-144.

DOI      URL     PMID      [本文引用: 6]

This paper aimed at assessing and comparing the effects of the inhibitory neurons in the neural network on the neural energy distribution, and the network activities in the absence of the inhibitory neurons to understand the nature of neural energy distribution and neural energy coding. Stimulus, synchronous oscillation has significant difference between neural networks with and without inhibitory neurons, and this difference can be quantitatively evaluated by the characteristic energy distribution. In addition, the synchronous oscillation difference of the neural activity can be quantitatively described by change of the energy distribution if the network parameters are gradually adjusted. Compared with traditional method of correlation coefficient analysis, the quantitative indicators based on nervous energy distribution characteristics are more effective in reflecting the dynamic features of the neural network activities. Meanwhile, this neural coding method from a global perspective of neural activity effectively avoids the current defects of neural encoding and decoding theory and enormous difficulties encountered. Our studies have shown that neural energy coding is a new coding theory with high efficiency and great potential.

Wu F, Wang C, Xu Y , et al. 2016.

Model of electrical activity in cardiac tissue under electromagnetic induction

Scientific Reports, 6:28.

URL     PMID      [本文引用: 2]

Wu S, Zhang Y, Cui Y , et al. 2019.

Heterogeneity of synaptic input connectivity regulates spike-based neuronal avalanches

Neural Networks: The Official Journal of the International Neural Network Society, 110:91-103.

DOI      URL     PMID      [本文引用: 1]

Our mysterious brain is believed to operate near a non-equilibrium point and generate critical self-organized avalanches in neuronal activity. A central topic in neuroscience is to elucidate the underlying circuitry mechanisms of neuronal avalanches in the brain. Recent experimental evidence has revealed significant heterogeneity in both synaptic input and output connectivity, but whether the structural heterogeneity participates in the regulation of neuronal avalanches remains poorly understood. By computational modeling, we predict that different types of structural heterogeneity contribute distinct effects on avalanche neurodynamics. In particular, neuronal avalanches can be triggered at an intermediate level of input heterogeneity, but heterogeneous output connectivity cannot evoke avalanche dynamics. In the criticality region, the co-emergence of multi-scale cortical activities is observed, and both the avalanche dynamics and neuronal oscillations are modulated by the input heterogeneity. Remarkably, we show similar results can be reproduced in networks with various types of in- and out-degree distributions. Overall, these findings not only provide details on the underlying circuitry mechanisms of nonrandom synaptic connectivity in the regulation of neuronal avalanches, but also inspire testable hypotheses for future experimental studies.

Xu X, Ni L, Wang R. 2016.

A neural network model of spontaneous up and down transitions

Nonlinear Dynamics, 84:1541-1551.

[本文引用: 1]

Xu X, Ni L, Wang R. 2017.

Synchronous transitions of up and down states in a network model based on stimulations

Journal of Theoretical Biology, 412:130-137.

DOI      URL     PMID      [本文引用: 1]

The phenomenon of spontaneous periodic up and down transitions is considered to be a significant characteristic of slow oscillations. Our previous theoretical studies have shown that the single neuron and network model can both exhibit spontaneous up and down transitions. Another characteristic of up and down dynamics is the synchronicity. So in this paper, we focused on the synchronized characteristic of up and down transitions in the network based on stimulations. Spontaneous activities showed no synchronous transitions between neurons. However, the external stimulation, mainly the stimulation frequency and the number of neurons stimulated on were related to the synchronous transitions of up and down states. The simulation results suggested that simultaneous high frequency excitation or firing of neurons in the network was responsible for the generation of synchronous transitions of up and down states. Through the observation and analysis of the findings, we have tried to explain the reason for synchronous up and down transitions and to lay the foundation for further work on the role of these synchronized transitions in cortex activity.

Yanagida T, Iwane A H. 2000.

A large step for myosin

Proceedings of the National Academy of Sciences of the United States of America, 97:9357-9359.

DOI      URL     PMID      [本文引用: 1]

Yang C, Luan G, Wang Q , et al. 2018.

Localization of epileptogenic zone with the correction of pathological networks

Frontiers in Neurology, 9:143.

URL     PMID      [本文引用: 2]

Yang X, Hu J, Ding X , et al. 2014.

Capability and limitation in evaluation on perceived fabric softness by three types of sensory modality

Fibers and Polymers, 15:2651-2657.

[本文引用: 1]

Yao M, Wang R. 2019.

Neurodynamic analysis of Merkel cell-neurite complex transduction mechanism during tactile sensing

Cognitive Neurodynamics, 13:293-302.

DOI      URL     PMID      [本文引用: 4]

The present study aimed to identify the mechanism of tactile sensation by analyzing the regularity of the firing pattern of Merkel cell-neurite complex (MCNC) under the stimulation of different compression depths. The fingertips were exposed to the contact pressure of a spherical object to sense external stimuli in this study. The distribution structure of slowly adapting type I (SAI) mechanoreceptors was considered for analyzing the neural coding of tactile stimuli, especially the firing pattern of SAI neural network for perceiving the external stimulation. The numerical simulation results showed that (1) when the skin was pressed by the same sphere and the depth of the pressing finger skin and position of the force application point remained unchanged, the firing rate of the neuron depended on the synergistic effect of the number of receptors connected with the neuron and the distance between the neuron and the force application point. (2) When the fingertip was pressed by the same sphere at a constant depth and the different contact position, the overall firing rate of the MCNC neural network increased with the number of SAI mechanoreceptors in the area where the force application point was located.

Yao Y, Ma J. 2018.

Weak periodic signal detection by sine-Wiener-noise-induced resonance in the FitzHugh-Nagumo neuron

Cognitive Neurodynamics, 12:343-349.

DOI      URL     PMID      [本文引用: 1]

Based on the FitzHugh-Nagumo (FHN) neuron model subjected to sine-Wiener (SW) noise, impacts of SW noise on weak periodic signal detection are investigated by calculating response measure Q for characterizing synchronization between the input signal and the output temporal activities of the neuron. It is numerically demonstrated that the response measure Q can achieve the optimal value under appropriate and moderate intensity or correlation time of SW noise, suggesting the occurrence of SW-noise-induced stochastic resonance. Furthermore, the optimal value of Q is sensitive to correlation time. Consequently, the correlation time of SW noise has a great influence on the performance of signal detection in the FHN neuron.

Yin X, Wang R. 2016.

Simulation of dopamine modulation-based memory model

Neurocomputing, 194:241-245.

[本文引用: 1]

Yu Y, Hao Y, Wang Q. 2020.

Model-based optimized phase-deviation deep brain stimulation for Parkinson's disease

Neural Networks: The official Journal of the International Neural Network Society, 122:308-319.

DOI      URL     PMID      [本文引用: 1]

High-frequency deep brain stimulation (HF-DBS) of the subthalamic nucleus (STN), globus pallidus interna (GPi) and globus pallidus externa (GPe) are often considered as effective methods for the treatment of Parkinson's disease (PD). However, the stimulation of a single nucleus by HF-DBS can cause specific physical damage, produce side effects and usually consume more electrical energy. Therefore, we use a biophysically-based model of basal ganglia-thalamic circuits to explore more effective stimulation patterns to reduce adverse effects and save energy. In this paper, we computationally investigate the combined DBS of two nuclei with the phase deviation between two stimulation waveforms (CDBS). Three different stimulation combination strategies are proposed, i.e., STN and GPe CDBS (SED), STN and GPi CDBS (SID), as well as GPi and GPe CDBS (GGD). Resultantly, it is found that anti-phase CDBS is more effective in improving parkinsonian dynamical properties, including desynchronization of neurons and the recovery of the thalamus relay ability. Detailed simulation investigation shows that anti-phase SED and GGD are superior to SID. Besides, the energy consumption can be largely reduced by SED and GGD (72.5% and 65.5%), compared to HF-DBS. These results provide new insights into the optimal stimulation parameter and target choice of PD, which may be helpful for the clinical practice.

Zhan F, Liu S. 2019.

A Hénon-like map inspired by the generalized discrete-time FitzHugh-Nagumo model

Nonlinear Dynamics, 97:2675-2691.

[本文引用: 2]

Zhan F, Liu S, Zhang X , et al. 2018.

Mixed-mode oscillations and bifurcation analysis in a pituitary model

Nonlinear Dynamics, 94:807-826.

[本文引用: 1]

Zhang H, Su J, Wang Q , et al. 2018.

Predicting seizure by modeling synaptic plasticity based on EEG signals—a case study of inherited epilepsy

Communications in Nonlinear Science & Numerical Simulation, 56:330-343.

URL     PMID      [本文引用: 1]

Zhang T, Pan X, Xu X , et al. 2019.

A cortical model with multi-layers to study visual attentional modulation of neurons at the synaptic level

Cognitive Neurodynamics, 13:579-599.

DOI      URL     PMID      [本文引用: 2]

Visual attention is a selective process of visual information and improves perceptual performance by modulating activities of neurons in the visual system. It has been reported that attention increased firing rates of neurons, reduced their response variability and improved reliability of coding relevant stimuli. Recent neurophysiological studies demonstrated that attention also enhanced the synaptic efficacy between neurons mediated through NMDA and AMPA receptors. Majority of computational models of attention usually are based on firing rates, which cannot explain attentional modulations observed at the synaptic level. To understand mechanisms of attentional modulations at the synaptic level, we proposed a neural network consisting of three layers, corresponding to three different brain regions. Each layer has excitatory and inhibitory neurons. Each neuron was modeled by the Hodgkin-Huxley model. The connections between neurons were through excitatory AMPA and NMDA receptors, as well as inhibitory GABAA receptors. Since the binding process of neurotransmitters with receptors is stochastic in the synapse, it is hypothesized that attention could reduce the variation of the stochastic binding process and increase the fraction of bound receptors in the model. We investigated how attention modulated neurons' responses at the synaptic level on the basis of this hypothesis. Simulated results demonstrated that attention increased firing rates of neurons and reduced their response variability. The attention-induced effects were stronger in higher regions compared to those in lower regions, and stronger for inhibitory neurons than for excitatory neurons. In addition, AMPA receptor antagonist (CNQX) impaired attention-induced modulations on neurons' responses, while NMDA receptor antagonist (APV) did not. These results suggest that attention may modulate neuronal activity at the synaptic level.

Zhang X, Liu S, Zhan F , et al. 2017.

The effects of medium spiny neuron morphologcial changes on basal ganglia network under external electric field: A computational modeling study

Frontiers in Computational Neuroscience, 11:91.

DOI      URL     PMID      [本文引用: 2]

The damage of dopaminergic neurons that innervate the striatum has been considered to be the proximate cause of Parkinson's disease (PD). In the dopamine-denervated state, the loss of dendritic spines and the decrease of dendritic length may prevent medium spiny neuron (MSN) from receiving too much excitatory stimuli from the cortex, thereby reducing the symptom of Parkinson's disease. However, the reduction in dendritic spine density obtained by different experiments is significantly different. We developed a biological-based network computational model to quantify the effect of dendritic spine loss and dendrites tree degeneration on basal ganglia (BG) signal regulation. Through the introduction of error index (EI), which was used to measure the attenuation of the signal, we explored the amount of dendritic spine loss and dendritic trees degradation required to restore the normal regulatory function of the network, and found that there were two ranges of dendritic spine loss that could reduce EI to normal levels in the case of dopamine at a certain level, this was also true for dendritic trees. However, although these effects were the same, the mechanisms of these two cases were significant difference. Using the method of phase diagram analysis, we gained insight into the mechanism of signal degradation. Furthermore, we explored the role of cortex in MSN morphology changes dopamine depletion-induced and found that proper adjustments to cortical activity do stop the loss in dendritic spines induced by dopamine depleted. These results suggested that modifying cortical drive onto MSN might provide a new idea on clinical therapeutic strategies for Parkinson's disease.

Zhang Y, Pan X, Wang R , et al. 2016.

Functional connectivity between prefrontal cortex and striatum estimated by phase locking value

Cognitive Neurodynamics, 10:245-254.

URL     PMID      [本文引用: 1]

Zhao Z, Li L, Gu H. 2018.

Dynamical mechanism of hyperpolarization-activated non-specific cation current induced resonance and spike-timing precision in a neuronal model

Frontiers in Cellular Neuroscience, 12:62.

DOI      URL     PMID      [本文引用: 1]

Hyperpolarization-activated cyclic nucleotide-gated cation current (Ih ) plays important roles in the achievement of many physiological/pathological functions in the nervous system by modulating the electrophysiological activities, such as the rebound (spike) to hyperpolarization stimulations, subthreshold membrane resonance to sinusoidal currents, and spike-timing precision to stochastic factors. In the present paper, with increasing gh (conductance of Ih ), the rebound (spike) and subthreshold resonance appear and become stronger, and the variability of the interspike intervals (ISIs) becomes lower, i.e., the enhancement of spike-timing precision, which are simulated in a conductance-based theoretical model and well explained by the nonlinear concept of bifurcation. With increasing gh , the stable node to stable focus, to coexistence behavior, and to firing via the codimension-1 bifurcations (Hopf bifurcation, saddle-node bifurcation, saddle-node bifurcations on an invariant circle, and saddle homoclinic orbit) and codimension-2 bifurcations such as Bogdanov-Takens (BT) point related to the transition between saddle-node and Hopf bifurcations, are acquired with 1- and 2-parameter bifurcation analysis. The decrease of variability of ISIs with increasing gh is induced by the fast decrease of the standard deviation of ISIs, which is related to the increase of the capacity of resisting noisy disturbance due to the firing becomes far away from the bifurcation point. The enhancement of the rebound (spike) with increasing gh builds up a relationship to the decrease of the capacity of resisting disturbance like the hyperpolarization stimulus as the resting state approaches the bifurcation point. The

Zheng H, Wang R, Qiao L , et al. 2014.

The molecular dynamics of neural metabolism during the action potential

Science China Technological Sciences, 57:857-863.

[本文引用: 3]

Zheng H, Wang R, Qu J. 2016.

Effect of different glucose supply conditions on neuronal energy metabolism

Cognitive Neurodynamics, 10:563-571.

[本文引用: 5]

Zheng Z, Wang R. 2017.

Arm motion control model based on central pattern generator

Applied Mathematics and Mechanics, 38:1247-1256.

[本文引用: 1]

Zhong H, Wang R. 2020.

Neural mechanism of degradation of visual information data from retina to V1 area

Cognitive Neurodynamics, https://doi.org/10.1007/s11571-020-09599-1.

DOI      URL     PMID      [本文引用: 1]

Reliable diagnosis of depressive disorder is essential for both optimal treatment and prevention of fatal outcomes. This study aimed to elucidate the effectiveness of two non-linear measures, Higuchi's Fractal Dimension (HFD) and Sample Entropy (SampEn), in detecting depressive disorders when applied on EEG. HFD and SampEn of EEG signals were used as features for seven machine learning algorithms including Multilayer Perceptron, Logistic Regression, Support Vector Machines with the linear and polynomial kernel, Decision Tree, Random Forest, and Naive Bayes classifier, discriminating EEG between healthy control subjects and patients diagnosed with depression. This study confirmed earlier observations that both non-linear measures can discriminate EEG signals of patients from healthy control subjects. The results suggest that good classification is possible even with a small number of principal components. Average accuracy among classifiers ranged from 90.24 to 97.56%. Among the two measures, SampEn had better performance. Using HFD and SampEn and a variety of machine learning techniques we can accurately discriminate patients diagnosed with depression vs controls which can serve as a highly sensitive, clinically relevant marker for the diagnosis of depressive disorders.

Zhu F, Wang R, Aihara K , et al. 2020.

Energy-efficient firing patterns with sparse bursts in the chay neuron model

Nonlinear Dynamics, 100: 2657-2672. https://doi.org/10.1007/s11071-020-05593-8.

URL     [本文引用: 4]

Zhu F, Wang R, Pan X , et al. 2019.

Energy expenditure computation of a single bursting neuron

Cognitive Neurodynamics, 13:75-87.

DOI      URL     PMID      [本文引用: 3]

Brief bursts of high-frequency spikes are a common firing pattern of neurons. The cellular mechanisms of bursting and its biological significance remain a matter of debate. Focusing on the energy aspect, this paper proposes a neural energy calculation method based on the Chay model of bursting. The flow of ions across the membrane of the bursting neuron with or without current stimulation and its power which contributes to the change of the transmembrane electrical potential energy are analyzed here in detail. We find that during the depolarization of spikes in bursting this power becomes negative, which was also discovered in previous research with another energy model. We also find that the neuron's energy consumption during bursting is minimal. Especially in the spontaneous state without stimulation, the total energy consumption (2.152 x 10(-7) J) during 30 s of bursting is very similar to the biological energy consumption (2.468 x 10(-7) J) during the generation of a single action potential, as shown in Wang et al. (Neural Plast 2017, 2017a). Our results suggest that this property of low energy consumption could simply be the consequence of the biophysics of generating bursts, which is consistent with the principle of energy minimization. Our results also imply that neural energy plays a critical role in neural coding, which opens a new avenue for research of a central challenge facing neuroscience today.

Zhu Y, Wang R, Wang Y. 2016.

A comparative study of the impact of theta-burst and high-frequency stimulation on memory performance

Frontiers in Human Neuroscience, 10:19.

URL     PMID      [本文引用: 2]

Zhu Y, Wang R, Wang Y. 2016.

The impact of theta-burst stimulation on memory mechanism: A modeling study

Applied Mathematics and Mechanics, 37:395-402.

Zhu Z, Wang R, Zhu F. 2018.

The energy coding of a structural neural network based on the Hodgkin-Huxley model

Frontiers in Neuroscience, 12:122.

DOI      URL     PMID      [本文引用: 9]

Based on the Hodgkin-Huxley model, the present study established a fully connected structural neural network to simulate the neural activity and energy consumption of the network by neural energy coding theory. The numerical simulation result showed that the periodicity of the network energy distribution was positively correlated to the number of neurons and coupling strength, but negatively correlated to signal transmitting delay. Moreover, a relationship was established between the energy distribution feature and the synchronous oscillation of the neural network, which showed that when the proportion of negative energy in power consumption curve was high, the synchronous oscillation of the neural network was apparent. In addition, comparison with the simulation result of structural neural network based on the Wang-Zhang biophysical model of neurons showed that both models were essentially consistent.

/

Baidu
map